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ABSTRACT

We employ the heat kernel method to evaluate the effective potential

of the SU(2) gauge theory (with scalar triplet) when both external magnetic

field and temperature are applied to it. The calculation is performed in

high temperature approximation.

I. INTRODUCTION

The finite temperature formalism which was developed \>y Linde [l] and

others has been employed to study the phase transition at finite temperature.

On the other hand, it has also teen known that the external fields such as the

external electric or magnetic field and the classical curved space-time back-

ground could cause the phase transition. And after Schwinger's classical work

various people [2] have discussed the suhject in various contexts.

In the present paper we make use of both formalisms to evaluate the

one-loop effective potential at finite temperature with external magnetic

field taken into account. As a physical system we consider for simplicity

SU(2) gauge theory with a scalar triplet. To express the result in analytic

form we will make use of the high temperature expansion.

The evaluation of the one-loop effective potential is essentially the

summation of all the eigenvalues. Therefore we could adopt to this case what

Ninomiya and Sakai [3] did for SU(2) QCD and start with the explicit expression

for the eigenvalues. Instead we make use of the heat kernel method which has

recently been discussed by Shore [2]. He calculated in the general gauge and

at zero temperature the one-loop effective potential of the same physical

system we vill discuss. Thus our analysis is the extension of Shore's to

finite temperature case. We limit our scope and consider only magnetic field -

case for which the result simplifies greatly. Also our calculation is done

in high temperature approximation. The main reason is that only in this caBe

we can separate out the imaginary part without ambiquity. (The situation may

be improved in the future.)

In Sec.II we closely follow Shore's paper and derive the finite

temperature effective potential. Sec.Ill is the presentation of the high

temperature expansion.

II. DERIVATION OJ TEE FINITE TEMPERATURE Tr EFFECTIVE POTENTIAL WITH
EXTERNAL MAGNETIC FIELD

In the heat kernel method [1*] the Green's function G(x,y) of an operator

S) is given ty
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where is the heat kernel and satisfies
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(2)

The model we consider contains gauge bosons, ghosts and a scalar-triplet.

Their heat kernels have been evaluated in the general gauge;
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Tr and tr denote traces over group and Lorenta indices, respectively.

In the present paper we consider only magnetic field. The reason is

two-fold. Firstly, the phase factor drops out while it does not In the

electric field case. Secondly, the double parameter integral in D Dy H(t)

(Eq,(7)) can be caxried out and the final expression "becomes very simple

while it seems impossible in the electric field case.

The one-loop effective action is given by

(15)

Among these terms the gauge Tooson contrib\ition is most complicated. Thus we

try a simplification of the second term of log det O- . Hote,

where
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Also note that we may writey

(18)

where -i

Thus upon i' integration (z'= z - a) the cross terms in Eq,(18) drops out

and we have t

(19)

To derive Eq.(19) use has been made of

j = LfJiy- J4\ { -
(20)

(21)

The result can further be simplified lay the use of formulae

(22)

end

-I

Therefore

!l, HJ

(23)

(210

{
In the first term of Eq.(2lt) exp(-2igFt) is replaced hy cos2gFt noting the

fact that trace of the odd number of F's is vanishing.

To perform the intergation over s we note

*s (25)

and

C s = - -1
(26)
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and

(28)

Utilizing the atove results, we may rewrite Eq.(2U) as follows:

(29)

And then we find that in the magnetic field case vhere F = 0 ( i = 1,2,3)

the las t term drops out upon taking the trace over x. and y. since
_o^si/ei+\ i i

'- - 1 ) Q Q = °- Therefore 3 integration can be done. NotingOi 00 ~ lu

further that (gPcotgFt)^ = i and
00ls=0

= —, we end up with
t
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How ve take the standard procedure to go to the f ini te temperature case, i . e .

Fourier transform from xQ-y0 to k and replacement of [ dkQ with

(with a. • ^ ) , to find
0 p

k ' — °°

»

(3D

Scalar and ghost contributions are easy to evaluate. We obtain

- -Oa



Collecting all contributions we obtain an eii.n.-::; 'ii;n uC tiic

action for the magnetic field case

It* fa.

-v

Inserting (35), (36) and (37) into {3M we attain

-art
(1*0)

z e

The expression obtained is a very simple one. In fact it is the same as

in the zero temperature case so far as the parts whica involve group traces

are concerned. Shore has already done the group -.racet. Therefore we may

take his result to end up with.

in Eqs.(35), (36) and (37)

c -= -\

and

T *

(35)

(36)

(3T)

(38)

(39)

The result is general gauge dependent. However, in the standard approxiination.

nanely \ ̂  g , the gauge dependence drops out, the same consequence as in

zero temperature case.

It is also knowr. (0. Shore [2])

J

(in)

(U2)

where

and

v - "E-H CM

In our ease E = 0 and thus F = — n and F = 0. Substituting these
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into (Ul) and (Ua) we have,

T»C "

Substituting (Us) and (I16) back into (UQ),

CUT)

In the last two terms of Eq.(l8) a change of variable, gHt •* t , has
been made, which accounts for the factor, (gH)n~ ' . This is the one-loop
corrected effective potential obtained with an approximation A—-g . It
incorporates the effects of both temperature and external magnetic field and
is gauge independent. In fact i t assumes a very simple and compact form.
This compactness, however4 is not realizable in the case of electric field,
so far as we could see. We also mention that our analysis does not seem
to go through even forgetting about temperature if scalar belong to otheT
representations than ths adjoint representation. The reason is technical.
We have introduced a projection operator P , which facil i t ies taking the
group trace. For other representations we would have to engineer a new
method to keep the whole expression in a compact form.

What we would like to do next is to carry out t-integration. This
is a rather difficult task. To perform the integral for arbitrary H and
8 seems to be impossible. All we have been able to manage is to resort
to high temperature expansion. For completeness sake, we present our results
in the following section.

Here we-note that an approximation, X > g , has been made in Eq.(UO). This is
the final expression of r.

To derive the effective potential (s 7) we only have to drop Jdnx and
change - r r + into r-r $ . Therefore we have

v = -:^

where
2 2 2

m = g *

III.

2.1

HIGH TEMPERATURE EXPAHEIOH IS THE MAGNETIC FIELD CASE

In this section we present the evaluation of the integrals in Eq,.(lt8).

I integral

, i _L y

where use was made of a formula

i t -t" * C*-Oe ^
t

(50)

(51)
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and

"t
152)

2.2 L , integral

—

(53)

We may use two formulae

*t 1 (hr) -

(55)

to end up with

(56)

as

2.3 integral

(57)

who have an experience in summing up the eigenvalue would recognize

that the ftrst, second and third term above represent respectively spin-

parallel, anti-parallel vector boson contribution and the charged scalar

contribution.

In t Ms case we have, , Tao

iUiWizf;
/-as

where V and S denote respectively volume and the eigenvalue of spin
3 1

along the direction of magnetic field.J

Then we make use of a formula,

where B,(x) is Bernoulli polynomial,

(59)

(60)

and arrive at

(61)

In this form the integrals are tractable. By the use of a formula

ve obtain

•= M I=-"J -s
{62)

(63)

The integral is divergent. We perform the minimal subtraction and the final

result is

Firstly we rewrite

~-,t i
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where \i is the subtraction point.
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