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i . INTRODUCTION 

Since the introduction of the 168/E » emulating processors have been 
successful over an amazingly wide range of applications.3 For example, the 168/f; 
has been used for off-line data processing at SLAC,4~S CERN, 6 - 8 and DESY9 

where thousands of lines of FORTRAN are involved and the processing takes 
many seconds per event. The same processor has been used at SLAC as a trigger 
processor1**-11 involving only a few hundred lines of assembly code and taking 
only 100 feecs, and at CERN as a trigger processor involving hundreds of lines 
of FORTRAN and taking tens of milliseconds.12 The processor has even been 
used for Monte Carlo lattice calculations13 involving a few hundred lines of 
FORTRAN and yet taking an hour of processing time. Still more applications 
are planned at Saclay,14 University of Siegen,15 University of Toronto,16 I.N.S.-
Tokyo,17 and at Cornell.18 

The 168/E has its shortcomings, however, which have limited its use. This 
paper will describe a second generation processor, the 308 L/g. This new proces­
sor, which is being developed as a collaboration between SLAC and CERN, goes 
beyond just fixing the obvious faults of the 168/£ . Not only will the 3081/f 
have much more memory space, incorporate many more IBM instructions, and 
have full double precision floating point arithmetic, but it will also have faster 
execution times and be much simpler to build, debug, and maintain. The simple 
interface and reasonable cost of the 168/£ will be maintained for the 3081/£. 

The name of this processor needs a little explanation. IBM has recently come 
out with a new series of high performance mainframes which are called the 308x 
series. To the end-user, these machines have the same instruction set as the 
360/370 series of machines. Our new emulating processor takes its name from 
the first mainframe in this series: the 3081. 

2. ARCHITECTURE 

The architecture of the 3081/iJ is shown in Figure 1. There are four execution 
units interfaced to two 64 bit wide busses, called the ABUS and the BBUS. There 
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is one for integer operations, one for floating point addition and subtraction, one 
for floating point multiplication, and one for division. An arithmetic operation 
is started by a microinstruction that transfers two operands simultaneously on 
the ABUS and BBUS busses to the input registers of an execution unit. The 
execution unit then operates on the operands internally. After enough processor 
cycles have elapsed for completion of the operation, the results are presented on 
the BBUS when a microinstruction calls for them. 

rrs/fSJ, 

Divide 

Figure 1. Block diagram of 3081//J. 

Also interfaced to the:.-; busses are the control and register unit, data memory, 
and the interface. The control and register unit serves three functions: it coDtams 
the microprogram address counter and conditional branching logic, the data 
memory address logic, and the register files. 

Most IBM arithmetic instructions are of the form: 

B Op A — B 

where 'B' is called the first operand aod is usually a register, 'A* is called the 
second operand and may be either a register or memory, and 'Op' is some arith­
metic operation. About 75% of the instructions eucounted in execution are of 
the form where the second operand is memory. For this reasot the data memory 
is interfaced to the execution units via the ABUS. If both operands come from 
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registers, then the control and register board supplies the second operand on the 
ABUS. In stores to memory, it b memory that b jhaves like the first operand, 
therefore, stores to memory are done via the BBl 3. 'fhis structure allows stores 
to memory to be done directly from the output of an execution unit. 

The design philosophy of the 3081/E processor is simplicity of design and 
efficiency for important instructions. Of the two, the simplicity of design can not 
be over-emphasized. Members of the 3081//J collaboration, and many others, 
have built and debugged a processor wdth the complexity of the 169/E • Bat in 
the environment of a High Energy Physics laboratory, we feel it is undesirable to 
introdvce a processor of more complex design. We have noted that production of 
one prototype processor is only a small part of the overall effort and it is the rapid 
production of many processors that makes a real contribution to our respective 
laboratories. 

An important goal of the 3081/£ processor project, perhaps the most impor­
tant goal, is to produce a processor that is simple, reliable, and easy to debug 
and maintain. To meet this goal, the design philosophy of the 3081/fi is based 
OD the following rules and guidelines: 

• Separation of function to individual execution units in order to reduce the 
control logic. 

• Use of standard TTL circuits that have 'second sources' to ensure supply 
of components in the future. 

• Use of published maximum propagation time of every circuit in calculation 
of cycle time. 

• Use of additional circuits, if necessary, rather than using a 'clever trick,' 
in order to make the design as straightforward as possible. 

The choice of the architecture helps tremendously to reach these goals. It 
also has many additional benefits. The advantages are: 
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• The control logic for each execution unit is much simpler than it would be 
if, for example, than the control logic if all the operations were done on 
one board. 

• With the reduction in control logic, it is much easier to analyze the circuit 
for its longest propagation delay path. It is therefore easier to design the 
processor to work in a given cycle time and to be sure that it will. 

• Each execution unit can have enough board space to allow a straightfor­
ward implementation of its function, which not only simplifies the design 
but also allows for a circuit that optimizes the execution speed of its op­
eration. 

• With the reduction in control logic, each of the floating point execution 
units caD have enough board space to easily allow implementation of full 
double precision arithmetic (REAL*8) . Pull double precision is not needed 
for the accuracy of the results, as been shown with the results of truncated 
double precision of the l&8/£, but it is highly desirable in order to compare 
results of the processor with those from an IBM compatible mainframe. 

• The choice of having 64 bit wide busses allows 8 byte fetches and stores to 
memory in one cycle, which not only improves the double precision perfor­
mance but also simplifies the control logic and data paths for transferring 
double precision operands to and from the execution units. 

• The modular structure allows for additional execution units in the future 
as well as installation of improved versions of the current ones. 

The disadvantage of this structure is that it requires more integrated circuits. 
That is, although the number of circuits in the control logic is greatly reduced, 
the number «>f circuits in the data paths is increased due to duplication of some 
functions. However, it is felt that circuits are not expensive compared to man­
power vftWt and most of the manpower effort spent in debugging a processor is 
in areas of the control logic rather thao the data paths. 



3. REGISTERS 

The registers must be tightly coupled to the memory addressing logic and 
the branching logic. For this reason alt the general purpose registers are located 
on the control board. The physical implementation of the registers is as 16 dual-
ported registers, each 64 bits wide using IB 20705 circuits, as shown in Figure 
2. The 16 IBM General Purpose registers (Integer registers) are located in the 
first 8 locations with the least significant bit of the register address field choosing 
the most or least significant 32 bits of the 64 bit register. The 4 IBM floating 
point registers are located in the next 4 locations. Finally, 4 64 bit registers are 
left over for temporary storage. They can be used as some combination of 32 
bit integer registers, 32 bit floating point registers, and/or 64 bit floating point 
registers. 

Fhy.Addr. 
Dec. Hex 

ei 
00 31 

ts 
32 63 

0 0 B0 PI 
1 1 sz R3 
2 2 R4 R5 
3 3 R6 R7 
4 4 R3 H9 
5 5 R10 RI1 
6 6 RI2 RI3 
7 7 Ht4 R1S 
8 8 F0 
9 9 FZ 
10 A F<i 
11 B F6 
12 C R24/FB R25 
13 D R26/F10 R27 
14 E RZ8/F12 R29 
15 F R30/F14 Ml 

Figure 2. The 3081/j? register file implementation. 
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There are several benefits in this implementation of the register file. 

• To the processor's microcode, integer and floating registers look the same; 
a simplification of the control logic is achieved. 

• Some integer instructions have 64 bit operands. Transfer of an even/odd 
register pair can be done in one cycle with this implementation since all 
registers can be treated as 64 bits wide. Thus, an improvement in execution 
speed, and a simplification of the control logic. 

• The Load Multiple (LM) and Store Multiple (STM) instructions can be done 
2 registers per cycle. These instructions are used for eveyy subroutine call 
and can consume a lot of execution time; even more than some of the 
floating point instructions. 

• The extra registers can be used for decoding some instructions. 

4. MEMORY 

Memory is one of the most important aspects of any computer or processor. 
For experimental high energy physics applications, the memory space of a pro­
cessor must be large enough to simultaneously hold an event buffer, calibration 
constants, and enough working space fir the event reconstruction program to op­
erate. Modern and future detectors, especially those at colliding beam facilities, 
have tens of thousands of individual c a an Dels and their track reconstruction 
algorithms require a large amount of vorking space. Todiy, memory space is 
measured in units of MegaBytes, while a few short years ago only large main­
frame processors had more than 1 MegaByte of real memory. 

It would seem that large memory space could be most easily achieved by using 
the dense dynamic memory circuits that are commonly available. These circuits 
typically have ISO to 200 nsecs access time, 300 to 350 nsec cycle time, come in 
packages of 64K bits, and cost about US $1,000 per MegaByte. However, there 
are some problem areas in using these circuit*. For example, it is not prudent to 
hare a large memory using them without en or correcting code logic. LSI circuits 
are now available for this logic, but the effect of implementing it is the need for 
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more memory chips for the error correcting code to be stored and a slow down 
of the memory cycle time. 

Large memory space is important but the speed of the memory is equally 
important in High Energy Physics code. This is because even with the best of 
compilers, a processor still obtains one operand (of the two for an arithmetic 
instruction) from memory over 75% of the time. Therefore, the overall speed of 
execution becomes dominated by memory access time as the execution time of 
arithmetic instructions tends to zero. 

The memory of the 80&1/E will be implemented using the less dense but 
faster static memory circuits. Today they have typically 55 nsee access and cycle 
time, come in packages of 16K bits, and cost about US $5,000 per Megabyte 
The 55 nsec access time of the memory circuit leads to a 120 nsec memory 
cycle time for the processor when one adds up the address decoding time, circuit 
access time, propagation time of bus buffer circuits, and minimum setup times 
at the destination. Compared to using the dynamic memory circuits, the use of 
static memory is also much simpler because there is no need for error correcting 
code logic or the refresh timing logic. Also a very rapid access time is achieved 
without resorting to a cache memory buffer as is done in many high performance 
computers. 

The use of more expensive memory can easily be justified in many applica­
tions. For example, i I a multi-processor application, if one used a processor ten 
times slower than the 3081/£but with memory that was 5 times less expensive, 
then one would need 10 of these processors to equal the throughput of the 3081/£ 
and one would be spending twice the amount of money on memory circuits. 

A 3081/^ memory board will initially contain 1/4 MegaByte using 16K static 
Memory circuits. The processor can accept a maximum of 14 memory boards 
or 3.SM Bytes. Today, most High Energy Physics programs, including their I/O 
buffers for each tape and disk file, ran with less than 3.5M Byte allocation on 
an IBM mainframe. It is expected that 64K statics will be introduced in 1084 
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so by 1085 they will he reasonably priced. Their use will lower the price of the 
processor's memory and make it possible to have a processor with 14M Bytes. 

5. MEMORY ADDRESS CALCULATION 

The availablity of large memory with fast access times is only half the prob­
lem. To access it quickly one must also be able to calculate the memory address 
quickly. 

ID the 3081/£" the problem is solved in the following way. Each micro­
instruction that accesses memory has two completely independent fields. The 
first field controls the basic address calculation; i.e. adding the IBM 12 bit dis­
placement field to the contents of a baae register. This is denoted in the examples 
that follow as D^Bs) —» MAR. The second field controls the execution of an 
instruction. The address calculation will be done one micro-cycle ahead of the 
use of the memory operand. Thus, an Isolated Load instruction would take two 
cycles as shown iu the example below: 

IBM Instruction 3081/F micro-in&trur.tion 
L 3,323(13) 328(13)-*MAR 

(M—»R3 
However, two l,oad instructions in a row would take only three cycles as shown 
below: 

IBM Instruct! jr. 308 T/£ micro-instruct ion 
L 3.328(13) 3?8C13)-»HAR 
L 8,808(10) 808(10)—'MAR <f1)—»R3 

(M>—»R8 

All the IBM instructions with one operand in memory are handled in the same 
way. Note that this simple addressing pipelining mases the Load instruction 
execution effectively only on*.' cj'cle of 120 nseci,, which is the same amount of 
time that the Load instruction executes on an IBM 370/188. Stores to memory 
on the 3Q8J/E wiH take the same amount of time as Loads, but on an IBM 
370/168 they take twice as long because of the cache n jmory. The execution 
time of these simple instructions is important. For most programs, the execution 
time spent in loads and stores can exceed 30% of the tc tal. 
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The implementation requires that in one cycle one has a read access to one 
of the General Purpose registers for address calculation itrhite reading or writing 
to another register. Thb is done by using the same port of the register file that 
is used to output the contents of a register on the ABUS. 

Instructions with both operands from registers require use of bath ports of 
the 29705. However, the pipelining is maintained in the 3081/i? by moving the 
address calculation up one cycle as is shown in the following example: 

IBM Instruct ion 3081/f mi c r o - i n s t r u e t i o n 
L 3,328113) 328(13)-»MAR 
LR 4 ,8 8D8(10)-»t1AR in)—»R3 
L ft.£08(10) R5 —»R4 

111)—»R8 

There will always be available a 'slot' for the address calculation because every 
instruction that uses a memory operand will leave an opening for the next one. 

A small fraction of the memory addressing instructions have a Don zero index 
register, thus requiring the addition of 3 numbers to form the memory address. 
Rather than having the complexity of a 3 input adder and the logic to feed it 
with the contents of two registers, the 3081/jJ will take two cycles to complete 
the address calculation as is shown below: 

IBM Instruct ion 3081/f micro- ins truct ion 
L 3 . 64 (9 ,10) 64(10)-*MAR 

I1AR( 9)—»MAR 
(M)-»R3 

Since the frequency of thb type of addressing is oniy about 10% in typical code, 
the time penalty is not important. When it is heavily used in some loops the 
same pair of index and base registers will frequently be used more than once. If 
this condition occurs, the 3081/£ will calculate the sum of the registers ouce and 
store the results in one of the temporary registers. Memory address calculations 
based on the register pair will then be done using this register, thus requiring 
only one cycle. 

Branching breaks the addressing pipeline. The first instruction that accesses 
memory after a branch has been taken must take two cycles or more to complete. 
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However, the first memory accessing instruction after a branch instruction that 
was not taken may have its address calculation done in the cycle before the 
branch. This is because if the branch is taken, there is no harm in having loaded 
the memory address register with an address that will not be used, and if the 
branch is not taken then the memory accessing instruction can proceed. 

8, FLOATING POINT 

One of the important aspects of a processor for High Energy Physics is its 
floating point performance. However, attempts to vectorize High Energy Physics 
code, in order to make good use of processors with vector instructions (some­
times called array processors), have not yet proven successful It seems that the 
nature of most experimental code, as it is usually written, is such that there 
is an equal mix of scalar add/subtracts and multiplies, with a large intermix 
of conditional statements. Also, most event reconstnictbn codes spend 30-40% 
of their execution time in the subroutines SIN, COS, ATAN, and SQRT alone. 
These subroutines use floating point heavily and even double precision arithmetic 
internally. Therefore, for a processor to have good performance, it should have 
fast execution time on individual floating point instructions. 

The following sections describe each of the floating point execution <. iits. 

A. Floating Point Add/Subtract 

Floating point addition and subtraction are fairly complex operations. They 
involve pre-normalization, addition or subtract! m, and po?t-normali2ation. Since 
it is not possible to perform all of these operations in one processor cycle time, 
the add execution unit does the operation internally in two processor cycles. 

Even internal to the add execution unit there is separation of funct.-jn and 
circuits. For example, the pre- and post- normalization shifters are separate cir­
cuits, and the arithmetic units to compare the exponents for pre-normalization 
are separate from those to correct the exponent from post-norma!?zation. Again, 
this implementation choice requires more circuits but greatly simplifies the con-
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'rol logic and therefore the manpower effort. 

B. Floating Poht Multiply 

Multiplication is a rather simple operation but takes many circuits for it to 
go fast. The implementation has been optimized for single precision execution 
time which will take two processor cycles to complete, tn the first cycle, the 
mantissr of each operand passes through an array of fl 8X8 multiplier circuits 
and the partial products are stored in internal registers. In the second cycle, the 
partial products are summed. Post-normalization and exponent correction are 
accomplished during the cycle that the results are presented to the BBUS. 

To implement double precision multiplication in the same way would take a 
considerable number of circuits, therefore, an iterative tet 'anions will be used that 
is reasonablely fast and does rat squire too many circuits to fit on one board. In 
the first cycle, each byte of one operand is multiplied by the least significant byte 
of the other in an array of 7 8X8 multiplier circuits and the partial products 
stored in internal registers. In the next cycle, the partial products are summed 
and stored in an interna! accumulator register, while each byte of one operand 
is multiplied by the second least significant byte of the other. ID th-? next cycle, 
the partial products are summed and added to the accumulator shifted by 8 bits 
and stored, while the next byte is in the multipliers. After 7 multiply cycles plus 
i accumulation cycle, the results can pass through the post-normalization logic 
and onto the BBUS. 

C. Floating Point Divide 

Division has traditionally been one of the slowest instructions in any processor 
and so it will be with the 3081/£also. It will be done iteratively, 2 bits per cycle. 

7. INTEGER 

The benefits of separate execution units for floating point are also extended 
to the integer instructions. All integer instructions will be done in the integer 
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execution unit. On this board there will be enough space to handle not only the 
4 byte (INTEGER+4) and 2 byte (INTEGER*2) arithmetic operations, but also 
permit the data multiplexing required for the instructions with 1 byte operands 
(LOGICAL*! and CHARACTER*!!). This is especially important for implemen­
tation of the instructions leqoired by the FORTRAN *77 compilers. 

8. INSTRUCTION PIPELINING 

The separation of execution units, each capable of operating oil its operands 
internally, allows fo; instruction pipelining. The pipelining of memory address 
calculation with memory access has already been discussed, but now one is refer-
mg to the starting of a new instruction before the previous oce is finished, or the 
overlapping of one instruction with another. 

The following example is taken from actual code. The FORTRAN compiler 
frequently generates a sequence of instructions like LE 0,...; SE 0,...; ME 0,.., . 
This would be translated into 3081/^ microcode as shown below: 

I BM Instruction 3081/F mi^ro-"instruction 
1) LE 0 . 3 1 6 ( 0 , 1 3 ) 1 : 316U3>-»rV.R 
2) SE 0, 6Sa<0.13) 2 : 68«(13)-*MAR (H>—»F0 LE 

3: CM)—»A2 f0-»A1 A, 
4 : A, 

3) ME 0 . 1 6 7 2 ( 0 , 1 0 ) 5s1672(10)-»MAR Aj 
6: CM)—m AR—.H1 M 0 

7: Mi 
8: fit 
9 : HR-»F0 

The Load instruction, 1), executes in 2 cycles, 1: and 2:, as has already been 
described in the section on memory addressing. The Subtract instruction, 2), 
has its memory address calculation overlapped with the actual memory access of 
the Load instruction in 3081/£ instruction 2:. The start of the subtract occurs 
in 3081/E instruction 3: when the second operand is transferred from memory 
to the second operand input uf the add/subtract execution unit (A2) and the 
first operand is supplied from register to the first operand input (Al). After the 
two cycles [A\,A^, 3081/£instructions 4: and 5:, the results of the subtract are 
ready. 
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Tbe next IBM instruction, 3)r uses these results and modifies them. So instead 
of transfering them back to floating point register 0, they are transferred from 
the output of the add/subtract execution unit (AR) to the first operand input 
register of the multiply execution unit (Ml) using the BBUS. During this same 
cycle, 3081/£ instruction 6:, the second operand for the multiply instruction is 
transferred from memory to the second operand input (M2) using the ABUS. 

This is called instruction overlapping and it occurs very often in typical 
High Energy Physics code. Overlapping can occur whenever two sequential IBM 
instructions modify the same register. Measuring some codes show that about 
half of the floating point add/subtracts are followed immediately by a floating 
point multiply to the same regbter, and vice versa. Thus the design of the 3081 (E 
's execution units is such that their output is placed on the BBUS so that it can 
be used immediately as input to the next instruction. 

A sequence such as the one given above is frequently followed by a similar 
sequence, but using a different register. Thus one would translate into 3081 /ft 
microcode as show below: 

IBB Instruction 308UE micrp-instrueiian 
1) LE 0> 316(0,13) 1: .116(13)—tflAR 
2J SE 0, 688(0,13) 2: 688M3)-»MAR (M)—»F0 LE 

3: 320(13)—"MAR (M-+A2 F0-»A1 A« 
4: 692C.3)—WAR (n)—*F2 A, LE 

3) HE P, 1672(0.10) 5M672U0)—»MAR (M)-+A2 F2—»A1 A* A 0 

4) LE 2, 320(4.13) 6: (I1>-»!12 Afc-*H1 M 0 A, 
5) SE 2, 692(0.13) 7:t676(10)—WAR Mi A, 
6) ME 2,1676(0,10) 6: (M)—»H2 AR—•M M 2 M 0 

9 s H R — » F 0 H, 
10 s n2 

7) AER 2.0 11: FO — A 2 HR-»A1 A 0 

12: A, 
8) STE 2. 144(0.13) 13: 144CI3)—H1AR A t 

14' AR-»F2,(M) 

IBM instruction 4) does not depend on the results from instructions l)-3). There­
fore, it can be executed at 3081 /E instruction 4:, which is only one microinstruc­
tion after IBM instruction 2) has started. Similarly, IBM instruction 5) can be 
started at 3081/£ instruction 5:, since the add execution is pipelined internally. 
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This is called instruction pipelining. !t also happens very often in High 
Energy Physics code. The code shown above could have been generated by a line 
of FORTRAN like: 

XC = V1X*(XA - XZERO) + VIY*(YB - YZBBO) 

It is possible to do instruction pipelining with the 3081/£ because the execution 
units operate independantly of each other. Note also that in 3081/E instruction 
14:, the results of the add execution unit are stored to register and memory 
in the same cycle, thus effectively reducing the Store execution time to zero. 
Without instruction pipelining, the same sequence would have required 23 3081/E 
instructions, but with the pipelining it requires only 14. 

When the code uses floating point heavily, the pipelining becomes extensive. 
This is illustrated by adding to the above sequence of instructions one that is 
based on floating point register 4 as is shown below: 

IBM I n s t r u c t i o n 3031/ f m i c r o - i n s t r u c t i o n 
U LE 0, 316(0 , 13) 1: 316(1 3)—>r1AR 
2) 3E 0, 688(0 ,13 ) 2: 688(13)—NWR (ID—»F0 LE 

3: 32UU3)—>f1AR '.I",)—*A2 f\—»A t A a 

4: S9?(13) —>MAR ( t t ) - *F2 A, LE 
3) ME 0 ,1672 (0 -13 ) 5:1S72( 10)—>MA* <M)-»A2 F2-*A1 A 2 A 0 

45 LE 2 , 320 (0 .13 ) S: 404i 13?-*rtAft (rt)->M2 AR—<M1 M 0 A, 
5) SE 2 , 6 9 2 ( 0 . 1 3 ) 7: i&76( 10)—•HAft trl)—»F<( I I , Aj LE 
6) rIE 2 , 1 6 7 6 ( 0 , 1 0 ) 8: trt)-»n2 AR—nl rt2 n» 

9: 688(13)—»t1Aft ffl—»r« M, 
7) AER 2 ,0 10: (M)—»A2 F t — H I Mj A 0 

1 1 : F0 —»A2 MR—*A1 A 0 A, 
12: A, A 2 

8) STE t, 144(0 .13) 13: 144( 13)-T1Aft AR-*F4 A 2 

9) LE 4, 404 (0 ,13 ) M-- AS—*F2.(M) 
10) AF. ^4. 6 6 8 ( 0 . 1 3 ) 

IBM instruction 10) starts at 3081//J instruction 10: and finishes with 3081/£ in­
struction 13:. At 3081/£ instruction 11:, howev»r, is the start of IBM instruction 
7) which finishes at 3081/ E instruction 14:. Thus the pipelining is so extensive 
that IBM instructions are being executed in a different order from the way the) 
appear in the object code. Without instruction pipelining, this sequence would 
have taken 28 3081/£ instructions, but with pipelining it takes only 14. 
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0. PERFORMANCE 

To accurately predict, the execution speed of the 3081/£ is rather difficult, 
as, in common with many processors, it will depend on the program's instruc­
tion mix. The pipelining of instructions makes predictions even more difficult. 
However, three studies have been made to predict the upper and lower bounds 
of the expected performance. 

The lower bound of processor performance can be estimated by assuming 
that instruction pipelining never occurs. With this assumption the execution 
time of each IBM instruction is known. Two different event reconstruction codes 
were traced while in execution to measure the frequency of instructions executed. 
With these numbers, ije performance of the 3081/E processor would be 0.08 to 
1.01 times that of an IBM 370/168. 

An upper tusit could be estimated by the assumption that pipelining occurs 
to such an extent that every instruction takes effectively 1 cycle. With the same 
samples of code, this assumption leads to execution time 2.3 ti*nes Taster than 
an IBM 370/168; a figure that can not be realistically expected. 

A third measure way obtained by translating an inner loop of one of these 
programs. The loop consisted of 82 FORTRAN statements containing 32 IF 
statements. Since IF statements break instruction pipelining, it was important 
to try a loop with a typical number of them. This loop also consisted of several 
divides and memory references with a non-zero index register. The calculated 
execution time for one pass through the loop for the 3081/£ is 47 psocs, while 
for an IBM 370/168 the time would be 71 /tsecs. Thus the processor would be 
1.5 times faster for this loop. As a check, the execution time was also calculated 
for a 1B&/E - Its time would be 149 jisecs, or 2.1 times slower than a 370/168 
which is in good agreement with execution times measured on the 186/E • 

One can conclude, therefore, that the performance of the 3081/# will be at 
least that of an IBM 370/168 for typical High Energy Physics event reconstruction 
code, and up to 50% faster under the condition that most of the execution time 
is spent in floating point loops. The performance of the 3081/£ is comparable 
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with a well knowu array processor. The FPS-164 1 8 has a theoretical maximum 
execution speed of 12 MFLOPS, while the 3081/E theoretical maximum is 8.3 
MFLOPS. In practice, Lattice gauge programs, implemented in microcode of the 
array processor, achieve about 8 MFLOPS,2 0 while examples of that same co>le, 
implemented in FORTRAN, wouM achieve 4 MFLOPS on the 3081/£ . 

10. THE MICROCODE AND THE TRANSLATOR 

As with the 168/£ , the processor's instruction set is not that of IBM's, but 
is its own microcode. This microcode is generated by a software program, called 
the Translator. This program reals IBM object code modules, translates them 
to object microcode, links them together to form an absolute load module for the 
processor. The source of the IBM object code could be the output of a compiler, 
or that of a linkage editor. 

The advantage of using a translator is the elimination of the complex bard-
ware that decodes IBM instructions into microinstructions. This hardware, called 
the I-unit by IBM engineers, can consume over half the total design effort of the 
computer. A further advantage of using the translator with the 3081/£ is that 
instruction pipelining will be generated automatically. 

The microinstruction format of the 308\(E has only two forms: register 
transfer instructions and conditional branching instructions. The form of the 
register transfer instructions is given below: 

|oo ID is i& to 3i| 
M O P re* R i R j 0 

where MOP Ls a 10 bit micro operation code, R\ and Ri are the least significant 
four bits of tbe register addresses, MBA is the most significant bits of the register 
address, and Z>2 is the displacement field for memory addressing. The MOP field 
is decoded on each board with a PROM. It controls the source for the ABUS, the 
source for the BBUS, the destination(s), and the length of the operands. 
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The form of conditional branching instructions b shown below: 

lOO 04 08 311 

I I t i |H A S K| B R A N C H A D D R E S S J 

where MASK is the IBM mask field, It controls the type of branch, and the 
absolute branch address fills the remaining 24 bits of the instruction. 

The structure of separate execution units and the pipelining of instructions 
at execution time has been done in large computers since the lflBO's.3 1"2 2 The 
difference between such computers and the 3081/£" processor is that in a computer 
the pipeline has to be generated by hardware while for the 3081/£ processor 
the pipeline is generated by software of the translator. Hardware generating of 
die pipeline can become very complex and is limited to looking ahead to a few 
instructions. Software generation of the pipeline is considerably easier and has 
no limit in looking ahead. 

The 3081/E translator will generate the instruction pipelining and overlap­
ping by following a simple algorithm as follows: 

1. Take each IBM instruction one at a time and determine which operands 
are needed for execution of the instruction. 

2. Starting with the previously translated instruction, scan backwards to 
determine where is the earliest point the execution could start. Two rules 
are followed to determine this point: 

(a) If » register or memory location is to be read, then find the point it 
was stored. 

(b) If a register or memory location is to be written, then find the point 
where it was last read. 

3. Starting from the earliest point where the translation could take place, scan 
forward to the first empty microinstruction and put the microinstruction 
there. 
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This algorithm is still a one pass translation, not an optimization which would 
be much more difficult to program. Nevertheless, it b felt that the one pass 
translation yields results which are within 70-80% of maximum optimization, 

11. INTERFACE 

The interface to the 3081/.E processor will be of the same style as the 168/£. 
That is, either the CPU or the interface has control of the internal busses. Thus 
when tbe processor is running, one cannot access the processor's memory from 
the interface. When the processor is not running, all of the processor's memory is 
directly addressable through the interface. From the outside, the processor will 
appear to be a simple slave device on a FASTBUS cable segment. The transfer 
rate to or from the processor could be over 64M Bytes per second if a 64 bit wide 
data path were used, but FASTBUS is only 35! bits wide. 

Ther wiii be some improvements to make it easier to debug the processor: 

• The interface will have registers to allow one to halt the processor when 
certain conditions arise in a way similar to the Program Event Recording 
(PER) registers of IBM mainframes. For example, there will be a stop on a 
Store within an address range, a stop on modification of a certain register, 
etc. 

• The interface will be able to generate any microinstruction. This will 
allow the debugging of any execution unit without having the rut of tbe 
processor around. 

12. CONCLUSION 

The 308J/£'project was formed to prepare a much improved IBM mainframe 
emulator for thr,. future. Compared to the 168/£the goals for 'he3081/£are: 

• Much More Memory Spacer. The advances in memory technology coming 
from the manufacturers now make it possible to build a 3.5M Byte pro­
cessor at a cost of only US $5,000 per MegaByte while keeping i; e fast, 
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yet simple design style of the 168/£ memory. Fast memory is a very im­
portant factor in a processor's speed. Large memory is needed for today's 
large detectors. By 1085, a 14M Byte processor should be possible at half 
the cost per MegaByte. 

• More IBM Instruetionr. A more complete set of IBM instructions will be 
implemented thus allowing for use of FORTRAN '77. FORTRAN 77 is 
heavily used on many computers and has just recently been introduced on 
the IBM. 

• Full Douhlt PrecitiOK REAL*8 will be handled correctly, making compar­
isons between output from the processor and output of an IBM computer 
bit for bit identical. 

• Faster Execution Timer. The processor will be at least equal to the execu­
tion speed of a 370/168; and up to 1.5 times faster for heavy floating point 
code. A single processor will thus be 4 times more powerful than the VAX 
11/780, and 6 processors in a system would equal the performaace of the 
IBM 3081K. 

• Leu Technical Effort The design of the processor will be much simpler 
than the 16&/E. The design rules will be much more conservative and 
will use only off-the-shelf multiple source TTL components. Every effort is 
being made to reduce the man-power effort to b iJd, debug, and maintain 
the processor. 

• Efficient Translation to Microcode: Tiie translation of IBM native instruc­
tions to microcode of the processor will be maintained. It is an important 
element in keeping the hardware simple aud fast. With the 3081/fi , the 
translator will also automatically produce pipelined floating point opera­
tions, thus enhancing the performance for heavy floating point code. 

• Reatonaile Coot and Effort The cost of the CPU has been considered 
as less of a concern than manpower effort. Nevertheless, the cost of the 
processor, power supply, and chassis is expected to be under US $10,000 
excluding the cost of memory. 
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• Simple Inter/ating: We will maintain the simple interface of the 168 /g . 
That is to say, the processor will look like a slave on a FASTBUS cable 
segment. 

The project is being carried out as a collaboration between SLAC and CEftN 
DD division. At this date we have detailed block diagrams of the entire pro­
cessor, simulation programs of some parts, an approximate circuit count and 
costs, approximate board layouts, existence proof of the translator's pipelining 
capabilities, acd partial Computer based docuaeatstion. It is planned during 
the calendar year 1983, that a prototype processor will be built with the work 
being divided equally between SLAC and CERN. Pinal debugging should occur 
at SLAC early in 1984 with processors being generally available for use by the 
end of 1084. 
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