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Abstract 

A Fokicer Planck equation is used for the problem of nuclear fission. The decay rate is computed 

within a three dimensional calculation and the influence of coupling terms in the transport coef

ficient tensors is considered. Initial conditions at the saddle point for the collective degrees 

of freedom are dynamically obtained in the stationary situation. Finally, 'ynamics of fluctuations 

from saddle to scission is treated under the same assumptions on the propagation. 

1. Introduction 

Dynamical aspects of the nuclear fission could be considered in tvo seeps, namely the path through 

the fission barrier and the descent from the saddle point to the scission region. On the other 

hand, it turns out that the coupling between the intrinsic (i.e. nucleonic) degrees of freedom and 

the relevant collective coordinates (i.e., in the fission problem, the elongation, the mass asym

metry and rne striction) leads to a dynamical equation1) for the density d relative to the collec

tive space. This equation is a Fokker-Plasck equation (FPE). It is a transport equation and can be 

applied to the tvo steps of the fission -r-icess. As a matter of fact, the transport equation pro

vides some flux at the top of the fission barrier by coupling of states inside the first well. We 

can get a determination of the escape rate through the barrier, as far as excited nuclei are con

cerned. Furthermore initial conditions at the 3addle point can be evaluated, starting from a sta

tistical equilibrium in the first well. It is finally straightforward to extend the treatment from 

saddle to scission in order to compute macroscopic observables and the fluctuations around the 

mean values. 

As it was already shown by F. Scheuter and H. Hofaann the main difficulty for applying the 7?5 

to the problem of the nuclear fission is due to the breakdown 0f ; n e local harmonic approxima

tion for the density d. (We will avoid here the questionable validity of the Markov approximation 

in the fission problem). Nevertheless use of propagators in time2^ seems to offer a way in order 

to solve the F?E and to treat the two 3teps of the nuclear ficsion on an equal footing, "or real

istic cases, conditions on the propagation maice the computation tractable by introduction of pro

pagators on gaussian bundles3 . > 

In this contribution, we would like to report some recent calculations obtained in a three dimen

sional framework. In a fir3t pare, we will give the main ideas of our dynamical calculations, tn a 

second one, we will discuss the question of the escape rate for the multidimensional situations. 

In a third parr., fluctuations will be considered and comparisons with some experimental result? 

will be jiven. 

2. Propagation on jaussian bundles 

Let us write the FPS in the one-dimensional case1', where 0 is the coordinat» and ? the 3S30ciated 

momentum 

' d ( ? ' ? ' C ) - - {d(Q,?,t),Jir ;• - £ ! » < ? dCQ.P.t)) • D li- d(Q,?,£) (I) 
Jt cell B jr ,_2 

^ i 0 H ••' t i l« collective haailtonian 

Y, 3, D are the friction, the inertia and the diffusion coefficients and could be evaluated by li-
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near response theory*^. The resolution of this T?Z proposed ia ref.:' is based on Che evaluation 
of ch« propagacor X(Q,?,Q ,? ,t) defined as : 

3,?,t) - f d(Q,?,t) - dQ dP K(Q,?,Q .P .c) d(Q .? . c-0) 
J O O O O 0 0 

It .jlfills th* relation 

lia K(Q,?,Q ,t ,t) - i(0-O ) $(?-? ), 
t-o ° ° o o 

(3) 

One can check chat K satisfies che same FPS as d itself. 
The initial condition (3) allows to sake Co local harmonic approximation for the propagator during 
a time interval IT. According to (2), the distribution d can be reconstructed after <1T and'a new 
propagator ! can be defined as : 

d(Q,P,4T-C) • j dQ, dP, K ( 1 )(Q,P,Qj, ? l,AT*t) dCQj.Pj.e). 

3y iteration on ciae, one finally gets the solution of che FPE : 

(4 ) 

r B - l 
r<j )< d ( Q , ? , t ) - j_H dQ j dP j K ^ J ( Q j < > l f P j + r Q j ( ? j , j A T ) d ( Q 3 , ? o , t * •0) (5) 

with 
t - nAT and lirn^ K ^ (Q. + , ,P j + 1 , Q . , P . ,At) - i ( Q . ^ ' - Q.) 5 ( ? . + , - P.J. (6) 

Let us now add some condition on propagation 3 ' . As long as the potential energy and the transport 
coefficients are momentum independent, -3e co l lec t ive haaiitonian can be seen as a quadratic one 
in momentum. Consequently, deviations from che quadratic behaviour are e s senc i i l l y expected in the 
coordinate direction. Therefore, we have assumed a gaussian momentum distribution for each given 
value Q of the coordinate. The phase space is considered as a bundle {Q ,«£", } where '-.ie density 
along each bundle is a gaussian. 
This decomposition is schematically drawn in f ig . 1 and can be expressed by : 

d(Q,P,c) - f dQ, d . «J ) ' j v o red y o ' jrzr" 
0 

where ? is the local somenCvan for a fixed Q value o o 
i r 

(?-<p >) • 
exn - 2 -(Q-Q ) 

\ 
5 * 1 dP(?-<?>)J d(Q ,?,:) the local variance 

o i j o •, 

(7) 

i j(Q ) • ! d? d(Q ,? ,t) the reduced density. 
tea o j o o o 

»» 
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Fig. 1 : Definition of the bundled space '-Q0>-?Q "'• "-** 
.?. is here alon; che BOmencum ? and is o 

— » o assumed to be a gaussias. 

The propagation in ciae is obtained in in simplified version by means of propagators on gaussian 
'aundled ' > 

d(Q,?,c) - j dQ o S„ a d l t < iCQ.P.q 0.e) 4cad<%) (3) 
with 

lia S 
e-o bundled 

, (P-<? >)' 
(Q,?,3 ,c) - 5(0-0 ) — — es? ; — 2 — 0 0 r—— -mi 

1 LTj o 
(9) 
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The assumption of zaussian bundles tremendously reduces the computation of the propagation and can 
be extended for multidimensional purposes. As far as the fission process is concerned, the consi
deration of two potential regions (on one hand, the first well and the saddle point region and on 
the other hand, the descent from saddle to scission) peraits to sscimace the escape rate, the ini
tial conditions at the saddle point and the fluctuations in Che scission region. 
Here, the collective coordinates' are the elongation c, the mass asymmetry 3 and a neck degree of 
freedom h. We assumed non diagonal inertia and friction tensors*'5' : 

[B] 
S ch 
B. B. ne h and M 

Y • 0 
en 

Yhc Y h 

with 
„ „ 1 J /3 5 r ' l , "o 
Bc " 3

3 " fflo " T5Ô A [M Ĵ ' « ' ~ 
which are similar values as in ref. ) _ 
a n d \ m \ m t v Yh " f V 1 - 2 w h e r e Y o ' ?r • 
The coupling terns are equal to m (reap, f Y ) multiplied by a reduction factor. 
For a given elongation value c , the bundle is defined like the {Pc,h,?^,a,?a} space, where p c 

(resp. ?.,? ) is the associated momentum to c(resp. h,a). 
The stationary solution of the FPE (1) provides'' the escape race r (or decay race for the fission
ing nucleus) according to : 

r - I dr r e d(t3] [P] d j t ) c (10) 
saddle 

where [?] - (P.,Ph,?3) 

d che stationary solution of (1) 
c ... che elongation ac the saddle point 
dr . - dP dh dP. da dP . red c h a 

The full distribution at the left hand side of the saddle point is assumed to be normalized to uni
ty ac each time. The half life time r for a nucleus decaying by fission can be escimaced in such i 

case by T • l/r. I 
Since i (c- ... ) defines the initial conditions in the associated bundle 8" , we are able st saoaie *̂ c 
to follow che subsequent dynamical behaviour from saddle to scission. For instance, the fluctua-
cion x around the sean value tor che mass asymmetry coordinate a jives che fluctuation for the 
mass ratio of the fission fragments at che scission point, "sing the relationship'' : 

• i * ' d o 
2 1 - | ac-

we obtain directly 

AA C^AcVx* 0 

i f * M • i [ *"rtd (»-<*» 2d„ e 

(12) 

at the scission rjoint. 

3. The escape race through the fission barrier 

First of all, in order to test our procedure, we studied a simole model case. We defined the -)o-



tential C(c,h,z) Co be 

C ( c , h , i ) 

' (37.46 ( c - 1 ) 2 * 500 h- + 2C0 2-)[MeV] for 0 < c < 1.27 

( 3 . - 13.73 ( c - t . 3 ) 2 * 500 h2 * 200a2)[MeV] for 1.27 < c < -

The coupling between c and h in che inertia and in the frict ion tensor is neglecced in this model 
case (B . » v » 0 ) . The nucleus under consideration is 2 , 5 A t . 

en en 
This aiodei is for che elongation degree of freedom c essentially identical Co che one dimensional 
model used before for che calculation of Che decay rate by Kramers''.Visscher'' and Scheucer and 
Hofoann 2). For che (h,2) degrees of freedom, we added Che potentials of cvo harmonic oscillators 
with constant stiffness along c. As far as Che computation of che decay rate is concerned this 
choice of the potential and the transport coefficients reduces the problem Co che one-dimensional 
one studied before. The numerical results of*' show ehac Kramers formulae'' are virtually exact 
except for a very small y-interval in the transition from che small friction (L) to the high fric
tion regime (H). These formulae can be written in the following way : 

0, Y c °3 , -3, r - T T exp (- T ) 
c 

Y a T 
for ̂ < ^ -

3c * 'J3 
(t) 

2=rz 

• I 3 ) . . and c minimum 

c c 

= 5.-2 

«xp (- ̂ ) Y n T 

c 3 
(H) 

• ) ... are che local frequencies in the mini-c saddle where .1 • (/-— 
mum c»l and at che saddle point c-1.8 and U_,T are Che barrier height and che temperature respecci 
vely. 
For che praccical calculacion, we assumed an excicacion energy of £ » 30 XeV and the rslacions : 

A • I T * a « Tff 
becveea :ht excicacion energy and che ceaperaeure T. We assumed this temperature Co be a constant 
along che oath in order co make the comparison with Kramers results meaningful. To achieve che »ta-
cicnary solution as fast as possible, we decided to choose locally che following isicial condicions 
(e»o) : 

d r e d ( c ' 

S exp (-
0(c,h • 0,J » 0) 

d M ) 
red saddle 

for c < c 

for c > c 

saddle .3 

This means chac we start locally wich an equilibrium discribution d .(c) 
saddle 

vtighced orooeriv 
by the factor «xp(- U/T). "J i» 4 normalisation factor. 
In figure 2 we plotted che flux at Che barrier as a function of Cime for ? cypical friccion f • ;— 
• 1. Ic shows how che stationary solution is obtained. After a small oscillation che flux converges 
quite rapidly to its stationary value, which is almost identical co Kramers estimation. 
In fig. 3 we show the decay race (full line) in comparison wich Kramers result (dashed line) as a 
function of f • Y / Y Q - the agreement between the two ealculacions is exceilenc if we consider che 
need to discrecise che bundled propagation problem. The used discrecijacion induces some numerical 
uncercaincies and could be ameliorated in further calculations. Nevertheless che aose striking fea
ture ..s che obtention of a nice bending over of our curve in the transitional friction regime. 
Let us now treac che realistic case of the fission of I 0 ! A c ac che rather high excicacion energy of 
30 MeV, which allows us to neglecc shell effecC3 and pairing. Ve xse che shape paraaetrization 

1 
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Fig. 2 : Flux at che cop of the fission barrier as x-function of Cime. The escape 
rate r computed in the stationary situation with a propagacion on gaussian 
bundles (full line) is compared co che Kramers calculation for a model case 
Y • Y and A - 205. o 

Fig. 3 : Comparison of che calculacions for che escape race with a bundled propa-
gacion and with che Kramers expressions. The escape race r is shown as a 
funccion of che friction strength v/v , where v i.s a reference value. 

o o 

•'c,h,Jt} of (6) wich che modificacion of (5) for 3 î 2h * j (c-1) 4 0. The potential landscape is 

this funccional space is shown in (6). Ic cans out thac che path of sceepesc descent is not a 

straight line in che{c-h;plane as in our simple model case. In Che practical calculation ue adjust 

now the temperature T along the path. Ue assume Chat che cocal energy is conserved in che mean, viz: 

(£ ) * <E ,,> 
c coll c 

30 Me 7 I 

where the mean collective energv <£ ,,> ia che sum of the collective kinetic and socencial energy. 
coil co 

Ve calculate che coordinate deoendenc temperaCura (TV bv means of 
c 

« ). to <»! • 
As a further modification with respect co our previous model ca lcu la t ion , we incroduce now the gene

ralized Einstein re la t ion between che f r ic t ion and diffusion coef f ic ien t s , which, in a one dimen

sional case, reads : 

D(<Q>,T) - Y(<Q>) . T * ( < Q > , t ) . 

This relacion was proven within the framework of linear response theory . T can be inter-precec 

as an effective temperature and is given by che formula : 

T - j- cocgh (jj) 



«here "he local frequency f.(Q) is defined as 

\Z(Q)' - — | /3<<Q>). 
- - : - Q ; <Q> 

In the multidimensional case, the effective temperatures can be properly defined locally in the sys
tem of normal coordinates . For details we refer the reader to ref. 1 1'. 
Since the mean path out of the minimum over the barrier towards scission is of a particular inter
est, we show in fig. 4 how this path is affected by the coupling 3 . for the typical friction 
f • y/v • 1. For B . - 0 the system remains close to the line of steeoest descent as it could be o en 
expected from purely static considerations. But after the switching on of the coupling 3 , - B ,'3 
one observes a dramatic change of the mean trajectory in the region of the potential minimum. In 
spite of this strong deviation it comes again rather close to the line of steepest descent between 
saddlt and scission. On the other hand the escape race is practically independent of the coupling. 
For 3 . • 0 we find r » 6.7 x 10 's compared to r • 6.3 « 10 s in the case 3 . » 3 /3. tfoe -an get en en c 
a remarkable decrease of Che escape race only for very strong coupling 3 ch 

V 

<e> 
Fig. 4 : Dynamical paths for the fission of 2 5 S A C in the {<c>,<h>} plane. 

The saddle points are represented by the symbol 9 for two* paths obtain
ed vich coupling and without coupling terms in the transport coefficient 
tensors. <, 

4. Fluctuations of the collective coordinates 
the initial conditions at the saddle point have been calculated in the corresponding '-mimic for the 
precedent cases (with and without coupling). Especially for the fluctuation in mass asymmetry < , 

hh m the neck coordinate '<' and in momentum along the elongation J , it is interesting to compare 
the dynamical values in the stationary situation with the bare 3tatic values obtained for s stacij-
cical equilibrium at Che saddle point. As reported in Table I, the dynamical value* are slightly 
larger for \ and \ than expected from a statistical equilibrium assumption. This fact seeas to 
indicate that this equilibrium is not completely reached even in the stationary situation. Never
theless, as far as the absolute values are concerned, some coordinate dependence of the transport 
coefficients could somewhat aod.ii y the presenced results. On the other hand some smaller values of 
-D m are obtained in our calculation than in the equilibrium estimation. This particular result is 

http://aod.ii
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identical to -he one obtained in the one dimensional aodel of ret . :) 

Table I 

Initial conditions at the saddle point for < « -7 
1 

d rred C ^ » 2 i . X h h - ^ ; * r r e d (h-<h»=d. 
d? da dP dh dP. . These values are obtained 3» consi-red c a n J - •=• d~ , (P - <? >)'d where dT cc 2 j red c c re 

dering for the density d ; i) a statistical distribution, ii) the stationary value dynamically con
futed for two different assumptions on the coupling between c and h. 3_ is the inertia parameter 
along the c coordinate and B . the cross term becveen c and h in the inertia tensor. 3 en 

hh -23 2 Cil [GeV 10 s] ce 

! SCaeiscical . , . j 
j equilibrium ( i.75 * !0~ i 3.02 * I0 - | 
1 with B c h - 0 j J I 

1.67 * 10 -I 

Dynamical 
calcalacion ; 2.50 « IO" 
with B . » 0 I 

3.61 * 10 -3 
I 

1.19 * 10 -1 

Staciscical | j j 
equilibrium ; 1.75 * 10 J ! 3.10 * 10 j 
with 3 -B,/3 I i j 

en c ; » 

1.34 * 10 -1 

Dynamical ' , | _, 
ealcuiacion j 2.92 < 10 j 5.74 * io"* 
with 3.-3/3 : ! 

en c t 

1.30 * 10 

Finally, the scacistical equilibrium values are reasonable for scarcin; a dynamical pach from lad-

Ut to the scission region. 
According to eq. (12) the variance in sass asyaaecry was compuced as a function of £ » v/y . The 
width T of the mass distribution is aerelv : 

AA • 3Ln2 

!* : •23.»»» j 
u " — " :*-. iop<tv 1 

« """"""^ l* : «J * t * 

a*.. 

3.3 J.J I/T, 2.3 

Fig. 5 : Calculated widths ? of the sass d-iscribueion far the 
fission of : l s A c . The widths are obtained for various 
strengths oi the friction y and for different excitation 
energies. 

In figure 5, different curves were calculated for four excitation «nergies with initial conditions 
at the saddle chosen in a statistical equilibrium. It turns out that che final result is independent 
on the friction strengch as far as y exceeds roughly y 11. -or a coooarison with the e.-oeriaental 

0 



.~) 

values, ic must be quoted chac our calculation gives 7 « 35.2 a.m.u. at an excicacion energy E » 

60 MeV and chat che experimental resuic of ref.*' is f • 33 : 3 a.m.u. This agreement is sci
es? * 

auiacing cor further computation oc macroscopic quantities by use of che transport equation (!) 

with a bundled propagation. 

Conclusion 

Ic was shown chat the use of propagators permics to obtain a time dependent solution of che Fokker-

Planck equation1'. We have shown chat che method of a bundled propagation with gaissian bundles is 

an excellent approximation in model cases, esoecially in che crucial estimation of che decay rate 

through a barrier. Furthermore che bundled propagation makes the solution of multidimensional Fokker 

Planck equationsnuaericaiiy tractable. Its application to a three-dimensional treaemenc of the fis

sion process gives us a lot of information on the various steps of che dynamics. Firsc of all che 

decay race can be obcained by looking on che flux ac che saddle point. Surprisingly, it appears 

rather insensitive co the oon diagonal terms in che transport coefficient tensors. Secondly, the 

dynamical calculation of the initial conditions at che saddle point, starting with an equilibrium 

distribution in the first veil, shows chat the current assumption of a statistical equilibrium is 

reasonable in view of the small deviations chac appear. Finally, firsc calculacions concerning che 

widch of che mass discribution for fission fragments are in remarkable agreement with che experi

ments. Furcher calculacions will now be possible for estimating a lot of macroscopic quancicies of 

incerest in nuclear fission. In this spiric, microscopic transport coefficients would be required 

The authors would like co thank their colleagues for fruitful discussions, especially H. 3ofmar.n 

and 5. Diecrich. F.S (resp CO) thank for the hospicalicy of che C£îl Saciay (res?. TU Xiinchen) du

ring their scay chere. 
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