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1. INTRODUCTION

Since the introduction of the 168/% ,)~2 emulating processors have been
successful over an amazingly wide range of applications.3 For example, the 168/
has been used for off-line data processing at SLAC,*~% CERN,®-8 and DESY?
where thousands of lines of FORTRAN are involved and the procéssing takes
many seconds per event. The same processor has been used at SLAC as a trigger
processor!®=13 involving only a few hundred lines of assembly code and taking
only 10D psecs, and st CERN as a trigger processor involving hundreds of lines
of FORTRAN ond taking tens of milliseconds.!? The processor has even been
used for Monte Carlo lattice calculations!® involving a few hundred lines of
YORTRAN and yet taking an hour of processing time. Still more applications
are planmed at Saclay,!* University of Siegen,!5 University of Toronto, ¢ LN.S-
Tokyo,}” and at Cornell.i®

The 168/E has its shortcomings, however, which have limited its use. This
paper will describe a second generation processor, the 3081/ . This new proces-
sor, which is being developed as a collaboration between SLAC and CERN, goes
beyond just fixing the obvious faults of the 168/£ . Not only will the 3081/
have much more memory space, incorporate many more IBM instructions, and
have full double precision floating point arithmetic, but it will aiso have faster
execetion times and be much simpler to build, debug, and maintain. The simple
interface and reasonable cost of the 168/ £ will be maintained for the 3081/f .

The name of this processor needs a little explanation. [BM has recently come
out with a new series of high performance mainframes which are called the 308x
series. To the end-user, these machines have the same instruction set as the
360/370 series of machines. Our new emulating processor takes its name from
the first mainframe in this series: the 3081.

2. ARCHITECTURE

The architecture of the 3081/ £ is shown in Figure 1. There ere four execution
units interfaced to two 64 bit wide busses, called the ABUS and the BBUS. There




is one for integer operations, one for floating point addition and subtraction, one
for floating point multiplication, and one for division. An arithmetic operation
is started by a mieroinstruction that transfers two operands simultaneously on
the ABUS and BBUS busses to the input registers of an execution unit. The
execution unit then operates on the operands internally. After enough processor
cycles have elapsed for completion of the operation, the results are presented on
the BBUS when a microinstruction calls for them.
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Figure 1. Block diagram of 3081/F .

Also interfaced to the: : busses are the control and register unit, data memory,
and the interface. The control and register unit serves three functions: it contams
the microprogram address counter and conditional branching logic, the data
memory address logic, and the register files.

Most IBM arithmetic instrections are of the form:
BOpA—-B

where ‘B’ is called the first operand arnd is usnally a register, ‘A’ is called the
second operand and may be either a register or memory, and ‘Op’ is some arith-
metic operation. About 75% of the instructions encounted in execution are of
the form where the second operand is memory. For this reason the data memory
is interfaced to the execution units via the ABUS. If both operands come from




registers, then the control and register board supplies the second operand on the
ABUS. In stores to memory. it is memory thet b:haves like the first operand,
therefore, stores to memory are done via the BBU 3. ‘This structure allows stores
to memory to be done directly from the output of an execution unit.

The design philosophy of the 3081/F processor is simplicity of design and
efficiency for important instructions. Of the two, the simplicity of design can not
be over-emphasized. Membets of the 3081/ collaboration, and mazny others,
have built and debugged a processor with the complexity of the 168/ . But in
the environment of 2 High Energy Physics laboratory, we feel it is undesirable to
introduee a processor of more complex design. We have noted that preduction of
one prototype processor is only a small part of the overall effort and it is the rapid
production of many processors that makes a rea! contribution to our respective
laboratories.

An important goal of the 3081/ f processor project, perhaps the most impor-
tant goal, is to produce a processor that is simple, reliable, and easy to debug
and maintain. To meet this goal, the design philosophy of the 3081/ is based
ob the following rules and guidelines:

e Separation of function to individual executinn units in order to reduce the

control logic.

e Use of standard TTL circuits that have ‘second sources’ to ensure supply

of components in the future.

e Use of published maximum propagation time of every cireuit in calculation

of cycle time.

e Use of additional circuits, if necessary, rather than using a ‘clever trick,’

in order to make the design as straightforward as possible.

The choice of the architecture helps tremendously to reach these goals. It
also has many additional benefits. The advantages are:




e The control logic for each execution nnit is much simpler than it would be
if, for example, than the control logic if all the operations were done on
one board.

e With the reduction in control logie, it is much easier to analyze the circuit
for its longest propagation delay path. It is therefore easier to design the
processor to work in a given cycle time and to be sure that it will.

e Each execution unit can have enough board space to allow a straightfor-
ward implementation of its function, which not only simplifies the design
but also allows for & cireuit that optimizes the execution speed of its op-

etation.

e With the reduction in control logic, each of the floating point execution
units can bave encugh board space to easily allow implementation of full
double precision arithmetic (REAL+8}. Full double precision is not needed
for the aceuracy of the results, as been shown with the results of truncated
double precision of the 168/ £, but it is highly desirable in order to compare
results of the processor with those from an IBM compatible mainframe.

e The choice of having 84 bit wide busses allows 8 byte fetches and stores to
memory in one cycle, which not only improves the double precision perfor-
mance but also simplifies the control logic and data paths for transferring
double precision operands to and from the execution units.

e The madular structure allows for additional execution units in the future
as well as installation of improved versions of the current ones.

The disadvantage of this structure is that it requires more integrated circuits.
That is, although the pumber of circuits in the control logic iz greatly reduced,
the number of cireuits in the data paths is increased due to duplication of some
functions. However, it is felt that circuits are not expensive compared to man-
power uffurt and most of the manpower effort spent in debugging a processor is
in areas of the control logic rather than the data paths.



3. REGISTERS

The registers must be tightly coupled to the memory addressing logic and
the branching logic. For this reason all the general purpose registers are located
on the control board. The physical implementation of the registers is as 16 dual-
ported registers, each 64 bits wide using 16 28705 circuits, as shown in Figure
2. The 16 IBM General Purpose registers (Integer registers) are located in the
first 8 locations with the least significant bit of the register address field choosing
the most or least significant 32 bits of the 64 bit register. The 4 IBM floating
point registers are located in the next 4 locations. Finally, 4 64 bit registers are
left over for temporary storage. They can be used as some combination of 32
bit integer registers, 32 bit floating point registers, and/or 64 bit floating point

registers.
Phy . Addr. Bits
Dec. Hex|06 31 32 63
a 0 RO Pt
1 1 R2 R3
2 2 R4 RS
3 3 R& R7
L 9 R8 RS
5 5 R10 Rt1
] ] Rt2 R13
? 7 Rt4 R1S
8 8 Fo
91 9 F2
10 A Fq
1h B Fo
12 c R24/F8 R25
13 ] R26/F10 R27
16 3 R28/F12 R29 B
15 F R30/F14 »31

Figure 2. The 3081/ E register file implementation.




There are several benefits in this implementation of the register file.

# To the processor's mictocode, integer and floating registers look the same;
a simplification of the control logie is achieved.

¢ Some integer instructions have 64 bit operands. Transfer of an evenfodd
register pair can be done in ove cycle with this implementation since all
registers can be ¢reated as 64 bits wide. Thus, an improvement in execution
speed, and a simplification of the control logic.

e The Load Maltiple (LM) and Store Multiple (STM) instructions cab be dope
2 registers per cycle. These instructions are used for every subroutine eall
and can consume a lot of execution time; even more than some of the

foating point instructions.

o The extra registers can be vsed for decoding some instructions.

4. MEMORY

Memory is one of the most important aspects of any compuater or processor.
For experimental high energy phy:ics applications, the memory space of a pro-
cessor must be large enough to simutaneously hold an event buffer, calibration
constants, and enough working space fur the event reconstruction program to op-
erate. Modern and future deiectors, esp.cially those at colliding beam facilities,
bave tens of thousands of individual caannels and their track reconmstruetion
algorithms require & large amount of -vorking space. Today, memoty space is
measured in units of MegaBytes, while a few short years ago only large main-
frame processers had more than 1 MegaByte of real memory.

It would secin that large memory space could be most easily achieved by using
the dense dynamic memory circuits that are commonly available. These circuits
typically have 150 to 200 nsecs access time, 300 to 350 nsec cycle time, come in
packages of 84K bits, and cost about US $1,000 per MegaByte. However, there
are some problem areas in using these circuit=. For example, it is not prudent to
have a large memory using them without ericr correcting code logic. LSI circuits
are now available for this logic, but the effect of implementing it is the need for
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more memory ¢hips for the error correcting code to be stored and a slow down
of the memory cyele time.

Large memory space is important but the speed of the memory is equally
important in High Energy Physics code. This is because even with the best of
compilers, 8 processor still obiains one operand {of the two for an arithmetic
instruction) from memory over 75% of the time. Therefore, the overall speed of
execution becomes dominated by memory access time as the execution time of
arithmetic instructions tends to zero.

The memory of the 3081/F will be implemented using the less dense but
faster static memory circuits. Today they have typically 55 nsec access and eycle
time, come in packages of 16K bits, and cost about US $5,000 per Megabyte
The 65 nsec access time of the memory circuit leads to a 120 nsec memory
cycle time for the processor when one sdds up the address decoding time, circuit
access time, propagation time of bus buffer circuits, and minimum setup times
at the destination. Compared to using the dynzamic memory cireuits, the use of
static memory is also much simpler because there is no need for error correcting
code logic or the refresh timing logic. Also a very rapid access time is achieved
without resorting to & cache memory buffer as is done in many high performance
computers.

The use of more expeasive memory can easily be justified in maay applica-
tions. For example, i~ a multi-processor application, if one used a processor ten
times slower than the 3081/ but with memory that was 5 times less expeusive,
then one would need 10 of these processors to equal the throughput of the 3081/ £
and one would be spending twice the amount of money on memory circuits.

A 3081/ E memory board will initially contain 1/4 MegaByte using 16K static
memory cirevits. The processor can accept a2 maximum of 14 memory boards
or 3.6M Bytes. Today, most High Energy Physics programs, including their 1/0
buffers for each tape and disk file, ran with less than 3.5M Byte allocation on
an IBM mainframe. It is expected that 64K statics will be introduced in 1084
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so by 1985 they will be reasonably priced. Their use will lower the price of the
processor's memory and make it possible to have a processor with 14dM Bytes.

5. MEMORY ADDRESS CALCULATION

The availablity of large memory with fast acress times is only half the prob-
Iem. To ancess it quickly one must also be able to calculate the memory address
quickly.

Io the 3081/F the problem is solved in the following way. Each micro-
instruction that accesses memory has two completely independent felds. The
first field controls the basic address caleulation; i.e. adding ithe IBM 12 bit dis-
placement field to the contents of a base register. This is denoted in the examples
that follow a8 Do{B2) — MAR. The second feld controls the execution of an
instruction. The address calenlation will he done one micro-cyele shead of the
use of the memory operand. Thus, an isclated Load instructior would take two

cycles as shown in the example below:

18M rycrion 3081/E micro=-i ructj
L 3,328013) 328(12)—MAR
tM3—R3
However, twe L.oad instructions in a row would take only three eycles as shown
below:
1BM Instructian 3081/F micro-ingtructign
L 3,323013) 378013)—HAR
L 8,808¢10) 808(10)—MAR {H)—R3
(M)—RE

All the IBM instruciions with one operand in memory are bandled in the same
way. Note that this simple addressing pipelining maxes the Load instruction
execution eflectively only onu cycle of 120 nsec., which is the same amount of
time that the Load instruction executes on an [BM 370/188. Stores to memory
on the 3081/F will teke the same amount of time ag Loads, but on an IBM
370/168 they take twice as long because of the cache n :mory. The execution
time of these simple instructions is important. For most programs, the execution
time spent in loads apd stores can exceed 30%% of the tctal.
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The implementation requires that in one cycle one has a read access to one
of the General Purpose registers for address calculation while reading or writing
to another register. This is done by using the same port of the register file that
is used to output the contents of a register on the ABUS.

Instructions with both operands from registers require use of bath ports of
the 29705. However, the pipelining is inaintained in the 3021/ E by moving the
address calculation up ore cycle as is shown in the following example:

38M Listruction 3081/ micro-instruction

L 3,328113) 3280131 —MAR

LR 4,8 8D8(10)—1AR (n—R3

L 8,808C10) R8 —RY4
(n)—Rs

There will always be available a ‘slot’ for the address calenlation because every
instruction that uses a memory operand will leave an opening for the next one.

A small fraction of the memory addressing instructions have s non zero index
register, thus requiring the addition of 3 numbers to form the memory address.
Rather than having the complexity of a 3 input adder and the logic to feed it
with the contents of two registers, the 3081/E will take two cycles to complete

the address caleulation as is shown below:

IBM Instruction 3081/F micro-instruction
L 3. 64(9,10) 64(10)—MAR

MAR( 9)—MAR
(M)—R3

Since the frequency of this type of addressing is oniy about 10% in typical code,
the time penalty is not important. Wher it is heavily used in some loops the
same pair of index and base registers will frequently be used more than once. If
shis condition occurs, the 3081/ £ will calculate the sum of the registers once and
store the results in one of the temporary registers. Memory address calculations
based on the register pair will then be done using this register, thus requiring
only ope cycle.

Branching breaks the addressing pipeline. The first instruction that accesses
memory after a branch bas been taken must take two cycles or more to complete.
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However, the first memory accessing instruction after & branch instruction that
was not takep may have its address caleulation done in the cycle before the
branch. This is because if the branch is taken, there is no harm in having loaded
the niemory address register with an address that will not be used, sad if the
branch i¢ not taken then the memory acceszing instruction can proceed.

8. FLOATING POINT

One of the important aspects of a processor for High Energy Physics is its
floating point performance. However, attempts to vectorize High Energy Physics
code, in order to make good use of processors with vector instructions {some-
times called array processors), have not yet proven suecessful. It seems that the
nature of most experimental code, as it is ysually writien, is such that there
is an equal mix of scalar add/subtracts and multiplies, with a large intermix
of conditional statements. Also, most event reconstruction codes spend 30-40%
of their execution time in the subroutines SIN, COS, ATAN, and SQRT alone.
These subroutines use foating point heavily and even double precision arithmetic
internally. Therefore, for a processor to have good performance, it should have
fast execution time on individual floating point instructions.

The following sections describe each of the Boating point execution . nits.

A. Floating Point Add/Subtract

Floating point addition and subtraction are fairly complex operations. They
involve pre-normalization, addition or subtracti>n, and post-normalization. Since
it is not possible to perform all of these operations i one processor cycle time,
the add execution unit does the operation internally in two processor eycles.

Even interpal to the add execution unit there is separation of funct:on and
circuits. For example, the pre- and post- normalization shifters are separate cir-
cuits, and the arithmetic units to compare the exponents for pre-normalization
are separate from those to correct the exponent from post-normalization. Again,
this implementation choice requires more circuits but greatly simplifies the con-
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*rul logic and therefore the manpower effort,

B. Floating Poi.t Multiply

Multiplication is a rather simple operation but takes many cireuits for it to
go fast. The implementation has been optimized for single precision execution
time which will take two processor cycles to complete. In the first cycle, tke
mantissr of each operand passes through an array of 8 838 multiptier circuits
and the partial products are stored in internal registers. In the second cycle, the
partial products are summed. Post-normalization and exponent correcticn are
accomplished during the cycle thai the results are presented to the BBUS.

To implement double precision multiplication in the same way wouid take a
considerable number of circuits, therefore, an iterative tec anior= will be used that
is reasonablely fast and does rat require too many circnits to fit on one board. In
the first cycle, each byte of une operand is multiplied by the least significant byte
of the other in an array of 7 8 X8 multiplier circuits and the partial products
stored in internal registers. In the next cycle, the partial products are summed
and stored in an internsl accumulator register, while each byte of one operand
is multiplied by ihe second least significant byte of the other. In th- next cycle,
the partial products are summed and added to the accumulator shifted by 8 bits
and stored, while the next byte is in the multipliers. After 7 multiply cycles plus
i accumulation cycle, the results can pass through the post-normalization logic
and onto the BBUS.

C. Floating Point Divide

Division has traditionally been one of the slowest instructions in any processor
and so it will be with the 3081/ F also. It will be done iteratively, 2 bits per cycle.

7. INTEGER

The benefits of separate execution vnits for floating point are also extended
to the integer instructions, All integer instructions will be done in the integer
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execution unit. On this board there will be enough space to handle not only the
4 byte (INTEGER#+4) and 2 byie (INTEGER+2) arithmetic operations, but also
permit the data multiplexing required for the instructions with 1 byte operands
(LOGICAL®*] and CHARACTER+n). This is especislly important for implemen-
tation of the instructions zequired by the FORTRAN °77 compilers.

8. INSTRUCTION PIPELINING

The separation of execution units, each capable of operating on its operands
internally, allows for instruction pipelining. The pipelining of memory address
calculation with memory access has zlready been discussed, but now one is refer-
ng to the starting of a new instruction before the previous ore is fnished, or the
overlepping of one instruction with another.

The jollowing example is taken from actual code. The FORTRAN compiler
frequently generates a sequence of instructions like LE 0,...; SEOD,...; MEG,....
This would be translated into 3081/ microcode as shown below:

]1BM Instruction 2WBI/E minro-instruction

1Y LE 0, 316€0,13) 1: 316(i3)—MrR

2) SE 0, 638(0,13) 2: 6538(13)—rMAR (M)—FO LE
3: (M)—A2 FO—A1 A
4: Aq

3) HE 0,1672(0,10) 5:1672(10)—MAR LY
6: (M}—H2 AR—M1 My
71 Mq
3: Mg
9: MR—FQ

The Load instruction, 1), executes in 2 cycles, 1: and 2:, as has already been
described in the section on memory addressing. The Subtract instruction, 2),
has its memory address calsulation overlapped with the actual memory access of
the Load instruction in 2081/g instruction 2:. The start of the subtract occurs
o 3081/ F ipstruction 3: when the second orerand is transferred from memory
to the second operand input of the add/subtract executicn vnit (A2) and the
first operand is supplied from register to the first operand input (Al). After the
two cycles (A}, A2), 3081/ E instructions 4: and 5:, the results of the subtract are
ready.

13
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The next IBM instruction, 3), uses these results and modifies them. Soinstead
of transfering them back to floating point register 0, they are transferred from
the output of the add/subtract execution unit (AR) to the first operand input
register of the multiply execution unit (M1) using the BBUS. During this same
cycle, 3081/ K instruction 8:, the second operand for the multiply instruction is
transferred from memory to the second operand input {M2) using the ABUS.

This is called instruction overlapping and it occurs very often in typical
High Energy Physics code. Overlapping can occur whenever iwo sequential IBM
instructions modify the same register. Measuring some codes show that about
half of the floating point add/subtracts are followed immediately by a Boating
point multiply to the same register, and vice versa. Thus the design of the 3081/
's execution units is such that their output is placed on the BBUS so that it can
be used immediately as input to the next instruction.

A sequence such as the one given above is frequently followed by a similar
sequence, but using a different register. Thus one would translate into 3081/ F
microcode as show below:

18M% Instruetion 308Y/F micro-instruction

7 LE 0, 316(0,13) 1: 6C13)—MAR

24 SE 0, 688(0,13) 2: BBB(13)—MAR (M)—FD LE
3: 320013)—MAR (M)—A2 FO—A1 Ag
4: 692(53)—AR (MY=—F2 Ay LE

3) HE P 167200, 100 5:1672010)—1R (M)—A2 F2—Al A; Ay
4) LE 2, 320(9,13) 6: (M}—2 Ak—H1 Mp A,y

§) SE 2, ©92(0,13) 7:1676(10)—MAR My Az
6) ME 2.1676(0,10) 8: (M3—112 AR—H1 My My
9: MR—F0 41
10: M2
7) AER 2,0 1 FQ —A2 MR—AL Ro
12: A
&) STE 2. 144(0,13) 13: 144(13)—AR A;
14: AR—F 2, (M)

IBM ipstruction 4) does noi depend on the results from instructions 1)-3). There-
fore, it can be executed st 3081/ F instruction 4:, which is only one microinstruc-
tion after IBM instruction 2) has started. Similarly, IBM instruction 5) can be
started at 3081/ F instruction 5:, since the add execution is pipelined internally.

14



This is called instruction pipelining. !t also happens very often in High
Energy Physics code. The code shown above could have been generatid by a line
of FORTRAN like:

XC = VIX#(XA — XZERQ) + VIY+(YB — YZERO)

It is possible to do irstruction pipslining with the 3081/ E because the execution
units operate independantly of each other. Note also that in 3081/E instruction
14:, the results of the add execution unit are stored to register and memory
in the same cycle, thus eflectively reducing the Store execution time to zero.
Without instruction pipeliping, the same sequence would have required 23 3081/

instructions, but with the pipelining it requires only 14.

When the code uses floating point heavily, the pipelining becomes extensive.
This is illustrated by adding; to the above sequence of instructions one that is

based on floating point register 4 as is shown below:

1RM Instryztion 3081/f£ micro-instruction

1} LE 0, 316¢D0,13) 1: 316(13)~—MAR

2 3¢ 0, 088(0,13) 2: BBS(13)—AR (M)—FQ LE
3: 320(13)—MAR (M)—AZ sN1—Al Ag
4: 532(13)—MAR (M)—F2 Ay LE

3) ME  D,1672(0.131  5:1472C10)-—MAR (M)—A2 F2-2A1 Az Ag

4y LE 2, 320(0,13) 9S5: 404013)—*MAR (M)X—M2 AR—HT Mp Ay

53 ST 2, 692{0,%3) 7:1676¢C10)—MAR (M)—F4 My Az LE
8.

b ME 2,167640,10) : (M)—M2 AR—MY Nz Mp
9: 633(13)—MAR BR—F 1) My
7) AER 2.0 10: (M)—A2 F4—a! Mz Ag
1: FO —A2 MR—A1 Ag Ay
12: Ay Az
8) STE 2, 144{0,13) 13: 144(13)—MAR AR—F 4 Az
9) LE 4, 404(0.13) i4: ARR—FZ, (M)

10) AL .4. 6681(90,13)

IBM instruction 10) starls at 3081/ g instruction 10: and fiuishes with 3081/ in-
struction 13:. At 3081/ g instruction 11:, however, is the start of [BM instruction
7) which finishes at 3081/ E instruction 14:. Thus the pipelining is so extensive
that IBM instructions are being executed in a diferent order from the way they
appear in the object code. Without instruction pipelining, this sequence wouid
have taken 28 3081/ F imstructions, but with pipelining it takes only 14.

15



9. PERFORMANCE

To sccurately predict the execution speed of the 3081/ £ is rather difficult,
as, in common with many processors, it will depend on the program’s instruc-
tion mix. The pipelining of instructions makes predictions even more difficult.
However, three studies have been made to predict the upper and lower bounds

ol the expected performance.

The lower bound of processor performance can be estimated by assuming
that instruction pipelining never occurs. With this assumption the execution
time of each IBM ipstruction is known. Two different event reconstruction codes
were traced while in execution to measure the frequency of insiructions executed.
With these numbers, i.e performance of the 3081/ E processor would be 0.98 io
1.01 times that of an IEM 370/168.

An upper limit could be estimated by the assumption that pipelining cecurs
to such an exteat that every instruction takes effectively 1 cycle. With the same
samples of code, this assumption leads to execution time 2.5 times faster than
an IBM 370/168; a figure that can not be realistically expected.

A third measure was obtained by translating an inner loop of one of these
progrems. The loop consisted of 82 FORTRAN statements containing 32 IF
statements. Since IF statemenis break instruction pipelining, it was important
to try a loop with a typical number of them. This loop also consisted of several
divides and memory references with a non-zero index register. The calculated
execution time for one pass through the loop for the 3081/ E is 47 psees, while
for an IBM 370/168 the time would be 71 psecs. Thus the processor would be
1.5 times faster for this loop. As a check, the execution time was also caleulated
for a 188/F . Its time would be 149 psecs, or 2.1 times slower than a 370/168
which is in good agreement with execution times measured on the 163/E .

One can conclude, therefore, that the performance of the 3081/ E will be at
least that of an JBM 370,168 for typical High Energy Physies event reconstruction
code, and up to 50% faster under the condition that most of the execution time
is spent in foating point loops. The performance of the 3081/F is comparable

16



with a well knowu array processor. The FPS-164!9 has a theoretical maximum
execution speed of 12 MFLOPS, while the 308L/£ theoretical maxizoum is 8.3
MFLOPS. In practice, Lattice gauge programs, implemented in microcade of the
array processor, achieve about 8 MFLOPS,?® while examples of that same co-le,
implemented in FORTRAN, wou’d achieve 4 MFLOPS on the 3081/F .

10. THE MICROCODE AND THE TRANSLATOR

As with the 168/ , the processor’s instruction set is not that of IBM's, but
is its own microcode. This micrccode is generated by a software program, called
the Translator. This program reais IBM object code modules, translates them
to object microcode, links them tcgether to form an ahsolute load module for the
processor. The source of the IBM object code could be the output of a compiler,

or that of a linkage editor.

The advantage of using & translator is the elimination of the complex hard-
ware that decodes IBM instructions into mieroinstructions. This hardware, call-d
the I-unit by IBM engineers, can consume over half the total design effort of the
computer. A further advantage of using the translator with the 3081/ £ is that
instructiop pipelining wil! be generated automatically.

The microinstruction format of the 3081/F bas only two forms: register
transfer instructions and conditional branching instructions. The form of the

cegister transfer instructions is given below:
foo 10 12 16 zo 1]

HMOP |I"5AI Ry l Ry ‘ +]

where AMOP is a 10 bit micro operation code, By and R, are the least significant
four bits of the register addresses, A7BA is the most significant bits of the register
address, and Dj is the displacement field for memory addressing. The MOP field
is decoded on each board with a PROM. It controls the source for the ABUS, the
source for the BBUS, the destination(s), and the length of the operands.
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PP,

—

The form of conditional branching instructions is shown below:
(1] L1 (1 3]
F_lttlno.sxl BR-2NCH ADDRESS J

where MASK is the IBM mask field, &t controls the type of branch, and the
ahsolute branch address fills the remairing 24 bits of the instruction.

The structure of separate execution units and the pipelining of instructions
at execution time has been done in large computers since the 1960°5.21-22 Tye
difference between such computers and the 3081 /E processor is that in a computer
the pipeline has 1o be generated by hardware while for the 3081/F processor
the pipeline is generated by software of the translator. Hardware generating of
the pipeline cap become very complex and is limited to looking ahead to a few
instructions. Software generation of the pipeline is considerably casier and has
0o limit in looking ahead.

The 3081/ translator will generate the instruction pipelining and overlap-
ping by following a simple algorithm as follows:

1. Take each IBM instzuction one at a time and determine which operunds
are needed for execution of the instruction.

2. Starting with the previously translated instruction, scan backwards to
determine where is the earliest point the execution could start. Two rules
are followed to determine this point:

(a) I » register or memory location is to be read, then find the point it
was stored.

(b} M » register or memory location is to be written, then find the point
where it was last read.

3. Starting from the earliest point where the translation could take place, scan
forward to the first empty microinstruction and put the microinstruction

there.
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This algovithm is still a one pass translation, not an aptimization which would
be much more difficult to program. Nevertheless, it is felt that the one pass
translation yields results which are within 70-80% of maximum optimization,

11. INTERFACE

The interface to the 3081/ E processor will be of the same style as the 188/F
That is, either the CPU or the interface has control of the internal busses. Thus
when the processor is running, one cannot access the processor's memory from
the interface. When the processor is not running, all of the processor's memory is
directly addressable through the interface. From the outside, the processor will
appear to be a simple slave device on a FASTBUS cable segment. The transfer
rate to or from the processor could be over 64M Bytes per second if a 84 bit wide
data path were used, but FASTBUS is only 32 bits wide.

Ther wili be some improvements to make it easier to debug the processop

e The interface will have registers to allow one to ha:t the processor when
certain conditions arise in a way similar to the Program Event Recording
{PER) registers of IBM mainframes. For example, there will be a stop on a
Store within ap address range, a stop on modification of a certain register,

ete,

o The interface will be able to generate any microinstruction. This will
allow the debugging of any execution unit without having the rest of the

processor around.

12. CONCLUSION
The 3081/ E project was formed to prepare a much improved IBM mainframe
emulator for thr, future. Compared to the 168/ F the goals for ‘he 3081/ E are:

o Much More Memory Space: The advances in memory technology coming
from the manufacturers now make it possible to build a 3.5M Byte pro-
cessor at a cost of only US $5,000 per MegaByte while keeping : e fast,
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yet simple design style of the 168/ F memory. Fast memory is a very im-
portaat factor in a processor’s speed. Large memory is needed for today’s
large detectors. By 1085, a 14M Byte processor should be possible at half
the cost per MegaByte.

More IBM Insisuctions: A more complete set of IBM instructions will be
implemerted thus allowing for use of FORTRAN '77. FORTRAN '77 is
heavily used on many computers and has just recently been introduced on
the IBM.

Full Double Precision: REAL»S will be handled correctly, making cox.par-
isons between output from the processor and output of an IBM computer
bit for bit identical.

Foster Execulion T¢mes: The processor will be at Jeast equal 1o the execu-
tion speed of a 370/168; and up 1o 1.5 times faster for heavy floating point
code. A single processor will thus be 4 times more powerful than the VAX
11/780, end 6 processors in a system would equal the performauce of the
IBM 3081K.

Leasa Technieal Effort: The design of the precessor will be much simpler
than the 188/F . The design rules will be much more conservative and
will use only of-the-shelf multiple source T'TL components. Every eflort is
being made to reduce the man-power effort to b-ild, debug, and maintain
the proceasor.

Efficient Translation to Microcode: Tae translation of IBM native instruc-
tions to microcode of the processor will be maintained. 1t is an important
element in keeping the hardware simple aud fast. With the 3081/ , the
translator will also automatically produce pipelined floating point opera-
tions, thus enhancing the performance for heavy floating point code.

Reasonable Cost and Effort: The cost of the CPU las been considered
as less of a concern than maupcwer effort. Nevertheless, the cost of the
processor, power supply, and chassis is expected to be under US $10,000
excluding the tost of memory.
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o  Simple Interfocing: We will maintain the simple interface of the 168/F .
That is to say, the processor will look like a siave ca a FASTBUS cable
segment.

The project is being carried out as s vollaboration between SLAC and CERN
DD division. At this date we have detailed block diagrams of the entire pro-
cessor, simulation programs of some parts, an approXimate eircuit count and
costs, approximate board layouts, existence proof of the translator’s pipelining
capabilities, and partial computer based document:=tion. It is planned during
the calendar year 1083, that a prototype processor will be bHuilt with the work
being divided equally betweep SLAC snd CERN. Final debugging should occur
at SLAC early in 1984 with processors being generally available for use by the
end of 1084.
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