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Abstracet

A Fokker Planck equation is used for the problem of nuclear fission. The decay rata is computed
within a three dimensional calculation aud the influence of coupling terms 1n the transport coef-
ficient tensors is considered. Inicial conditions at the saddle point for the collective degrees
of freedom are dynamically obtained im the stationary situation. Finally, ‘ynamics of fluctuacions

from saddle to scission is treated under the same assumptions on the propagation.

1. Iatrodyction

Dynamical aspects of the auclear fissiom could be considered in two steps, namely the pach cthrough
the fission barrier and the descent from the saddle point to the scission region. Ou the other

hand, it turas out that the coupling betweea the intrinsic (i.e. aucleonic) degrees of freedom and
the relevant collective coordinates (i.e., in the fission problem, the 2ilongation, the zass asym-
metry and tne striction) leads to a dymamical equacion') Zor the density d relative to the collac-
tive space. This equation is a Fokker-Plamck 2quation (FPE). It is a transpcrt equation and can e
applied %o the zwo staps of che fission -~rucess. As a dacter of fact, the transpor: equation yro-
vides some flux at the top of the fission darrier by coupling of staces imside the first well. We
caa get 2 determination of the ascipe race cthrough the bSarrier, as far as excitad auclai are :zom~

-
v

cerzed. Furtherror2 initial conditlons act the saddle point zam e evaluated, starziag from a sca-

tistical equilibSrium in the first well. Iz is finally straigntforward to axtend zhe treataent from
saddle to scission in order Zo compute macroscopic obserwvasles and the fluctuations arcund the

mean values.

! the main difficulzv for applying zhe 77T

As it was already shown by F. Scheuter and 4. Hofmann®
to the problem of the auclear fission is. due Co the breakdown of :he local harmonic approxima-
tion for the density d. (We will avoid here the guestionable validity of che Markov approximation

2)

in the fission oroblem). Nevertheless use of propagators in time’’ seems o offer a way ia order
to solve the FPE and %o treat che two 3teps of the nuclear fisiom on an equal footing. For real-
iscic zases, conditions on cthe propagation make the computation tractable dv introduction of pro-
pagators oo gaussian bundles’). 'i
In this contribution, we would like to repor: some recent calculations obtained in a thrae dimen-
sional framework. In a firsc part, we will give :h; naio ideas of our dynamical :aiculatioms. In a
second one, we will discuss the questiom of the escape rate for the multidizensional situations.
In a chird part, fluctuations will be comsidered and comparisons with some experizental resui:

will be ziven.

2. Propazazion n zaussian bundles

Let us write the FPE in the one-dizensional casel), «nere ) is the coordinacs: and ? the asscciaced

Domentum
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X 1 is zhe zollective hamiltonian

<0

Y, 3, D are the friction, the inertia and the diffusion coefficients and zould be avaluated by li-
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aear respouase :heory‘). The Tesoluzion of this 7PE proposed iz res.?) is based on the evaluation

of the propagator K(Q,?,QQ,PO,:) defined as :

i 2 - ( y

Q(any:) J' dQO dPO K(Q'P.QO'PO’:) d(QQ’?O' t‘)) (2\
It .alfills the relatioa

if: K(Q.?'QO.PO,C) = 5(0-00) 5(?-?03. (3)
One can check that K satisfies the same FPE as 4 itself.
The initial condition (3) allows to make to local harmonic approximatiou for the propagator during
a time interval AT. According to (2), the distribution d can be reconstructed aftar AT and'a aew

(l)can e defiaed as :

propagator X
4(Q,2,47+c) = f 4q, ¢ TV 2.0 2, 10 da;.2 0. (%)

By izeracion on time, one finally gets the solutiom of the FPE :

fﬂ'l .
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Lac us aov add some zoedition on propagation’). AQ long as :the porential enerzy and the tracspor:
coefficients are momentum independent, :ie colleczive hamilzomian can e seen 23 a quadratic oue
in pomentum. Consequently, deviations from che quadrati: bYenaviour are essentially expezcad in the
coordinate direczion. Therefore, ve nave assumed a2 gaussian nomentum distribution for each ziven

7alue Q of the cooriinate. The phase space is zonsidered as a Suadle {Qo'JrQ 7 where .ie density
along each Sundle is a zaussian. °

This deccoposition is schematicaily drawn in £iz. | and can be expressed >y

[ | (@=<p_)?
d(qQ,pP,:) = | 4Q, 4.4 (Qo) ::;:— exp - o :(Q—QO) (7
° Q
w“here ?o is the local sogmentum for a fixed Qo value \
21 2 . 3
¥, =¥ J 4P (P=<?>) d(Qo,P,.) the local variasce
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red "o } ) - . 7.
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fig. | : Defiaition of the dundled space {Qc";b ' The
J?Q is here along che momentum ? and is )

— 3 3ssumed %0 Ye 1 zaussian.

The propagation inm tizme is obtained in its 3ipplified varsioa 57 Deans of sropagators on gaussian
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The assumption of zaussian bundles tremendously reduces the computation of the propagaticn and can
be extended for multidimensional purposes. As far as the fission process is concerned, the consi-
deration of two potential regions (on one hand, the first well and the saddle point region and on
the other hand, the descent from saddle to scission) permits to estimate che ascape rate, the iai-
tial conditions at the saddle point and the fluctuations in the scissiom regionm. '

s)

Here, che collective coordinates®’ are the elomgation ¢, the mass asvmmetry 2 and a neck degree of

freedom h. We assumed non diagonal inertia and frictionm tensors**?)

and Y] [Ype Yo O

with ~2 2
- - - 1 5/3 iar - .0
8.7 58 % " Te0 A Mev] » T T2

which are similar values as in ref.”)

[o®

and Yo" Yy " 13 Yor Th ® f YO/I.Z where Yo T ¢

L]

The coupling terms are equal to z, (resp. £ Yo) mulciplied by a reduction factor.
Tor a given elongation value €yt the bundle is defined like the {Pc‘h’PH'a'?;} space, where o,

(resp. ?h'?;) is the associated momentum to c(resp. h,3).

1)

The staticnary solution of the FPE (1) provides’’ the escape rate r (or decay rate for the fission-

ing nucleus) according to :

e lar syt el a (i0)
J Tred $¢" Cgaddle

where [?] = (PsP?,)

ds: the ctationary solution of (1)

csaddle
drred - ch dh dPh da dPa‘

the alongation at the saddle poiat

The full distribution at the left hand side of the saddle point is assumed to be normalized to uni-
ty at each time. The half life time T for a nucleus decaying by fission can be estimated in such 1
case by T % |/r.

) defines the initial conditions in the associated bundle 5 , We are able

€saddle
saddl

Siace d,c ( .
to follow the subsequent dynamical behaviour from saddle to scission. For instance, fhe fluctua-

. a . ; . :
tion = 4round the sean value for the Dass asvmmetry coordinacte 3 zives the fluctuation for the

pass ratio of the fission fragments at :the scission joint. Using che telacionahip’)

A, L % 1c’? .
— - (1
A 3 ]

2 I'EIC

we obcaia directly :

g "
B A S (12)
mlf,. 5
if x7 - 1, 47 g 3 - <3>)7d_ 4 at the scission soinc.

3. The escape rate throuzh the fission barrier

First of all, in order o Zest our procedurs, we studiad a simple Dodel case. We defined the I0-

ety em ey s ee




tential C(c,d, z) to be
(37.46 (e=1)% + 500 2% + 2C0 2*)[MeV] for 0 <c < 1,27
':(C’ h‘ 1) -

(3.~ 18.73 (e-1.8)% + 500 1% + 2000?)[MeV] for 1.27 <c <@

The coupling between ¢ and h in the inertia and in the friction temsor is neglected in this mzodel
case (BCh = " 0). The nucleus under consideration is 2?%ac.
This model is for the elongatiom degree of freedom ¢ essentially ideatical to the one dimensiomal

model used before for the calculatiow of the decay rate by Ktamezs’) »)

yVisscher and Scheuter and
Hofmann?). For the (h,3) degrees of freedom, we added the potentials of two harmonic oscillators
with constant stiffaess along c. As far as the computatioa af the decay rate is concerned this

choice of the potential and the transport coefficients reduces the problem to the one-dimensional
one studied bSefore. The numerical resulcs of:’,) show that Xramers formulae®) are virtually exact
except for a very small y-interval in the tramsition from the small frictiom (L) to the nigh fric-

tion regime (H). These formulae can be written in the following way :

4] u y. GT

<
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r B—Texv( T) for —a—-t,—‘:—' L)
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3 = e 3
1 /3% ‘ (/slan13 ne local L L.
where - ( ;:;/ sc)minimum an QB = ,;:;», c)saddle are the local frequencies ia the zinmi-

aum c=! and at che saddle point c=1.8 and UB,T are the barrier heignt and che temperature respecti-
valy.

. N . . . . .
For the practical calculation, we assumed an excitation e2nergy of £ = 30 YeV aand zhe relacions

T saTl, a= %3

Detween the 2xcitation energy and the temperature T, We assumed this temperature o be 3 comstant
aloog =he pata in order to make the comparison with Xramers results meaningful. To achieve the sta-

tionary solution as fast as possible, we decided to choose locally the followiag imitial condizions
7 ?

(e=0) : OCc,h_ = 0,3 = 0)
/ 1 2 eq
N exp (- T )dred(c)
for ¢ < Csaddle - 1.3
dreal® = : ' ‘
(e :
dred saddle) for ¢ > csaddle

This means that we start locally with an 2quilibrium discribution d::d(c) weignted oroperiy

by the facror exp(- U/T). ¥ is 3 normalisation faceor.

In figure 2 we plotted the flux at the barrier as a function of time for 2 typical Iriction £ = %—
= |, It shows how the stationary solution is obtaized. After a small oscillacion the flux :onve:;gs
quite rapidly to its stactionary value, which is almost identical %o Xramers estimation.

In fig. 3 we show the decay race (full lige) in comparison with Xramers result (dashed line) as 2
function of £ = Y/YO. The agreement between the two calculations is excelleat if we consider the
need to discretise the Sundlaed propagaction probiem. The used discretisation induces some nuperical
uncertainties and could be ameliorated in further calculations. Nevertheless the Josc striking fea-
ture .s che obtention of a nice bending over of our curve in the cransizional fric:ion ragize.

Let us now treat the realistic case of the fission of :%ic at the rather high excitation enargy of

80 eV, which allows us to neglact shell effects and pairing. We use the shape paramecrizazion

(bl ST 14-0 70-79
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Fig. 2 : Flux at the top of the fission barrier as rfuncrtion of time. The escape
rate r computed in the stationary situatiomn with a propagacion on gaussianm
bundles (full line) is compared to the Kramers calculation for a model case
Yo, and A = 205.
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Fig. 3 : Comparison of the calculations for the escape rate with a Sundled propa-
gacion and with the Xramers axprassions. The ascape rata r is shown as a
function of the friccion strengc! 7/70, where Vs is a reference value.

‘¢,3,2} of (6) with the modification of (3) for 3 3 2h + % (¢=1) £ 0. The pocencial landscape iz
zhis functional space is shown in (6). It turns out that zhe jath of steepest descent is not a
straight line in the{c~h’plaoe as in our simple model case. In the practical caleculation we adjust
now zhne ctewperature T along the pazh. We assume that the total z2mergy is conserved in the peas, viz:
)

Y

s
«here the nean coliective anergw <Ecoll> i3 che sum of the zollective xinetic and pjotential emergy.

(E') + <E

g coll>c = 80 Mev

We zalculate the zoordinate dependent remperature (T)E by means 3f :

As 3 furtier modificacion wich respect to our previous pode!l calculacion, we introduce now zhe zZene-
ralized Zinscein relation between the friction and diffusion coefficients, which, in a2 one dimen-

sional case, rveads :

D(<Q>,T) = v(<0>). T (<0>,T).

. : . ’ . . 4 . .
This relation was proven within the framework of linear ressonse :heory"). T zan be incerareted

as an ¢ffactive taemperature and is ziven Sy :he formula

s AT T

T = T~ cotgh (TT)




wher2 zhe local frequency :1(Q) is defined as :

Y

s = 25 s,

In the multidimensional case, the effective temperatures can be proverlv defined locally in the svs-—
tem of aormal coordinates . For details we refer the reader to ref.'').
Since the mean path out of the minizum over the barrier towards scission is of & particular iater-

est, we show in fig. 4 how this path is affected by the coupling Bch for the tvpical friction

£ = Y/Yo = |. For Bc = 0 the system remains close to the line of steepest descent as it could de

expected from purelyhs:atic considerations. But after the switching om of che coupling Bcb - Bc/3
one observes a dramatic change of the mean trajectory in the regiom of the potential minimum. In
spite of this strong deviation it comes again rather close Zo the line of steepes:t descent between
saddle and scission. On the other hand the 2scape rate is practically independemnt of the :zoupling.
For Bch =0 we find r = 6.7 x lol;s coopared to r = 6,3 x l0l7s in the case Bch - SCIJ.ODC zan ger

a remarkable decrease of the escape rate only for very strong coupling sch'
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Fig. 4 : Dymamical paths for che fission of 2°%At in the {<e>,<h>} lane.
The saddle points are represented 5y the symbol 8 for two) paths obtaia-
ad with coupling and without coupling terms ia che transport coefficieat
tensors. $

’

4. fluctuacions of the collective coordinactes ‘

The initial conditioms at the saddle poinc have been calculated in the correspcnding Suiadle for the
precedent cases (with and without coupling). Especially for the flictuation in mass asvmmecry (:a'
in the neck cecrdinate xhh and in momentum along the elongation deet it is interescing to compare
the dvmamical values in the stationary situacion with the bare stacic values obtained for 1 stacis-
tical equilibrium at the saddle point. As reported in Table !, the dynamicai values are 3ligacly
larzer for 1’“ and xhh than expected from a statistical equilibrium assumption. This fact seams oo
indicate that zhis equilibrium is not completely reached ¢ven in the stationarv situation. Yever-
zheless, as far as the absolute values are concerned, some coordinate dependence of he Zrinspore
coefficients could somewhat nodifv the presenced resulcs. Cu the other hand some smaller values of

b, ATE obtained in our calculation than in the equilibrium estimation. This parcicular resul: is
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ideacical to the one obtained ia zhe one dizensional podel of ref.:)
Tadle I
.. .. . w 1. 2 hh 1 . . ..
In;:;a% ;ond;:;ans at the 3saddle point for =3 ; d‘red (z=<2>) %4, Y = 3 ; d‘red (a=<h>)-3,
s == 47 (P = <2 >)*d where &I = 47 da dP_ dh dP. . These ralues are obtained 5v consi-
cc 2 red "¢ 3 red 3 b1 n

dering far the densizy 4 ; 1) a statistical distridation, ii) the stacionary value dynamically coe—
puted Zor two different assumptions on the ccupling between ¢ and 2. 3 is che inertia paramecer
c

along the ¢ coordinate and Bc._l the cross term between ¢ and h in the inertia temsor.

&

{ o o w_ [Gev 1073412

| pooee

1 Statistical -3 E -3 ! -1

i equilibrium 1.75 x 10 ( 3.02 < 10 | 1.67 x 10

| with B =0 l

{ ch ! »

} Dvnamical -3 -3 ; -1 ;
calculation | 2,50 x 10 1.61 x 10 : .19 = 10

; with B:h. o] ? H

i [ I j }

! Srtacistical | 3 -3 1 !

i equilibriuwm | .75 x 10 io3.10 x 10 i 1.84 x 10

% With Bch-sc/3 : % i !

| . : |

i Dvmamical : -3 -1 -1 !

! caleulacion | 2.92 < 10 5.76 % 1077 1.30 < 10 :

with S:h-sc/3

Finally, the statistical equilibrium values are reasonable for startiag a dwmamical pacd iram sad-
le co the scission region.

According to eq. (12) the variance in mass asymaerry was computad as a funcziog of £ = v/vo. ~he

wideh [ of the mass discridbution is nerely :
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Fig. 5 : Calculated widchs [ of che pass distriducion for the
fission of “?%ir. The widths are obrained for various
strengths of the friction v and for different 2xcitacion
energies,

In figure 5, differeat curves wers czalculacted for four axcitation 2nergzies with ini:tial :ondicions

at the saddle chosen in a statiscical equilibrium. It curas suc =hat cthe final rasul:z is indepeaden:

on the friccion streagth as far as v exceeds rougnly 70/2. For a comparison witl *he axperizencal
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valyes, 1T must be guotad thar our :alculation gives T = 35.2 a.m.u. at an axcization 2nergy I =
50 MeV and cthat the experimenral result of ref. ) is ?exa = 33 = 3 a.m.u. This agreement is sti-
miazing for Jurcher computation of macroscopic quantities by use of the transport 2quarioe {!)

witl a bundied propagation.

Conclusion

It vas shown that the use of propagators jersits ta obtain a time dependeat solutioe of the Fokker-
Plaack equationz). We have shown that the-method of 2 bundied propagation with gaissian bundles is
ao excellent approximation in nodel cases, especially in zhe crucial estimation of the decay rate
through a barrier. Furthermore the bundled propagation makes the solution of zulridimensional Fokker
Planck equationsaumerically tractable. Its applicacion to a three~dimensional treatmeat of the fis-
sion process gives us a lot of informatiom on the varisus steps of the dvnamics. First of all the
decay rate can be obtained bv lookiag on the flux ar the saddle point. Surprisinglv, it appears
rather insensitive to the non diagonal terms in the transpert coefficient ternsors. Secomdly, the
dynamical calculation of the initiai conditions at the saddle poiat, starting with an equilibrium
distribution in the Ffirst well, shows that the current assuzpcion of a statistical equilibrium is
reasonadle in view of the small deviations that appear. Finally, first calculacions coacerning the
width of the mass distribution for fissicn fragments are in remarkable agreement with the experi-
sencs. Furcher calcylations will now be possible for estimating a lot of macroscopic juancities of

. . P . s . . se:: . . 3
interest im nuclear fission. In this spirit, microscopic ctransnort coeificients would be zequired' ),
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