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Abstract 

Energy Density Formalism calculations in semi-Infinite 
nuclear matter are performed. Analytical solution of the 
Euler equation is given. Geometrical properties of the density 
are studied. Surface and surface symmetry energies are calcula
ted and simple compact formulae are given. 

It is known that the surface symmetry energy t\ plays an 
important role in the determination of fissions barriers 
heights, dipole resonance [1]strength and formation of the 
neutron skin.- However experimental uncertainties do not 
allow even a rough estimate of this quantity. From experimen
tal masses, one can only extract a correlation between volume 
and surface symmetry energies, so that the values of t\ 
found in the literature lie in the range (-20, -160). On the 

other hand the theoretical calculation of l\ Is not accurate : 
with the same interaction, the results can vary by 50 % [2]. 
Besides the Droplet Model [2] two methods have been exploited 
i) a fitting procedure on calculated masses using an Extended 
Thomas Fermi (E.T.F.) calculation [4], ii) a direct H.F. cal
culation in the semi-infinite nuclear matter (SINII) [2,5]. 
The method proposed here combines both advantages : it gives 
directly £* through a self-consistent ETF calculation in SIMM. 

In the first part we study the SHIM (N = Z).Exact integra
tion of the Euler equation allows a detailed investigation of 
the nuclear surface shape which is shown to be poorly repre
sented by the usual Fermi shape [6]. We mention seme consequen
ces of this departure in the analysis of actual nuclei. 
IVe then calculate the surface energy t s . Finally we generalize 
the method to the asymmetric case N f Z. Analytical formulae 
are proposed for s% and £j . 

1. On the shape of the surface 

a) Case of SIMM 

When using Skyrme forces and an ETF approximation for the 
kinetic energy density T , the total hamiltonian density 
J{, has the form 
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Abs t rac t 

Energy Density Formalism calculations in semi-infinite 
nuclear nutter are performed. Analytical solution of the 
Euler equation is given. Ceometrical properties of the density 
are studied. Surface and surface symmetry energies are calcula
ted and simple compact formulae are given. 

It is known that the surface symmetry energy £* plays an 
important role in the determination of fissions barriers 
heights, dipoie resonance [1]strength and formation of the 
neutron skin. However experimental uncertainties do not 
allow even a rough estimate of this quantity. From experimen
tal masses, one can only extract a correlation between volume 
and surface symmetry energies, so that the values of e^ 
found in the literature lie in the range (-20, -1é0). On the 

other hand the theoretical calculation of i \ Is not accurate : 
with the same interaction, the results can vary by 50 % [2], 
Besides the Droplet Model [2] two methods have been exploited 
i) a fitting procedure on calculated masses using an Extended 
Thomas Fermi (E.T.F.) calculation [4], il) a direct H.F. cal
culation in the semi-infinite nuclear matter (SINM) [2,5]. 
The method proposed here combines both advantages : it gives 
directly £* through a self-consistent ETF calculation in SIMM. 

In the first part we study the SIMM (N = Z).Exact integra
tion of the Euier equation allows a detailed investigation of 
the nuclear surface shape which is shown to be poorly repre
sented by the usual Fermi shape [6]. We mention some consequen
ces of this departure in the- analysis of actual nuclei. 
We then calculate the surface energy t s. Finally ne generalize 
the method to the asymmetric case H t Z. Analytical formulae 
are proposed for £ 4 and £j' . 

1. On the shape of the surface 

a) Case of SINH 

When usina, Skyrrae forces and an ETF approximation for the 
kinetic energy density T , the total hamiltonian density 
yC has the form 
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where 3 Is the coefficient of the WeiszScker term in V 
and J. is a const.int. The corresponding Euler equation 
can be integrated once and gives ; 

M , J - £ r f - ' < * - ' -
where n is the separation energv at saturation density p 

nm r J" t ran 
A cubic expansion of h( p ) around £ is a good approxi

mation for all commonly used interactions : 

M^Mc*£(£f-)I+ I r ^ A J ( 3 ) 

where K is the nuclear incompressibility modulus and [c[ is 
found smaller than 0.2. 

Inserting (3) into (2), another quadrature can be perfor
med analytically [8], giving x as a function of p . This func
tion can be inverted In the two asymptotic regions, namely : 

,->-.. f ^ l 1 ^ ^ C4.a> 
,. » «- o* p AJ " t *• **• (4.b) 

B. t B-, 0 and a are determined by the interaction. The coeffi
cient a. is given by : ^ 

and i> is found in the range (2<^4), according to the inter
action and the value of (s . We can then define an internal 
diffuseness a. given by Eq.(5) and an "external" diffuseness 
a = a. ,'0 l n . The first quantity is mainly governed by K 
whereas tne second one by A . There is no physical reason why 
they should be equal, and indeed they are not. However one 
assumes a. = a . (i.e. "3 =1) when parametrizing the density 
with a Fermi distribution. In order to preserve the simplicity 
of the latter while keeping somehow the asymptotic behaviour 
as given by Eqs.C^), »e strongly favor the use of a 1? -power 
of a Term! distribution, hereafter labelled (("-'•') when geome
trical properties of the density are involved. In Ref.[9] 
are derived analytical expressions for the various momenta of 
(F-P) in powers of a/R. 

b) Case of finite nuclei 
In this case one cannot integrate analytically the Euler 

equation, nevertheless the above considerations suggest the 
use of F-i) distributions as 

flO 
(i+ e ^ / 

(6) 



where 0 , R, a and 9 are mass-dependent. For actual nuclei 
(H / I an(l Coulomb foire) the landscape is more intricatcd, but 
two remarks are in order 1) people using a folding model 
for the real part of the optical potential have already 
introduced (f- J ) distributions with v1 = 2.65 in order 
to fit the data [ 10J ii) when fitting ETF or H.F. densities 
with F- * distributions, one gets a better^ 2 with i) = 2 or 3. 

Let us briefly discuss two examples where the dissymmetry 
of the surface shape around inflexion point is significant, 
i) When fitting H.F. or ETF densities (H = Z, no Coulomb) with 
F-1 distribution for A going from 16 to 208, one obtains a 
10-15 % variation of the surface thickness. But the same 
effect is obtained when fitting (F-2) distributions with cons
tant 10-90 % distance (and increasing normalization) with (F-1) 
distributions. The conclusion is that a fitting procedure with 
(F-1) distributions can lead to spurious effect in the deter
mination of the surface thickness. 
ii) The D.M. predicts a larger value of P (o) in finite nu
cleus as compared to e> . ^Self-consistent ETF calculations 
confirm the D.M. predictions. . However in a recent paper [11], 
Pearson argues that from H.F. calculations one has f (°)<f n m' 
We think that part of the discrepancy between the D.M. arrd 
Ref.[11] is due to the fact chat Pearson uses (F-1) distribu
tions to get ride of the shell oscillations in the interior. 
Fig.1 indicates what happens when (F-2.5) distribution are 

, 

i 

-<h\ $ N /f" 

" i\ o.J $M i.C 

v\ H, sM 

«rfl*i 1*r i. fir 
S» 4M iw 

i « A 

FIG 1 : Plot of (l')-f«- as a function of A" ! i (N=Z, no Coulomb) 

t~ 
In fact, for A < 100, the constant density approximation of 
the Droplet Model breaks down, and an exponential term 
/v exp(- jî A ) can be shown to reduce significantly 
the compression. 



used, instead of (F-1). For v1 = 1 one recovers the Pearson 
results, but for 0 - 2.5 one recovers on the average the cen
tral compression. Smooth curves show respectively D.H. and 
various corrections, broken curves show the fit to HF density 
using F- v distributions. The importance of the filling 
of s and p shells is striking as can be seen in FIg.1. 

Although the experimental densities do not oscillate as 
much as H.F. ones, the above discussion proves that great care 
roust be taken when extracting a central density to be compared 
to the DM one. 

2. Surface energy of SIMM 

a) N = Z 

The surface energy £, and the surface tension <r are 
defined as follows : 

««•«iflCcr. * JlHti^O'^-Û*7 <9> 

Ose of Eq.(2) proves that the contributions of the volume and 
gradient terms are equal. So one can write 

(10) 

where the last integral does not require the knowledge of 
P (r) [7]. Using the cubic expansion (3) one obtains an 

explicit formula for 0" r nm 
An alternative procedure is to perform a restricted varia

tional calculation using a (F- v ) parametrization of the 
density. One then obtains 

which agrees very closely to the results of Eq.(10). With the 
choice (2 = -1/it we reproduce for all Skyrme forces the H.F. 
results within * 56. We will now generalize the method to the 
case N t Z. 

b) N ± I 
N-Z 

£ , which now depends on the asymmetry I = —-r-, is 
defined as in Eq.(9) 

£f-'M"-:r=llH((li,ef*i)-i-t.-W (12) 
where » = p J f*' and J and ? are the chemical poten
tials for neûtrofis and protons. In Ref.[15] is presented a 
restricted variational calculation of <7"(I) using F- v distri
butions for neutrons and protons. We shall derive here a 
simple yet accurate expression for the surface symmetry 
energy. 



As in the symmetrical case one can integrate once the two 
coupled Euler equations for a and p . One gets : 

^ - ( ^ e . * A ' f , ) = M M e ^ M ^ - W J (13) 
«here h( e , & ) is the volume term of <fu , which we- write : 

In Eq.(14) £ ( £) is the volume part of symmetry poten
tial. It can be expanded as 

£ is the symmetry energy of nuclear matter, L = 3 p -— / 
' f . : ^ | . and K 

sym 
On the other" hand, from the mass formula one has : 

*,= ?.„ - * r i c*-1) (16.a) 

Using Eqs.(13), (14) and (16) in Eq.(12) one gets : 

The first integral is equal to 0" + 6-(I ) despite the fact 
that f <-«° ) is no longer equal to f> : it is known that 
(T is stationary around /J [3]. nm J \ nm 

If we define the surface symmetry tension 0" as : 

<r = ^ + ! *, 
one has 

or, •,- i/dp^-TH' (18) 

Formula (19) is exact within the Energy Density Formalism 
(EDF). (It will probably give reasonable results when using 



H.r. densities, but ne did not check it). However it requires 
the knowledge of the function !{<•). We shall see that the 
approximation 5 = 1 in Eq. (19) leads to a rapid and fair 
estimate of i>\ . Notice that this approximation should 
not be made directly in Eu.(12), because one would loose 
the contributions of the terms in V*S , i.e. e\/ half of 

With this approximation Eq.(18) becomes : 

-*» 
(19) 

which nicely exhibits the origin of (T : the surface symmetry 
tension appears as the average of the defect of the symmetry 
potential with respect to its nuclear matter value. This 
defect is plot in Fig.2 and one understands why IT, of S-V 
is three times greater than of S-III. % 

«=. M{)-£' 

FIC 2 : <£(*> !- £/""is plotted as function of P /f n n ) f°r 
S-III and S-V forcei. 

One can further simplify Eq.(19) by i) taking the expan
sion (15) for £. (p ) ii) using a F-1 parametrization for p . 
If one «rites * 

t - C 4- I t 

One gets finally 

(20) 



Table (I) compares results given by Eqs.US), (20) and 
other calculations available. 

TABLE I : Values of- t, for various Skyrme and finite range forces 

SI I S I I I SIV SV SVI SkH 0^12] B l t13] 

Eq.(20) 54 31 57 77 22 52 39 133 

R e f . [ 1 5 ] 56 30 66 99 20 56 

R e f s . [ 2 , 
(5B 60 34 57 84 26 (38) 

Refs.[14, 
m 

85 47 (35) 105 38 (46) 

If one excepts the values of Ref.[14], which are obtained 
through a fitting procedure to calculated masses and therefore 
probably less accurate, an overall agreement between the 
different approaches ( -v20 %) is obtained. 
Concluding remarks 

The major interest of the method sketched here (see 
Refs.[15,16] for a more systematic development) when comparing 
to the others is that it gives rise to analytical formulae for 
macroscopic properties of interactions to be used in microsco
pic calculations. The method may facilitate the process 
of improving the existing effective interactions, incorpora
ting more experimental information on static and dynamic 
properties. 
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