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In synchrotrons for ion beam fusion one needs a small
bucket area to l i m i t the long i tud ina l emit tance, a
small synchrotron frequency to avoid synchrobetatron
resonance, a large bunching fac to r to reduce space
charge tune depression, and a high synchronous voltage
to complete acceleration without ion-ion co l l i s ions .
I t is proposed to use a trigonometric series approxima-
t ion to a new "shed-like" waveform to replace the usual
pure sine wave (fundamental). The shed waveform d i -
vides the interval (0,2ir) into two parts with a cross-
ing in between. The r ight portion contains the par-
t ic les and is l inear, while the l e f t portion is merely
an "area dump." A f i t to a shed with three properly
phased sine waves is demonstrated to give almost as
good results as the o r ig ina l . In the present applica-
t ion a fundamental frequency range 12.5 to 50.0 MHz
is required. Four cavit ies and four r f systems are
ut i l i zed to produce the fundamental and two harmonics
up to 150 MHz. The frequency range l im i t of a cavity
is impcsed by properties of the f e r r i t e , voltage re-
quirement, and the operating frequency. Each cavity
covers a factor of 3 in frequency. A "dropping down"
scheme is described so that a single cavity may be used
in more than one range.

Waveform and Bucket Calculations

Acceleration in a synchrotron is usually carried out by
an e lect r ic f i e l d waveform which is a pure sine wave at
a radian frequency oorf = hu.yev. In choosing the
synchronous phase one simultaneously determines the
synchronous accelerating voltage Vs, the bucket area
A(jU, the bunching fac to r Bf, and the synchrotron
period Ty. Assuming that the bucket is eventually
f i l l e d by nonl inear i t ies, the f ina l longitudinal eroit-
tance w i l l be determined by the bucket area. The set
of parameters is optimal when the effect ive portion of
the wave is l inear. Remembering that the net area
under an ac wave must be zero, one sees that a shed-
l i ke waveform (Fig. 1) is indicated, with the slope of
the shed made as small as pract ica l i ty allows.

The d i f fe ren t ia l equation for synchrotron osc i l la t ion
is

See Table I for notation.

The variable canonical ly conjugate to i> is taken to be

I t is convenient to introduce the "potent ia l "

Note that <h and <t>2 depend on Go. The maximum Go for
stable motion is denoted by Gm and the conventional
notation is

J ( G m " d*

the bucket area is given by

? hA bu 8 * « R q

The bunching factor is the rat io of average to peak
part ic le density. For uniformly f i l l e d buckets the
average part ic le density equals some constant times the
area div ided by the length At,u/2ir, whi le the peak
density equals the same constant times the peak height
of the bucket

2W_ <Gm " W
h

Then 8p = Abu/4*Wm.

The period of o s c i l l a t i o n of the t r a j e c t o r y Go i s

T = 2R (?A '^ ft /*2 [G - GUT*5 ] dd> .
y nq MC to J

with tune \ij = 21 /vev T y .

A shed waveform is defined on ( i ; - 2 - , o2) as

V ( s ) =

- 2V,

V i + V (q> - * 2 )

- 2:r

with i>% = 1/2 (•>! + t 2 ) .
f ind from

I f AV =

< Si

) - V ( i 2 ) , we

dd

that

2T 1 + iV/2V
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The shed waveform is approximated by

which has a trough with minimum at & fTanked fay two
peaks at i and <t>2 where

V(*2) =

The bucket extends from $i to $2 • Phase plane tra jec-
tories may be labeled by Gn and are given by
* Work supported 5y Ur" S. Department of Energy.
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V(4) =
n=l

(Afl cos + Bn sin

Application

This problem arose in connection wi th the proposed
Argonne National Laboratory Seam Development Faci l i ty^
where the synchrotron has parameters:
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a = A = 131.3 R = 25 h = 109

2 i n = .0602 ? o u t = 0.383 n i n •= 1.0 n o u t = 0.857

Vs = 33 keV

The set (A n ) S n ) was chosen by c u t - a n d - t r y beg in-
ning with the' tr igonometr ic series with N = 2, 3, 4 for
a shed. Case N=3 was much bet ter than N=2, while N=4
showed no s ign i f i cant improvement over N=3, so we l i s t
only the ia t te r case in Table I I .

F igure 1 shows the maximum s tab le buckets f o r the
waveforms described by a fundamental and a shed. The
functions V(c ) for the fundamental-plus-two harmonics
and for the shed are shown in Fig. 2a, with the corres-
ponding buckets in Fig. 2b. In Table I I the synchro-
tron tune ;; is given for the case Go = 0.5 Gm.

We "-ave designed a system using three f e r r i t e loaded
c a v i t i e s to produce a three hanr.onic acce le ra t i ng
waveform ' o r about 50™ of the acce le ra t i on cyc le
' c i g . 3 ) . I t is also capable of producing two har-
monics at reduced leve ls f o r 71% of acce le ra t ing
cyc le and one harmonic fo r the remainder of c y c l e .
Studies have shown thai i t is not necessary to carry
these harmonics the f u l l acceleration cyc le. Improved
bucket area and bunching f ac to r s are maintained i f
three-harmonics are applied for about 50% of the cycle.
Other cavi t ies could be added as reguired, however, at
'^creased cost and complexity.

The cavity design i tsel f is similar to the FNAL booster
cevity design.3 i t uses 6 side attached f e r r i t e
tuners per cav i ty , with two symmetric about center
accelerating gaps. The cavity is driven at the center
by a directly attached rf amplifier. There wil l be
one amplifier for each cavity. Table I I I shows the
parameters of the cavities using representative fer-
r i tes . Reverse fer r i te biasing at the beginning of
cycle is required in cavi ty #3 to achieve the large
frequency swing. Reverse bias could be used in the
other cav i t ies to achieve improved performance.

Table I . Notation

h = harmonic number

q = charge state

p = momentum compaction factor

R = r ing radius

m = proton mass
P

,< = mp c/e

7 = re la t iv is t ic factor

A = atomic weight

Bp = bunching factor

Table I I . Buckets and Waveforms
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Fig . 2 Waveforms and Buckets for Shed vs
Fundamental-Plus-2 Harmonics.

F ig. 1 Buckets f o r Fundamental-Oniy vs Shed.
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Fig. 3 Frequency Profile
(Note: numbers refer to cavities)
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