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ABSTRACT

Using Poisson's formula for summation, we obtain an expression for
density of states of d-dimensional scalar Helmoholtz's equation under various
boundary conditicns. Likewise,we alsc obtain formulas of Walfisz's type. It
becomes evident that the formulas obtained by Pathria et al. in connection
with ideal bosons in & finite system are exactly the same as those obtained

by utilizing the formulas for denaity of states.
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In order to study the statistical properties of a system of finite
volume, it is necessary to know the demsity of states of the system. For a
rectanguler body satisfying the perledic Boundery condition (PBC), Neumann
boundary condition (YRC) and Dirichlet boundary conditiom (DBC) for
dimensionality d = 1,2,3, the expressions for density of states are given in
Refs.l to 3. They are derived indirectly from a temporal coherent function
of a finite black body. It had heen pointed ocut 2) that this expression can
follow from Walfisz's rormula of lattice summation which was known more than
fifty years ago. It was clarified further in Ref.3 that the formulas for =

41-6) with the help

of Poisson's formula of summation are exactly the same 83 those derived from

finite system of ideal bosons obtained by Pathria et aj.
the formula for density of states. Also, the Poisson formula itself is
nothing but the cne-dimensional Walfiasz formula. TIn this short communication
ve have obtained not only the general formula for density cof states for any
dimension 4 by using Poisson's formula of summatlion but also showed that
Walfisz's type formulas can be readily derived from Poisson's formula. The
method of Pathria et al. 4)-6) is to apply Poisson's formula to the function

to be summed, while in obtaining these formulss from that of density of states we
must sum the delta function at the begioning. The two methods are naturally

equivalent.

Starting from the corresponding one-dimensiongl Poisson formula, it is

not difficult to show by induction that the d-dimensionel Polsson equetions
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The summation in the abeve equations are restricted to integers In formula {2) For PEC, the density of states Dd(k) is, by defimition, equal to
n=+1 and when n = 1 the sum at the left-hand side begins from zero, for

n = -1, it begins from one. f(x_l,...,xd) is a function of 4 variables, If oo
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over all integers from =® tO0 w agpd ad—l is the sp¢lid angle subtended by a
For PBC, the wave vector k is equal to {a-1) dimensional sphere. From the integral representation of the Bessel
function, it gives
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term is the oseillatory part. The meaning attached to each of them is evident.
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For NBC and DEC, the denslty of states D'(x) is, by defimition,

equal to

1 Ey I
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while for WBZ, n = 1 and for DBC, n = -1.

Because conditions (3) and (L) are satisfied,

to obtain
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Thus the density of states for NBC and DBC can be expressed in terms of that
for PBC.

we may apply Eq.(5)

It shouldbe noted that each side of the rectangular is doubled in
the ceorresponding expression for PBC. This is denoted explicitly in Fa.(15).
Substituting Eq.(12) in {15), we have
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When d = 1,2,3 the results in Refs.l to 3 are obtained from Eqs.{16) and (12).
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Now, we caiculate the totel number of states with the magnitude of a
vector less than k in wave vector space.
definition that

For FBC, 1t 1a given by
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At x = 0, 9{k) can be elther defined es %‘, 1l or 0 with the understanding

that the states situated at the boundary are counted %—, counted or not counted,

.respectively,

Repeating the calculations, we have
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the Walfisz formula. For NBC (n =

1) ard DBC (n = ~1), the number of states
Ng(k) with magnitude less thaen k 1is given by
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These are formulas of the Walfisg type. From the point of view of the lattice by substitutl into it the D v . .
summation, it can be interpreted as the number of lattice poinims in the first Eq.(12) for Dn?k), the Poissog(iir:iul:ni:yajzliiz)to ::ilze::::izizg
quadrant in & sphere with radius k 1n wave number space. For n = 1, the a erem:
points on the co-ordinate plane is taken into account in the first quadrant.

For n = -1, it is not tsken into sccount. The term 8{x} comes from the

contribution of the vertex, terms with s = 1,2,... come from the boundary line, ACKNOWLEDGMENTS
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which may be verified readily from Eqs.{12}, {19}, {16} and (21).
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