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A model is proposed in which cosmologicel constant is
cencelled automatically because of the back reaction on it of
a gcalar field 37 coupled to curvature ﬂ . The cancellation
takes place if two conditions are imposed on the theory,namely

vanishing of mass and selfinteraction of field g .

The vacuum energy in the frameworks of the model considered
does not dissapear completely but only up to the order of
fC ~ m;, /t ¢ . This leads to some modificetion of the

gtandard expansion scenario.
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The Einstein equationz as is well known permit ths gene-
ralization by sdding a commological temm:

Ruv—3 v R = ~8fn;21;. t gy O

vhere Mg 10" GoV 1a the Planch mess, '7;, is the snergy~
non_nntu- tensor of mattar and )g corresponds to grevitational
interection of vacuum. It is coanvenient io defips the vacuum
energy density which is connected with the lut term in eq.(1):
fm = —XM, /3‘,!‘ . Nodern astronomical date show that
fVac » 1f nonvaenishing, is exiremely smali:

/ ﬂ.«u/ £ 1074 m: (2)

Any ensrgetic scale in elemsntary particle physics is
enoxmous in comparison with this number,

ﬂ;l fi7st question which arises i3 why vacuum dses not
gravitate? Why does not gravitate the zerv point smergy

! 7 there are infinite contributions from any particle spe-

cies intc this energy. Probably the infinities in the total
sum of these contributions are cancelled out 2s a consequence
of supersymmetry. In reality however supersysmetry is broken
gso the finite pa.rt in .P"‘“ should geperally survive and be of
the order of 'm where N is a characteristic mass scale.
By an unknown reason this energy does not influence the evslu-
tion of the universe.

The situation is even more weird in gauge theories with
gpontaneous symmetry breaking. The point is that & vacuum ex-
pectation value of Higgs <field f necegsarily leads to the
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nonzero cosmological term, 7;, (/) ~ g’“ l}(g”‘; . The
corresponding vacuum epergy is about 10 ')’;‘q for the Wein-
berg ~ Sulam model apd is of the order of 1060 ’)‘M;/' for Grand
Unification Theories. Ae Lhe condensates of the Higgs fields
develop after sufficient expansion and cooling of the universe
2 , the initial vecuum energy should be nonzero and iits value
have to coinride with that of the later developed condensates
with the accurscy, which is better than a hundred orders of
magnitude. One can hardly believe in such a superfine tuning
and some ettempts 3, 4 have been made to find g more natural
explanation of the smallness of the cosmological constant.

This peper presents an attempt to find & model of self-
cancellation of cosmological term. It is assumed that there
exists s field f which interacts with vacuwm emergy in such
a way that the amplitude of the field risea so that vacuum con-
densate of 50 is produced. The enexrgy of this condensate
should compensaie the vacumn’ energy which initiely was the
source of the condensate developement. Naturally the rate of
this process should be of the order of H" , woere H is the
Bubble constent, and the expected value of the resulting cosmo-
logical term is adbout HZ which is close to the existing
bound.

As the first end let admii, unsatisfactory possibility we
will consider e massless scalar field which has no interactions
but gravitional one. Some features of this' model can be of ip-
terest for what follows. let assume for simplicity thut the
universe is spatially flat ( k =0):

dsi= ot — a(t) dT* )
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In this metric f satisfies the equation

ff”-* +§R3='3:5+ 3”'9«:3‘*(3"19:3’1‘2Rj’= o W

where H=a /a is the Hubble constant; ? iz a mumerical
constant (for conformally invariant case 2 = 1/6). Scalar cur-
vature R can be expressed, using the Einstein equatiouns,

through the trace of the energy-momentum tensor

R = ZWMl(l‘fVQc*'T’(f) (5
where M does not coincide with M? because of the correc-
ions due to nonzero :f (see below).
_ Por comformal fields T";. = 0 if gquantum sorrections are
neglected (i.e. in the tree approximation).

We will consider spatially homogeneous solutions of eq. (4)
Ef:ff(f) . It 32 £ 0, there exist solutions which rise
with time. In particular when the energy-momentum tensor is
. dominated by the vacuum term, H-::(Sﬂ'fm /3Mz)'h, K= 2H%,
and eq.(4) has the solutions

g:exrs{(—f—zt\/-_g-lzi)t{tg (6)

For 3 £ 0 one of these golutions increeses with { ard con-
sequently the contribution of ‘(/ 7 into emergy~momentum tensor

should not be neglected:
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Tolg)= G fv =i 0§ -

ARy e 1l
Corvespondingly the scaler survature is squal 3o
R= 37 Llpuctly0y*] ®
M7'+i‘l’§ €3-0Y*
and H s defined by the equation
pobr pretafienes

.:3‘ Ml_a-rzgz

The depondence of K ‘and H on g being taken into
sccount, the exponentia.l rise of solution (6) becomes linmear
one such that 3’ —->4J0mc /H-—é ) 'hen t=> 00 . Con-
sequently K quickly vanishes, R << ‘f . Unfortunately it
1s ot only [ that vanishes but elso the gravitation itsel?
becauge the eftective gravitational constant tends to zero:

Gegf = [ M*+ vy l63-0)y* 1t (10)
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Before discussing a better model let usm comment oa the

spatial dependence of unstable solution of eq.(4). If the sca~
lar curvature is not spatially constant it will drive the for-
mation of the condensate of y only in the case of rather
large characteristic scale of the matter inhomogeneity

{>M/\/3-‘F_j§§ (11)

Poe exsmplo, tor 0 = g/ca’ the P -condensate would
be formed if the matter distribution is homogemeous up to dis-
tances 1014 cu/ (3172) 2 .

Apart of killing the gravition the model discussed above
does not lead to compensation of the cosmologiocal ton. because
7,': v 3) 74 3,“' , the scalar curvature being compensated
however, Moreover, infinitely rising field 3(f)~t doea
not look very appealing. It iz desirable to find a model where
¥> Yo = const as t=>00 ama T,ly.):vg,‘g .

The simplest way to realize tnis idea by introducing a
nonzero mass of the field |0 or its selfcoupling Affqin-
mediately encounters difficulties., In this ca’c exira terxs

appear in eq. (4):

9+3H3+mzj+xf+2ky:0 " 12)

Am sbove R can be expressed through the trace of T,."
1in which now new tems appear which d0 nmot vanish for S’aconsti

STF.-:: h”g"-{- P‘.’Sq | (13)
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The last term in the r.h.s. of this equation is the quantum

conformal anomaly 5, 6 produced by loops of selfinteracting
y . One shoulu remember that in matrix elements of T}{ the
anomalous term survives only for momenta exceeding m.

With the appropriate choice of the parameter sings eq. (10)
has solutions which tend to a nonzero constant ( f—iconst ¥0)
as t—=o o This solutions however leads to the comdition

7""')‘5‘* 2(:0 but not to = 0. If we put M=) = O
then simultaneously dissapears the anomalous term in eq.(13)
and we return to the first model.

Probably the massless scalar field 3 with the Yukawa

coup]ing ai?ﬂ,& to the or%.glinally massless spinor field
M 1 serve our purpose “ar. Anomplous term é\Trf = frg

can appear because of the coupling between 3 and f’ o I in
add.ition the theory can be formulated in such a way that
neither mass nor an effective selfinteraction of }f (for
constant ‘if ) aerige, the gravitatigg vecuum energy proves to
be tending to zero with time.

Such conditions imposed on the theory is difficult to ecall
natural. Probably the model could be changed so that some ayn-
metry argurents forbid nonvenishing effective selfinterastion
for constant S » No such model was found yet but at least
1t should be checked whether the model under discussion is not
selfcontradictory.

Thus we assume thet the classical homogeneous fielad
satisfies the eguation

$+34F+3Rg = 9y "



and that for :f—a const

30 L l‘[omc,"- 6(? ]
M 353 (63-09" (2

, ) , /"

One can see that bU::fo= (qfvuc /‘f‘ is the
solution of tais equation. In what follows we argue that :)0
indeed tends to 309 and that this classical field indeed eats
up the cosmological term. In this model the gravitational cons-
tant is chenging with time from its initial velue G;= M2
its asymptotic value G, = M+ 8“2(52")3:‘—’ Msz.' . This vari-
ation however is not in contradiction with estronomy. The ana-
logous changing of the gravitational constant due to the clas-
sicel scalar field was discussed in ref, | .

it zR<o. eg. (14) has unstable solutions leading to
vacuum condensate of .lf . Ac & result the spinor field becomes
massive, 7n.1,= 3 o . It is moteworthy that despite the ob-
tained mass of \F the energy-momentum tensor remains traseless
in the tree approximation if 2 = 1/6. (If one considers a mas-
sive from the beginning apinor field interscting with & scalar
field, the condition T’J = 0 can be also fullfilled. To this
end a total derivative (/5)(3,“, Q’)(J,.a 1")
should be added to [, in the flat space-time.) If 3 $1/6
an extra term proportional to gf‘rtr appears in 'TI‘ .

We will not take it into account however because it proves to

be smell. The main contribution into T,' » which compen-

r

sates | JDV“' » i3 given by the anomalous term ﬁjq

g
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Already at this stép the inconsistency of the approach is
very well seen. ©q.(14) considered as the equation f»r matrix
elements of 37 iz valid in the tree approximation whereas the
anomalous term in 7;\, is sbeent in this approximation.
In one loop approximation the effective potential receives the

contribution of the type 8

Su t?(x‘ n-—-——-—+y‘£n—-———')+)«3 (16)

Por Hztb a—,ll the first term leads to renormeli-
zation of 2 . The second term is to be exterminate "by hand",
i.e. by imposing the normalization condition A = O. It is also
assumed that no ultraviolet cutoff A enters the calculation
due to (supposed) cancellation between fermion and boson con-
tribution to tae effective potential :;tg that their contri-
bution to the conformal anomaly are of the same sign). This is
evidently the weakest point of the construction. As for many
loops, their contribution into the effective potential is un-
known. If the cutoft A is also cancelled for many loops, their
contribution is of the form gﬂ= S"'F(n/jknd the single con-
dition which shou"d be imposed on the theory is F(9)=o0.

Maybe some other models of thia type, but based on gauge
or chiral_ fields, will be more natural. The gauge or chiral in-
variance could be violai.‘ted becange of interaction with R . un-
fortunately no sgtiafactory model was yet found. It seems howe-
ver that indeper;déntly of copcrete datails. the phenomenological

consequences of these model should be qualitatively the same.



9
Thus, with all the weak points kept in mind, the proposed
feed~back mechanism enforces the scalar curvature to zero when
:.f tends to a oonstant value. We will argue in what follow:s
that not only R tends to zero but also all the cosmologicel
torm ,_PVce l“, » In other words the energy momentum tensor of

the classical field o 18 proportional to - /w e Pirst of

all let note that 7}'” (b’) does not vanish when\fpz const

vecause 7/ ~¥' . To( has & rather complicated
ry Jlf) er comp

nonlocal structure but when 3-—) const only terms proportio

nal to y should survive, To asee this let consider the

equation

F—=-3H an)
Lre

where and P are respectively energy and pressure density
of fields g and t’/ in spatially homogensous case (i.e.

3:3 (.f) and Lr-_—_ Y {_t) ). This equation is equivelent
to the sum of Dirac equation for l.,l and K’];ein-Gordon equation
for 5’. In the tree approximation .':33’ + (terms not con-
taining 9’ ) and ,a-q-j) = :}'21-,,. « I2 higher ordersA of per-
turbation theory (loops) led %o ID+J’J # O tor j’: const ,

it would drastically change the wave equation for ﬁ? :

where R(g) = ’GH-P at 3-—; const . This seems improbable
and one would expect P+f—) 0 and consequently T,:‘, ~ Zf‘v
as 5—5 const,
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Returning to eq.(15) let us note that the conditionf:-o
in the flat space-time is f11filled separately in each order of
perturbation theory.

A detailed investigation of solution of eq.(12) is impos-
soble becaus- the dependence of R in derivatives of 3 is
unknown (see eq.(15)), Moreover the production of quante of 3’-
field by variating classical field Y (t ) is uot taken into
account. The latter is proportional to ba({') to a power and
is equivalent to a friction Zforce.

We will assume that at the "beginning™ the cosmological
term was nonzero, (PVO.C 4 m’ , fﬂtc) 0. The following behavi-~
our of () 1is expected in this case. When 7;u is domi-
nated by the vacuum energy, Ef rises exponentially in accor—
dance with eq.(6). It is convenient to consider th:;qdifference
F=Gem8) o wmmere Qo= (dpu [1p1)'C g0
is the limiting value of Ef as t—» oo « In neglect of dert-
vative terms in R and H , th-‘ when fvacf (Jomatter
where ‘P matter 19 the energy denwity of the usual matter pre-
gent in the universe. The damping ofrf being determined by

the term 3)'( (%Ff»'ac. /3Mz) 'h (Pm fv-c+/)'l’?—] should de-

crease as  ¢-% . (The substitution of ~+4~V into

( f’" /ﬁmc +} /2 leads to the solution fwex,o{ﬂ@).)
The important point here is the necessity of a large

"friction" term, which i3 not explicitely written down in the

cquation, so that the difference (f’,, /JD.,“ +/( ) keeps to be

positive. Moreover .lf should tend to 330 Slow enough in such

& way that a fast change of mec_ because of phase transi-

tions mentioned above leaves (P”"-> 0. Otherwise the des-~
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cribed mechanism with the chosen signs of parameters becomes

pomperative.

In this qualitative discussion of the behaviour of baft}
we did not yet teke into account the r.h.s. of the eq.(14). It
seems natural to estimate \? P as the number density of mas-
sive spinor particles ( "”r"'g,_‘fo ). Usually this number
density falls as ¢ & and in this sence there is no contra-
diction with our claim that K~ ‘(fam- tf: j" i~,~t:zﬂowever
in this case the energy demnsity of 'f ~particles proves to be
too large. Probably the detailed calculations show no contra-
diction with the data (e.g. because of initial conditioms). If
it does not help, there is another way to mend the leakage by
inventing a gauge vector field interacting with \IJ . In this
case the interaction between Y:B becomes long range and leads
to an increase of their annihilation (see ref. 2 for the dis-
cussion of the burning out of magnetic momopoles in early uni-
verse)., As a result the energy density of YJ cax: be sufficient-
ly small. _

Thus with some efforts the cosmologicel term might be made
small. The standerd scenario of the universe evolution is
chahged in this case. Pirst of all the standard expression for

the universe age

. ( A4
t,= — . .9

s+ SV

becomes invelid, If Pvac> 0 the contradiction between the

modern value of the Hubble constant Ho" 100 km/sec MFS and
t,= (15 - 17)410%y  could be avoided. The bound on the mum-
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ber of neutrino species 10 » Which follows from the data- on

cosmological abundances of He" and Hz » becomes Yess reatric~
tive. If the cosmological constant always' satisfies inequality
(2), it would not influence the primordial nucleosynthesis. In
the discussed model however P vac (89 the Hubble constant) is
not constant in time buf goes like M‘; /ta o That is why its
role could be noticealle during all the history of the universe,
It is interesting also to consider the spatial dependence of
the classical field 50 . AsS was noted agbove its variation is
posaible on scales restricted by conditiom (11). For objects
which size is large: then Z a drastic change of gravitational
forces could be possible. The detailed discussion seems however
premature until a more realistic and more dafinite model is
found. One could hope nevertheless that the principal features
of this approach remain the same in a better model.

I would like to thank A.D.Linde and Ya.B.Zeldovich for

discussions and critisism.



Te
2.

3.
4.
5e
6.
7.

8.

9.

Re ferences

Ya.B.Zeldovich., Uspekhi Fiz.Nauk 95 (1968) 209.
D.A.Kirznits. JETP Lett. 15 (1972) 529.

D.A.Kirznits and A.D.ILdinde. Phys.Lett. 42B (1972) 471.
A.D.Linde. JETP lett. 19 (1974) 183.

A.M.Polyakov. Uspekbi Fiz.Nauk 136 (1982) No 3.
S.Hawking. Cambridge University Preprint, 1982.
R.J.Crewther. Phys.Rev.Iett. 28 (1972) 142.

M.Chanowitz, J.Ellis. Phys.Lett 40B (1972) 397.

L.Smolin. Nucl.Phys. B160 {1979) 253.

F.Fnglext, C.Truffin, and R.Gastmans. Nucl.Phys. Bii17
(1976) 407.

A.Zee. Phys.Rev.lett. 42 (1979) 417,

A.D.Linde. Phys.Lett. 93B (1980) 394.

S.Coleman and E.Weinberg. Phys.Rev. DT (1973) 1888,
A.V.Veryaskin, V.G.Lapchinsky, and V.A.Rubakov,. Theot;. and
Math.Phys. 45 (1980) 807.

A.D.Dolgov and Ya.B.Zeldovich. Rev.Kod.Phys. 53 (1981) 1.

10. V.F.Schwartzman., JETP Lett. 9 (1969) 315,

G.Steigman and D.W.Schramm, J.E.Gunn. Phys.lett. 66B (1977)
202, o

A. L, lonros
0 BO3MOXHOM MEXAHARME COKpPAMEHT KOCMONOTMYECKOTO 4fNeHA

Padora nocTynuna B OHTH 7.06.82

Nosmucano x meuats 14.06.82 TI2091 Jopmar 60x90 I1/I6
OfceTH.ney. Yen,-ned,x.0,75 Yuy.-u3n.a.0,5 Tipax 290 3x3.
3aras 80 Munerc 3624 lera 7 xom.

Ornevarano 5 T2, 117259, .lockpa, B.UepeMyuRMHCKAA,<D

BRGELOE b, L



MHOEKC 3624

M. ,Mpenpmar HT9D, 1962, % 80, o.I-I2

e



