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Two different Monte Carlo methods have been developed for benchmark
computations of small-sample-worths in simplified geometries. The first is
basically a standard Monte Carlo perturbation method in which neutrons are
steered towards the sample by roulette and splitting. One finds, however,
that two variance reduction methods are required to make this sort of
perturbation calculation feasible. First, neutrons that have passed through
the sample must be exempted from roulette. Second, neutrons must be forced
to undergo scattering collisions in the sample. Even when such methods are
invoked, however, it is still necessary to exagerate the volume fraction of
the sample by drastically rsducing the size of the core. The benchmark
calculations are then used to test more approximate methods, and not directly
to analyze experiments.

In the second method the flux at the surface of the sample is assumed
to be known- Neutrons entering the sample are drawn from this "known" flux
and tracked by Monte Carlo. The effect of the sample or the fission rate is
then inferred from the histories of these neutrons.

The characteristics of both of these methods are explored empirically.
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MONTE CARLO SMALL-SAMPLE PERTURBATION CALCULATIONS

1. INTRODUCTION

The principles of Monte Carlo perturbation methods1 are, by now, fairly
well known. In practice, however, these methods are often difficult to use,
and must be specially adapted to operate effectively in each of many different
types of perturbation problems. Techniques specifically tailored for small-
sample perturbation calculations have been developed recently, and inserted
into VIM.2 Because of the difficulty of such calculations these techniques
have, been designed primarily to test selected features of the standard
analytic methods, and not to analyze experiments directly. Thus, for example,
in most test computations run so far, zeroeth-generation fission sites are
taken from a source generated by VIM in the "base configuration:" i.e. in a
configuration in which the sample is present, but with half its normal density.
Perturbation routines then calculate the difference, AA , between first-
generation fission rates with the sample present and with the sample replaced
by a void.

The fission perturbation, AA^ , can be used in two different ways,
namely,

(i) it can be compared directly with the corresponding perturbation,
DET

AAj , computed by some coarser method whose validity is under study.
Such a comparison could tell us, for example, whether heterogeneities
around the sample, or the resonance cross sections, are being treated
satisfactorily by the coarser method. In such comparisons it may
often be sufficient to include, in the computational configuration,
only the neighborhood of the sample.

(ii) Alternatively, one can estimate the net perturbations, AA, via the
expression

AA |s*(r) [S*(r) - S^(r)] dr/ fs*(r) SQ(r) dr. (1)

P U
Here Sj and Sj are the first-generation perturbed and unperturbed fission
source, respectively: So is the zeroeth-generation fission source, taken

*from a Monte Carlo or deterministic computation: and, finally, So is an
unperturbed adjoint source, computed by approximate deterministic methods.



In most respects the perturbation computational technique is conventional.
Neutrons are steered to the sample by splitting, and are tracked in the base
configuration. Each neutron carries two perturbation weights, updated after
each event, and used in calculating sample-in and sample-out reaction rates.
This sort of perturbation calculation is described in more detail in Ref. 1,
p. 152.

Unfortunately standard Monte Carlo perturbation methods seem to be
inadequate for small-sample perturbation calculations, and additional variance
reduction is required to make such calculations feasible. We describe next,
some specialized techniques which we find to be useful in VIM perturbation
calculations.

(a) In all these calculations: a neutron which enters the sample, at any
time in it's history, is thereafter exempted from roulette and split-
ting for the rest of it's life. If this is not done, the efficiency
of our perturbation calculations is sharply reduced.

(b) Further scattering collisions in the sample are forced by much the
same process as is used (for other purposes) in MCNP.3 In all
computations to be described below, only first scattering collisions
are forced. That is to say that if a neutron, entering the sample,
has previously been scattered in the sample, it is tracked by conven-
tional techniques. If it was not previously scattered in the sample,
it splits into two fragments. One fragment passes through the sample
uncollided, carrying the weight W = W^ exp(-Et£). Here W^ is the
weight of the neutron entering the sample, E^ is the sample cross
section at the neutron's current energy, and H is the track length
laid off as the neutron traverses the sample. The second fragment is
forced to scatter in the sample at some point along its path, a point
drawn from a truncated exponential distribution. This scattered
fragment then emerges from its forced collision with weight (l-W)x
Zs/2t. From this point on tracking of the scattered fragment is con-
ventional. It is possible, in VIM, to force more than one scattering
collision per entering neutron but, in most of our computations, we
find that one forced collision seems to be optimum. Advantages of
forced collisions, in perturbation calculations, will be discussed in
Section 2.

In addition, when it is crucially important that running times be
minimized,

(c) we assume that the incoming flux at the sample surface is known,
isotropic and spatially uniform, and that the exiting flux is also
uniform and isotropic. Neutrons entering the sample are drawn from
this "known" entering flux. When a neutron is forced into a scatter-
ing collision it is, in effect, split into two fragments. One acts
as if the sample were present and scatters normally. The other acts
as if it were in a void, and proceeds at it's original energy but
(utilizing our assumptions about the existing flux) the uncollided
fragment is made to emerge at the same point, and in the same
direction, as the scattered fragment. Both of the fragments, as
they emerge, are assigned the same initial random number, so that
their subsequent histories tend to be highly correlated.



Computations in which first-generation perturbations are computed for a
given fission source, using the techniques described in (a) and (b), above,
will be referred to, here, as "Method 1" computations. Computations in which
sample particles are born from an assumed surface flux will be called
"Method—2" computations. Normally, of course, we will not know this surface
flux unless we have already carried out a perturbation calculation. If,
however, the optical thickness of the sample is extremely small, the effect
of the sample on the entering flux is negligible. It may then be possible
to estimate this flux well enough for our purposes, perhaps via a diffusion
calculation in a simplified geometry in which the sample is ignored. In fact
experimental samples are not small enough so that perturbations in the
incoming flux are entirely negligible. On the other hand benchmark calcula-
tions in which the sample density is artificially reduced may still be quite
useful for diagnostic purposes.

In the following section we discuss the performance of the methods we
have just described in several different sample calculations. It should be
understood that here we will be concerned not so much with the results of
sample calculations as with running-times and computational efficiencies.

2. TEST CALCULATIONS

In Table 1 we list results of three Method-1 calculations, mainly to give
some idea as to the sort of running times attainable today. In test problems
1 and 2 spherical samples are placed at the center of spherical "cores" with
reflecting outer boundaries. Sample and core radii appear in Table 2, while
sample compositions will be found in Table 3. Number densities within the
core (U9-core number densities, smeared and volume-weighted) are listed in
Table 4. While the sample sizes, as well as the sample compositions, are
fairly realistic, the core dimensions have been drastically reduced so as to
make a perturbation calculation feasible. Again we note that we will not
attempt to analyze small-sample experiments directly by Monte Carlo. Probably,
with the methods and computers available today, this cannot yet be done. We
want to show, however, that Monte Carlo can give us benchmark computational
results in specially designed small-sample test problem configurations: with
the aid of such benchmark results we can then test the deterministic methods
which are used to analyze experiments. To be helpful as a diagnostic tool it
is only necessary that the benchmark computational configuration should retain
some crucial features of the real configuration like, for example, the hetero-
geneous structure near the sample.

Problem 3 has been included, here, so as to give an indication as to the
magnitude of running times one might expect in realistic plate geometries. In
problem 3 a '"B sample plate has been placed across the center of a U9 drawer.
This drawer is itself at the center of a 5 x 5 array of drawers surrounded by
a reflecting boundary. It should be noted that only the central drawer con-
tains a boron sample. Details of the drawer geometry are shown in Fig. 1.
Clearly the efficiency of the Monte Carlo calculation is much worse in problem
3 than in problems 1 and 2, though it isn't possible, from information given
here, to isolate the effects of geometry alone on running times.

On the other hand, some information is available on the effectiveness of
the variance reduction schemes described, in Section 1, under headings (a) and



(b). Tc test these schemes problem 1 has been rerun in four different
versions. Results of each calculation are listed in Table 5. It will be seen
from Table 5 that forced collisions, and the elimination of roulette for
neutrons that have passed though the sample, are both important methods for
variance reduction, at least in this test problem. Together they increase the
F.O.M., roughly, by a factor of 20.

It isn't difficult to see why one should shut off roulette after a
particle has passed through the sample. Once we have succeeded, by splitting,
in getting neutrons into the sample, it's wasteful to kill most of these
neutrons by Russian roulette, thus losing much of the information they were
carrying.

Some of the advantages of forced collisions are a little less obvious.
If the sample's mean-chord-length is much smaller than a mean—free—path then,
unless we force collisions, most of the neutrons that enter the sample will
pass through it uncollided. For such neutrons the adjustments in the pertur-
bation weights will be the same as if the sample were a pure absorber, an
absorber whose total cross section is just the same as in the real sample.
The effects of scattering collisions will than be felt only by those rare
particles that do_ collide when they pass through the sample. Thus when real
scattering events occur the Monte Carlo mean will change substantially and,
correspondingly, the computed variance will suddenly increase.

But there is another advantage of forced collisions which one can under-
stand most easily through an analysis of the simplest model problem. Consider
a one-group model problem in which; (a) the sample is a pure scatterer, (b) the
core is homogeneous, and (c) the core boundary is perfectly reflecting. It can
easily be shown that, in this case, the sample-worth vanishes identically and
thus, if we force collisions, the perturbation method will give a zero-worth
with zero variances. On the other hand, without forced collisions the
variance in the computed perturbation will not vanish, so that the relative
error in the Monte Carlo calculation will always be infinite. It isn't clear
which of these advantages of forced-collisions plays the most important role
in test problem 1.

Finally, one additional test problem, problem 4, has been run with method
2, for a PuAA- sample in a homogenized ZPPR-125 core composition. Core number
densities for this composition are listed in Table 6, and computational
results appear Table 7. First of all, it is clear from these results that the
F.O.M. for a Pu A£ sample in a ZPPR core is only about one third as large as
for a Pu sample in a U9 core. This is true primarily because the running-time
per history in the ZPPR core (which is composed primarily of iron) is about
twice as large as in the U9 core. Apparently most of the extra running-time
is used to generate a great many iron scattering collisions. It is true, of
course, that this time isn't simply lost, since information is collected
during each collision. On the other hand, the amount of information in a
history is limited and, apparently, in iron we have many more collisions than
we need to extract this information most efficiently.

In Table 7, full density results have been included just for comparison.
As has been noted earlier, Method 2 really can't be used unless the sample
density is artificially reduced.



If one compares the Method 1 F.O.M. for the full-density sample, with the
Method 2 F.O.M. for the reduced-density sample one concludes that the use of
Method 2 reduces running-time by about a factor of two. This reduction is
achieved, however, at the cost of another deviation from the real parameters
of the experiment. As a result, some of the deterministic methods used in
small-sample calculations (e.g. the methods used to treat self-shielding
effects in the sample) cannot be tested by Method 2. On the other hand many
resonance effects, and effects of local heterogeneities, still can be treated
by Method 2.

Unfortunately the results exhibited in Table 7 are not yet understood.
Thus, for example, it is not clear at this point, why the efficiency of
Method 1 is reduced by a factor of two when the sample density is lowered.

3. CONCLUSIONS

It is clear that, like other Monte Carlo perturbational techniques, Monte
Carlo perturbation methods for computing sample worths reduce the Monte Carlo
running time by enormous factors. Consider, for example, the running time for
problem 3 of Table 1. In this case the standard deviation in the fission rate,
both with the sample in and sample out, is about 5.9 x 10~^, and the standard
deviation in "6k", the difference of the fission rates is 8.4 x 10~6. Thus it
would take about 1.9 x 107 hrs of computing time on the IBM 3033, to achieve a
standard deviation of 8.4 x iO~6 in the VIM ok. Using perturbation method we
get to this same standard deviation in one hour.

Nevertheless, computing times for small-sample-wcrth calculations are
still large. Small-sample worths, computed by deterministic methods, now
agree with measured worths, in most cases to about 5%. It would, therefore,
be very helpful if the standard deviation in the Monte Carlo calculation could
be reduced a good deal below 5%. We see from Table 1 that this simply isn't
possible without substantial improvements in computers or in Monte Carlo
methods.

On the other hand, Monte Carlo sample-worths still can be useful even
with o's of about 3 or 4%. Deterministic calculations of these worths now
involve the computation of various corrections, corrections for self-shielding
in the sample, structural heterogeneities, and spectral details in the
importance function. Monte Carlo benchmark even with an accuracy of 3 or 4%,
would help to tell us, after all of these corrections have been made, whether
the observed agreement with experiments is real or accidental, and whether any
other large corrections still are missing. One can estimate, from line 3 of
Table 1, that a 10B sample-worth in a small bundle of ZPPR subassemblies,
could be computed, via Method-1, in about 8 hours or the IBM 3033. Certainly
this is a lot of computing time, but the cost of this sort of computation is
still small compared to the net cost of small-sample experiments, and is com-
parable to the cost of a detailed, plate-by-plate, Monte Carlo benchmark for
a critical experiment.

In connection with computing costs, it should be noted that little has
been done, so far, to fine-tune the methods used in Monte Carlo small-sample
computations. Perhaps the most obvious weakness in the sampling methods we
have used is in our source-sampling process, which is the standard process



used in VIM, in conjunction with roulette and splitting. In VIM the source-
sampling and splitting processes are coupled, and operate as follows:

(a) A source-weight, Wg, (Ws > 1) is associated with each splitting
zone: i, here, is the number of the zone:

(b) if a particle, which has made it's last collision in zone i, makes
its next collision in zone j, then it will be split by a factor
r, r = W./W., if r > 1, or rouletted by this same factor if r < 1:

(c) source sites are chosen from a specified source density by analogue
methods: if a neutron starts from a site in region i, then it is
split by the factor Wg.

While one can argue that such a source - splitting method is plausible,
there is no reason to believe that it is optimum in any sense. The source
distribution can be optimized, however, by a process similar to that discussed
by Hoffman. Hoffman describes the source-biassing process as adoptive but
suppose, for simplicity, that biasing parameters are determined, once and for
all, at the beginning of the Monte Carlo calculation, in a preliminary Monte
Carlo run. This preliminary run might proceed, for example, as follows:

(a) the space-energy phase space is divided into subregions, and a batch
of neutrons is started from each of these subregions:

(b) for each subregion, i, one calculates the running time, t^, per
starter (including the time for all the offspring born in splitting
processes) as well as o^, the standard deviation, per starter, in
the region-£ contribution to ok:

(c) finally p-̂ , the biassed starting probability in subregion i, is
given by the expression

S± is the source-strength in subregion i. Except for the factors t^, Eq. (1)
above is essentially the same as Eq. (18) of Ref. 6. It should be observed,
however, that optimum biasing parameters for the source (contrary to what is
often assumed) seem to have no connection whatever with any conventional
importance function. The effectiveness of source-biassing is small-sample
Monte Carlo calculations is now under investigation.
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Table 1. Sample Perturbation Calculations (Method 1)

Test Problem Deterministic 6k VIM 6k F.0.M.C

1. Table 2 geometry, -2.24 x 10"2 -2.24 x 10~2 ± 2.5%d 26.7
compositions from
Tables 3 and 4
(B10 sample)

2. Problem 1 with 2.80 x 10~2 2.66 x 10~2 ± 3.3% 15.3
Pu sample

3. Figure 1 geometry, -1.38 x 10"1* -1.37 x 10"4 ± 6.2% 4.3
B1" sample

aAll Monte Carlo calculations used 1 hr CPU time.

Problems 1 and 2 solved using AN1SN, problem 3 solved in cylindrical
geometry with DIF2D.

CF.0.M. = l/a2T (CPU minutes).



Table 2. Spherical Core Geometry (Reduced Core)

Sample radius 1.305 cm
Core radius 7.6317 cm
V.F. = sample volume/core volume 0.005
Splitting boundaries at r = 1.5 cm and 4.5 cm,
splitting by factor of 2.

Table 3. Perturbation Sample Densities

Pu sample

B sample

Pu-A£ sample

Pu 2 3 9

B 10

Pu2 3 9

Pu 2 4 0

Pu 2 4 1

pu24 2
Am21*1

kSL

2.5 x 1022

5.4350 x 1022

2.6432 x 1022

1.261 x 10 2 1

5.6 x 101 9

1 x 10 1 8

6.1 x 101 9

2.75 x 1021

Table 4. Homogenized U9 Atom Densities

u 2 3 5

u 2 3 8

u231*
u 2 3 6

Cr
Ni
Fe
O
Mn

3
3
3
1
1
8
6
2
1

.4851 x

.5122 x

.3425 x

.6024 x

.8927 x

.2170 x

.6947 x

.4100 x

.4850 x

102 1

1022
1019

10*9

1021
102 0

102 1

102 0

102°



Table 5. Comparison of Variance Reduction Techniques

Techniques

No forced collisions

Forced collisions

Regular
RR/splitting

RR/splittinga

cut out

Regular
RR/splitting

RR/splittinga

cut out

F.O.M.

1.56

6.28

4.27

34.4

i.e. each neutron which has entered the sample is
thereafter exempted from roulette and splitting.

Table 6. Homogenized ZPPR-12 Atom Densities

Pu 2 3 9

Pu21*^
Pu2"1

Pu21*2

u 2 3 5

u 2 3 8

Am 2 4 1

Cr
Ni
Fe
Na
0
C
Mo
Ma 5 5

Cu
Si

1.7662
2.338 x
2.08 x

3.8 x. i
1.12 x
5.01976
1.53 x
3.1669
1.4197
1.79308
8.688 x
9.8618
3.68 x
4.642 x
2.688 x
4.44 x
1.84 x

10 2 0

1019

Ol?Q
1019 ,
MO21

10 %,x 102X 10 I,
x 10 2 2

10221
x 1021

1019

10 2 0

i?f
10
,Q20

Table 7. Comparison of Method 1 with Method 2 in Problem 4

Full density sample

0.1 density sample

Method 1

5.51

2.15

Method 2

15.1

12.2



Figure 1. U9 Assembly Drawer Layout (a) Cross Section, and
(b) Top View (not to scale). Cross hatched plates
are enriched uranium, other plates are depleted
uranium.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.


