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I. INTRODUCTION

The finite temperature formalism which wes developed by Linde [1] and
others has been employed to study the phase transition at fipite temperatﬁre.
On the other hand, it has alsc been known that the external fields such as the
external electric or megnetic field and the classical curved space-time back-
gyound. could cause the phase transition. And after Schwinger's classical work

verious people [2] have discussed the subject -in various comtexts.

In the present paper we make use of both formmlisms to evaluate the
one-loop effective potential at finite temperature with external megnetic
field taken into account. As s physical system we consider for simplicity
SU(2) gauge theory with e scalar tfiplet. To'express the result in apalytic

form we will make use of the high temperature expansién.

The evaluation of the one-loop effective potential is essentimlly the
summation of all the eigenvalues, Therefore we could adopt to this case what
Ninomiya and Sakai [3] dld for SU(2) QCD and start with the explicit expression
for the eigenvalues.  Instead we make use of the heat kernel method which has
recently been discussed by Shore [2]. He calculated in the general gauge and
at zero temperature the one-loop effective potential of the same physical
system we will discuss. Thus oyr analysis is the extension of Shareis to
finite tempersture case. We limit cur scope and consider only magnetic field .
cpde for which the result simplifies greatly. Also cur caleculation is dane
in high temperature approximation. The maln reason is that conly in this case
we can separate out the imaginary part without ambiquity. (The situation may

be improved in the future.)

In Sec.II we closely fellow Shore's paper and derive the finite
temperature effective potential. Sec.I1I is the presentaticn of the high

temperature expansion.

1I. DERIVATION OF THE FINITE TEMPERATURE Ty EFFECTIVE POTENTIAL WITH
EXTERNAL MAGNETIC FIELD

In the heat kernmel method (L] the Creen's function G{x,y) of an operator
D is given by

GL.g) = \at Jnet)
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where S}, is the heat kernel and satisfies
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The model we consider contsins gauge bosons, ghosts and a scalar-triplet.

Their heat kernels have been evaluated in the general Rauge;
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Tr and tr dencte traces over group and Lorentz indices, respectively.

In the present paper we consider only magneﬁic field. The reason is
two-fold, Firstly, the phase factor drops out whiie it does not in the
electric field case. Second_ly,l the double parameter integral in DuDv H(t)
(Eq.(7)) can be carried out and the final expression becomes very simple

while it seems impossible in the electric field case.

The one-loop effective action is given by
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Among these terms the gauge boson contribution is most complicated. Thus we

try & simplification of the second term of log det %auge' Note,
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Also pote that we may write,
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The result can further be simplified by the use of formulee
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In the first term of Egq.(2b) exp{-2igFt) is replaced by cos2gFt noting the
fact that trace of the odd number of F's is vanishing

To perform the intergaticn over s we note
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Utilizing the above results, we may rewrite Eq.(24) as follows:
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And then we find thet in the magnetic field case where Fpy =0 (i =1,2,3)

the last term drops out upon taking the trace over Xy and y.
_ -2igF{s+t) *

MOi = (e - 1) = 0., Therefore s 1ntegrat1cm can be done. Noting

further that (chotsF“t)oo = % and [ﬁ%:) f X(t)]
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[ = %, we end up with
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Now we take the standard procedure to go to the finite tempersture case, i.e.

Fourier transform from x 0o to k0 and replacement of } dko with
4o
2tk

{with ky = T) , to find
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Scalar snd ghost contributions are easy to evaluate. We obtain
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Collecting all contributions we obtain an exprossicn of the i feotive

action for the magnetic field case
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The expression obtained is a very simple one. In fact it is the same as
in the zero temperature case so far as the parts whicn involve group traces
are concerned. Shore has elready done the group trace:. Therefore we may

teke his result to end up with.
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In Egs.(35), (36} and (37)
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Inserting (35), (36) and (37) into {34} we cbtain
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The result is general gauge dependent. However, in the standard approximation.

namely A ~ g, the gauge dependence drops cut, the same consequence as in
zero temperature case.

Tt is also knowr {G. Shere [2])

5eer ()% ¢
— o
Sim g )5 SingGY (b1}

i}

&'KP T\f C

U1
te k= Zg_CﬂLJ(f‘)’Et + G 23(47) tj

(L2}
(y)" - £ [(Feif)s (77" »
at
To= L(H-%D
L = EowW {44}

In our case E = 0 and thus F, = %"Hz and F, = 0, Substituting these
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In the last two terma of Eq.(48) a change of variamble, gBt + %, has
been made, whirh scecounts for the factor, (gl{)n—lf’z. This 15 the one-loop
corrected effective potential obtained with an approximation .\'vgh. I
incorporates the effects of both temperature and external maghetic field and
is gauge independent. In fact it m3sumes a very simple and compact form.
This compactness, however, Is not realizable in the case of electric field,
so far es we could see. We also mention that our znalysis does not seem
to go through even forgetting about temperature if scalar beiong to other
representations than the adjoint representation. The reamson is technieal. '

We have introduced a prolection operator Pab' which facilities taking the i

4
group trace. For other representatlons we would have to engineer a new :
method to keep the whole expression in a compect form.

¥hat we would like to do next is to carry out t-integration. This
is a rather difficult tesk. To perform the integral for arbitrary H and
B seems to be impossible, £11 we have been able to manage is to readrt
to high temperature expansion. For completeness sake, we present our results
in the feollowing section.
III. HIGH TEMPERATURE EXPANSION IN THEE MAGNETIC FIELD CASE .
In this section we present the eveluation of the integrals in Eq.(48). 4
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Firstly we rewrite
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['Ihose who have an experience in swmming up the eigenvalue would recognize

that the first, second and third term above represent reapectively spin-

paratlel, anti-parallel vector boson contribution and the charged scalar
contribution. '

In this case we have.
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where V and 53 dencte respectively volume and the elgenvalue of spin
along the direction of magnetic field.]
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In this form the integrals are tractable. By the use of a formula
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The integral is divergent. We perform the minimsl subtraction and the finel

we obtain

result is
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where 1y is the subtraction point.
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