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Equilibrium and nonequilibrium transport of radionuclides discussed
in our previous report (H1, P1) has dealt with transport in porous media,
wherein radionuclides are retarded entirely by sorption. The purpose of
this chapter is to develop the mathematical analysis for transport of
radionuclides in fractured media, wherein radionuclides are convected by
groundwater flowing through planar fissures. Here molecular diffusion into
and out of micropores penetrating the rock surfaces of the fissures plays
an jmportant roie in retarding the migration of radionuciides through the
fissures, as has been pointed out by Neretnieks (N1).

We first formulate the equations governing fissure-flow transport of
radionuclides with micropore diffusion, and we present analytical solutions
to the transport of a radionuclide with no precursor, with no dispersion
within the fissure, considering equilibrium sorption within the micropores.
Solutions are present for an impulse release, stop release, band release,

and solubility-1imited dissolution.

5.1 Mathematical Modeling and formulation

5.1.1. Transport Equations in a Finite Diffusion Field With One-Dimensional

Fissure Flow
Consider a rock matrix containing planar paraliel fissures extending
in the direction and micropores penetrating the rock surfaces of the fissures.
Within each fissure water is flowing at a constant velocity v in the z-
direction, but the water in the micropores is assumed to be at rest. The
spacing b between rock surfaces of each fissure and the distance d between
adjacent fissures are assumed to be constants, as shown in Fig. 5.1.1. Three

phases to be considered are the fiowing water phase, the stationary water



phase, and the solid phase. Dispersion in the flowing water phase is
neglected. Let Ni(z,t), Mi(z,y,t) and Si(z,y,t) be the concentrations

of the nuclide i in the flowing water phase, in the stationary water phase,
and in the solid phase, respectively. Since the water in the micropores is
at rest, the transport of nuclides there is governed by molecular diffusion.
Sorption on the planar surfaces of the fissure is assumed to be small
compared to sorption on micropore surfaces and is neglected. The concen-
trations of the nuclide i in these three phases are then governed by the

foliowing transport equations:

SN,i BN_i ’
3t TV ez PN T MaNia B Y (5.1.1)
M, o,
€31 - ED_i ) 5t EAiMi = EA1-1M1—'I -9 (5.1.2)
y
3Si
{(1-¢) 'a't—+ (]-s))\_isi = (1-e)>‘1._]s1._] + qi (5.1.3)

t>0, z>0, 0<y=<d/f2, i=1,2.3,...

where Di is the diffusivity of the nuclide i in the micropore fissures which

includes any goemetric factors of the micropores; e is the volume fraction of

micropores in rock, excluding the fissure; A is the radicactive decay constant

of the nuclide i; Ji is the diffusive rate of the nuclide i at surfaces of
the fissure per unit area of fissuresurface, and q; is the rate of
sorption per unit surface area within the micropores. The diffusive current

and sorption rate are given by, respectively
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Ji(z’t) = - el = > t>0,z>0, i=1,2,.. (5.1.4)

5
i (zoyst) = ka My =), t>0,2>0,0<y<d/2,i=12, .. (51.5)
D,i

where k_ is the mass transfer coefficient, a is the interfacial area between
stationary water and solid per unit volume of water, and KD,i is the distri-
bution coefficient.

In this model it is noted that there are two independent transport
processes which can retard the migration velocity of the nuclides. One is
the removal by molecular diffusion of the nuclides into and out of micropores
penetrating the surfaces o1 the fissures and the other is mass-transfer by
sorption on the micropore surfaces. The effect of diffusion into and out
of micropores will be called the "surface retardation effect" and sorption
within micyspores will be called "the bulk retardation effect”. The

surface retardation effect has not been considered in the analysis for

porous-flow transport

5.1.2 Initial and Boundary Conditions

If we assume that there are initially no nuclides in the water flow
field and in the rock matrices prior to the beginning of dissolution of

the nuclides, we can set the initial concentrations of nuclides in each

phase as
N.(z,0)=0, z>0 (5.1.6)
Mi(z,y,O) =0,z>0, d/2>y>0 (5.1.7)

1

Si(Z-y,O) 0,2z>0, d/2 > y>20 (S]R)



The boundary condition for Ni(z.t) for an infinite plane source of

dissolving waste at z = 0 is:
N;(0, t) = 4;(t), t>0 (5.1.9)

where the function ¢i(t) is the general time dependent concentration of
the nuclide i at z = 0. We further assume ::ut the concentration of
nuclide i in the micropores should equal that of nuclide in the fissures.

Then we can write the boundary condition for Mi(z,y,t) at y = 0 as

M.z, 0, t)=N1(z,t), t>0, z>0 (5.1.10)

Another boundary condition for Mi(z,y,t) to be specified at the center of

spacing of the medium is, from symmetry:

aM‘i (z,y,t)

5 =0 z>0, t>0 (5.1.11)

y=d/2
Equations (5.1.1) through (5.1.11) give a complete set of equations for

the transport problem to be solved.

i) Step release
When the radionuclides are released stepwise from the waste repository, .

the function ¢1(t) is given by

9.(t) = B;(tj h(t), t>0 (5.1.12)

where the function Bi(t) is the Bateman equation given by (H1):

=kt

i
Bi(t)= 2 boe d (5.1.13)
g1 Y

with the coefficient:



i
N T Ay

j m &=m
by = E] —_— (5.1.14)
m= 1
\ioagr (xl-xj)
g=m
(2£3)
0

N is the initial concentration of the nuclide m at the waste repository.

™
ii} Band release

For a band release, the function ¢, (t) is given by

#,(t) = B, (t) [ h(t) - h(t-T} ] (5.1.15)

where T is the duration time of release, i.e., the leach time. If we

assume that the waste and its contained radionuclides dissolve at a constant
total rate over the time period T, the initial concentration of the nuclide
i can be related to the initial total amount H? of waste per unit cross

sectional area of water flow:

(o]

T -

[v]
n, W
N =

i vT

(5.1.16)

where n? is the initial (t = 0) amount of nuclide i per unit amount of

waste.

iii)  impulse release

The impulse release is given by:

g, (t) = TN 6(t) (5.1.17)

5.1.3 Transport Equations for Shallow Penetration in Micropores

If the depth of penetration of nuclides from a fissure surface into

the rock medium is much less than the fissure space d, the micropores



can be treated as being of infinite length. The transport equations presented .
in the foregoing section are still valid over the time and field space, so

the equations to be solved are

3N aN

oy - _2
5t TV ez TN T AN, B Y (5.1.18)
BMi 32M.i
¢ 5t " < ayz toeMy = eh g My - gy (5.1.19)
851
(1-¢) a—t“" (1 -s))\iSi = Q1 -E))‘i-] S‘i-] +a; (5.1.20)

t»> 0, Z>0’ y>03 "|=]72;39 e

The diffusive flux Ji and the rate of sorption q; in these equa*ions are
given by
EL

Jilzs t) = - by 55 g PP 200 (5.1.21)

s,
a;(z.y.t) = ka(M, - T(D;i)’ t>0, z>0, y>0 (51.22)

The initial and boundary conditions are

N.(z, 0) =0, z>0 (5.1.23)
Mi(z,y,ﬂ) = 0, z>0, y»>0 (5.1.24)
Si(z,y,O) = 0. z>0, y>0 (5.1.25)

The boundary condition for Ni(z,t) is

Ni(0,) = dy(t), t>0 (5.1.26)
The surface and infinite boundary conditions for Mi(z,y,t) are,

respectively



Mi(z,0,t) = Ni(z.t), t>0, z>0 (5.1.27)
M:‘(Zim:t) =0, t>0, z2>0 (5-].28)

The difference of the set of governing equations in this section from that
of Sect. 5.1.2 fur transport in an finite diffusion field is the replacement
of the symmetry boundary condition, Eq. (5.1.11) by the infinite-medium

boundary condition, Eq. (5.1.28).

5.2 Diffusion Governing Transport in an Infinite Diffusion Field

In this section we present the analytical sclution to fissure-flow
transport in an infinite diffusion field with local sorption equilibrium
and we explore the retardation due to the molecular diffusion into micro-

pores in the rock matrix.

5.2.1 Transport Fquation With Local Sorption Equiiibrium

Here we consider the transport of a mother nuclide (i = 1), with no
precursor, When the rate of mass t.ansfer of nuclide between water and
solid phases ir micropore fissures is so rapid that tue concentration of
the nuclide in the solid phase is local equilibrium with that of the

nuclide in the micropore water, we can write

S, = Ky ;M (5.2.1)

1 D,

where KD 1 is the distribution coefficient. Adding Eq. (5.1.19) to Eq.

{5.1.20) and using the above relation we obtain:

+ 2 M] =0 t>0, y~>20 (5.2.2)



where K, is the sorption coefficient defined by

k=1 + 0 Ky (5.2.3)

€

In Eq. {5.2.3), ¢ is the porosity of rock medium excluding the
fissures. Equation (5.2.2) shows that diffusion of a nuclide in micropores
in the y-direction should be characterized by the ratio of diffusivity to
the sorption equilibrium coefficient, rather than by the molecular
diffusivity itself. This implies fhat a weakly sorbed species can
penetrate more deep into the rock medium than a strongly sorbed species.

The transport equation for the first nuclide in the flowing water

phase is
aN] BN.I 2
K.E‘ v 'a_i‘+ A]N] = - E'J] 1 t-0 z2>0 (5.2.4)

where J] is the diffusive flux at top surface of the fissures, gjven

by Eq. (5.1.4)

The initial conditions are

N](z, 0)=0 (5.2.5)

M,(z,y,0) = 0 (5.2.6)

The boundary conditions are

Ni (0, t) = 8 (t) (5.2.7)
M](z,O,t) = Ny(z,t) (5.2.8)
Mi(z,=,t) = 0 {5.2.9)

5.2.2 Analytical Solution

The set of equations (5.2.2) through (5.2.9) can be solved by the



method of Laplace transform with the aid of initial and boundary

conditions. Taking the Laplace transform of Egs. (5.2.2) and (5.2.4),

we have
2’\4
2Ny (2,y,5) Sty o
3 " . K]M1(z,y,s) =0 (5.2.10)
Yy 1
Y
aN](z,s) stAy v 2 ™
3 * N](z.s) R~ J1(z,s) (5.2.11)

where s is the transformed variable with respect to time t and the functions
Y Y

M](z,y,s) and N1(z,s) are the transformed subordinate functions of M](z,y,t)
and N](z,t). respectively. J](z,s) is the transformed diffusive flux at

the fissure surface

Y

oM, (z,y,s)

5 250 (5.2.12)

Y
Jy(z.8) = - €Dy
y=0
Solving Eq. (5.2.10) with the initial and boundary conditions, Eqs. (5.2.6),
Y
(5.2.8) and (5.2.9), we have the transformed solution for M](z,y,s)
K
-yal1
'D—‘(S"‘A-I )

Y N
M](z.y,s) = N](z,s) e 1 (5.2.13)

and the transformed diffusive flux in the form:

" - K
3y(2:9) = 601"1(2-5)%—1*5“1) (5.2.14)

Scelving Eq. (5.2.10) after substitution of Eq. (5.2.14) subject to

the boundary condition given by Eq. (5.2.7), we have the transformed solution



(ay#s)
a o a v - 312 l‘S"')\-I
Ni(z,3) = #y(s) e (5.2.15)

n
where ¢1(s) is the transformed concentration at the repository and a is

the constant defined by

ZED-I 1
Ll | b (5.2.16)

Also from Eq. (5.2.13),
(sty)

o v " z - (a]z+b1y) sty
My (z.y,8) = gyis)e (5.2.17)

where b1 is the constant:

e

&
by =Y By

The inverse of Eqs.(5.2.15) and (5.2.17) with respect to s can be found

(5.2.18)

by using the formula:

-11 -d /5%, z
L je

a %t—-x'lt

) = Piltia) (5.2.19)
V.3

7t

~y

The solution for aqueous concentration of the nuclide in the fissure

and micropores are given by, respectively

M t-2
"y v z
Ni(z,t) = e f g, (t-5 -r)P](r;a]z)dr. z<vt (5.2.20)
[

10.



1.

M t-2
-—12 v
M](z.y,t) =e Y b[ él(t-% -T)P1(1;a1z+b1y)dn (5.2.21)

z<vt

5.2.3 Transport With an Impulse Release

When the function ¢](t) is charactarized by the impulse release
function given by Eq.(5.1.18), the solutions for the concentration of
the nuclide in the fissure and micropores become
h

v

z
Ny (z.t)=(TN))e Pt-E a2) z<vt (5.2.22)

il
v

z
0
¥y (z,y,t)=(TN] e P](t-%3 agz + b1y), z<vt (5.2.23)

The concentration profiles of 237Np with no precursor nuclide for transport

with impulse release at various migration times are shown in Fig. (5.2.1).

5.2.4 Solution For a Step Release

For a step release, the time dependent function ¢](t) is given by
Eq. (5.1:12). For the first nuclide,
-A]t

8, (t) = N? h(t) e (5.2.24)

Substituting Eq. (5.2.24) into Egs. (5.2.20) and (5.2.21), we have
the solutions for the space-time dependent aqueous concentrations of the

nuclide in the fissure and in the micropores

° -k1t a2z
Ni(z,t) = Ny e  erfc(- oz vt (5.2.25)
2/t-z/v
o -k]t a z+b]y
M](z.y.t) =N e erfe(- Y, z < vt (5.2.26)
2/zZ7v
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5.2.5 Penetration Thickness of Nuclide in Fractured Medium

In Equation (5.2.2) for the diffusion of a nuclide through micropores
the coefficient of the second-order space derivative of the concentration
is inversely proportional to the sorption equilibrium constant Ky of the
rock medium, Hereafter this coefficient will be called an apparent
diffusivity designated as D]/K1. In Fig. 5.2.2, the aqueous concentration

237Np in the micropores at a given time t = 10,000 yr

profiles of
for a step release are shown for various values of the sorption

retardation constant. For times of the order of one year, a weakly

sorbed nuclide, with an assumed retardation constant K-| = 1, :an penetrate
about 40m into the rock at a migration distance z=100 m, whereas a

strongly sorbed nuclide, with K, = 10,000 can penetrate only about 0.2 m.
Because of long railing edge of the concentration profile, the concept of
penetration depth remains ambiguous. The penetration depth or "thickness",
is usually defined as a fictitious distance that corresponds to an
arbitrarily specified amount of the nuclide penetrating into the medium

per unit cross sectional area of the medium, normalized to the concentration
at the surface of the medium. Here we define the penetration thickness

n{z,t) at a given distance z and time t as

f My (z,y,t)dy
.0
n(z, t) = W“ (5.2.27)
Substituting Eq. (5.2.26) into Eq.(5.2.27), we have the local penetration

thickness

1

nt)eg {
C
V1 e”l erfc(C])

-G (5.2.28)
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Fig. 5.2.2 Concentration profiles of 237Np in micropores, step release

»tl



where
eZVD]K-I
C'I = — 1 (5.2.29)
bv/t-z/v

&y
Cp= ——— (5.2.30)
2/t-z/v
In Tables 5.2.1 (a) ~ 5.2.1 (c), variation of the penetration
thickness with distance z at a giVen time which are calculated from Eq.
(5.2.28) are shown for var’'wus values of the retardation constant. The
assumed parameters used in calculations are listed in these tables. As
seen from these tables, the penetration thickness depends strongly on
the rccardation constant. For t = 10,007 yr and at z = 100 m for K] =1,
the penetration thickness is 11 m, whereas for K1 = 10,000 the penetration
thickness is only 0.01 m. Because of the smaller penetration thickness of
the strongly sorbed species, the concentration gradient of the nuclide at
the fissure surface of the medium is greater, which results in a greater
diffusive flux into the micropores. Also the greater diffusive flux of
the nuclide into the medium results in greater retardation of the nuclide

in its migration within the fissure.

5.2.6 Retardation Due to Molecular Diffusion
f 237

Profiles of the aqueous concentration o Np in the fissure of

a step release, calculated for three different values of the sorption
retardation constant of the rock medium, are shown as the solid lines in
Fig. 5.2.3. The diffusivity of:the nuclide in micropore water, including

the effect of geometric factors,\is assumed to be D] = 0.01 m2/yr. The

13.
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Table 5.2.1 Penetration thickness for various sorption coefficients, assumed
D,=1.0:10 2 /yr, v=10 m/yr, b=1.061072m, e=1.0x1072.

Time Distance Penetration thickness, n (m)

t (yr) z (m) H=l Kf1ﬂ0 Kf]ﬂ04
1.0x107] 1.128x10 1.128 1.128x107)
5.0x10 1.128x10 1.128 1.125x10_]
1.0 1.128x10 1.128 1.121x10_]
5.0 1.128x10 1.125 1.093x'|0_.|
1.0x10 1.128x10 1.121 1.059x10_2

4 5.0X102 1.124x10 1.093 8.324x10_2
1x10 'I.Ox'IO2 1.121x10 1.058 1 6.388x10_2
5.0x'|03 1.090x10 8.300x10_] 1.989x10_3
1.0x103 1.053x10 6.345x10_] 9.900x10_>
5.0x104 8.056 1.899x10_, 1.90 x]O_j
1.0x10, 5.906 9.00 x107; 9.00 x107,
5.0x10; 1.00 4 1.00x107%,  1.00 x107],
1.0x10 1.0 x10 1.0 x10 1.0 x10 "
-1 -1 -2
1.0x107, 3.568 3.568x107; 3.561x107
5.0x10 3.568 3.565x10_] 3.532x10_2
1.0 3.567 3.561x10_] 3.496x10_2
5.0 3.564 3.531x10_] 3.227x'lO_2
3 1.0x10 3.559 3.495x]0_1 2.930x10_2
1x10 5,0x102 3.523 3.2'|9x10_.I 1.539x10_
1.0x102 3.479 2.913x10_] 6.162x10_3
5.0x103 3.139 1.479x10_] 1.900x10_4
1.0x103 2.753 4 5.007x10_1 9.00 xlO_4
5.0x10, 8.110x107 70 1.00 X101,  1.00 x1077,
1.0x10 1.0 x10 1.0 x10 1.0 x10
-1 -1 -2
1.0x10_] 1.128 ].]28x10_.I ].121x10_2
5.0x10 1.128 1.125x10_1 1.093x10_2
1.0 1.127 1.'|2'|x'|0_-I 1.058x10_3
2 5.0 1.122 1.090x10_] B.300x'|0_3
1x10 1.0x10 1.115 1.053x10_2 6.345x10_3
5.0x102 1.064 8.056x10_2 1.899x]0_4
1.0x102 1.001 - 5.906x10 3 9.00 x'IO_4
5.0x]03 5.252x10_]0 9.999x'|0_]2 1.00 )('IO_.I4
1.0x10 1.0 x10 1.0 x10 1.0 xio0
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other assumed parameters are included in the figure. For the assumed time
of 10,000 yr and an assumed water velocity of 10 m/yr, the water travel
distance is 105 m. A nuclide with K] = 10,000 is found to be much retarded
by molecular diffusion into the micropores. Even a nonsorbed nuclide with
K1 = 1 is retarded by molecular diffusion into the microporez. The dashed
lines show the concentration profiles of the same nuciide assumed to be
convected by porous flow at the same water velocity with local sorption
equilibrium with the porous solid. For a strongly surbed nuclide, the
migration distance of that nuclide convected by fissure flow is greater
than that of the nuclide convected by porous flow, defining "migration
distance" as the distance reached by the half maximum of the leading

edge of the concentration profile. For a weakly sorbed nuclide, however, the
migration distance in fissure flow is less than that in the porous flow.
This implies *hat the porous flow model with local sorption equilibrium,

if it is applied to the transport of nuclides in fractured media, may
overestimate the retardation capacity for a strongly sorbed nuclide and may

underestimate the retardation capacity for a weakly sorbed nuclide.

5.2.7 Transport With a Band Release

The solutions for space-time-dependent aqueous concentrations of the
nuclide in the fissure and in the micropores for a band release can be
obtained by direct application of the theorem of superpositicn (H1). They

are given by, respectively



or Mt z a2
N1(z.t) = Nje h(t-v) erfe]———
2V/t-z/v

4
- h(t-T-Z) erfe[—I— (5.2.31)
Wt-T-z/v

a]z+b]y
2/t-z/v

o lt
M1(z,y,t)= N.l e h(t-z/v)erfc |-

.2 + byy
- h(t-T-2) erfe[L—1= (5.2.32)
2Vt-T-z/v

where the constants a; and b; are given by Eqs. (5.2.16) and (5.2.18).

Figure 5.2.4 shows the concentration profiles of 237Np in the
fissures for the band release. The leach time is assumed to be T = 30,000 yr,
and the other parameters used in the calculations are the same as those used
for the step release. Because of the removal at the front of the band
by diffusion into micropores and the release of the penetrated nuclide at
the rear of the band, the concentrationprofiles for fissure flow, for various
K] values, show the long smoothed curves with long trailing edges, and witi
highly curved leading edges. A11 of the fissure-flow curves converge at
N]= 0 and at the water-transport distance of 5x105 m, because Ab sarption
retardation occurs within the fissures. The dashed 1ines show the
concentration bands of the nuclide calculated from the porous-flow model.

The effect of diffusion into and out of the micropores is to greatly spread
the concentration band, qualitatively similar to the effect of a large
dispersion coefficient for dispersion in the direction of convective flow.

Because of the spreading of the concentration profile in fissure

16.



= - —= Fissure flow

— I - -
Nuclide; 23'Np | : I : ~—Porous flow :— i
1=50000yr | | o Lo
T=30000yr | | K=0000 100! 1 | Lo
D,= 0.0t n /yr : | ! I
-I| v =10m/yr i | ' o
10 -b=0.0im yd ' N N
€=0.0 V' | b
! I | I |
| | 1
o — | i
z o oo
= 2 ! ‘ -
N ! .
z [
i J
|
b
o
i I
16° Lo
I
I
1 I
| |
\ |
0 I ] i !

| |
| 10 102 103 04 102 108
Axial distance along fissure, m
XBL827-6198 =~
?

Fig. 5.2.4 Concentration profiles of 237Np in the fissure, band release.
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flow, the maximum concentration, even for a weakly sorbed nuclide, is
wuch lower than that predicted from the porous-flow model. The maximum
concentration is relatively unaffected by the magnitude of the sorption
retardation constant.

237Np in micropores in the y-direction

The concentration profiles of
at a given distance z = 10 m are shown for some different migration times
in Fig. 5.2.5. In this calculation, the leach time is assumed to be
10,000 yr. At t = 10,000 yr, when the band-release solution is identical
to the step-release solution, the nuclide still continues to penetrate
into the rock medium and the concentration gradient of the nuclide is
negative throughout, i.e. the concentration decreases monotonically with
distance at a time less than the leach time. At t = 105 yr, when the
trailing edge of the seed concentration band has already passed the
distance of z = 10 m, the concentration of the nuclide in the fissure is
Tower than that in the micropores, >nd the nuclide diffuses back out into
the flowing water. Consequently, the concentration in the micropore now
increases with distance at a smaller y, reaches a maximum, and decreases
again with distance at a greater penetration distance. The diffusion of
the nuclide at the fissure surface into the flowing water fissure causes
the long trailing edges of concentration in the fissure as shown in
Fig. 5.2.4. The locus of the maximum concentration of the nuclide in the
micropore moves more deeply into the medium with increasing time.

In evaluating the biological hazard due to radioactive wastes, the
maximum concentration of the contained nuclide is an important index.

As described above the maximum concentration of tie nuclide predicted for

fissure 7low transport shows an appreciably lower value than that
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18.

predicted from the porous-flow transport model. Because the broadening
of the concentration profiles in fracture flow is qualitatively like the
effect of axial dispersion in porous flow, we can calculate the
magnitude of an axial dispersion coefficient that would result in a
porous-flow concentration maximum as low as that calculated for fissure

237Np

flow. Fig. 5.2.6 shows a comparison of the maximum concentration of
predicted in porous-flow transport with dispersion with that predicted in
fissure-flow transport without dispersion. This figure demonstrates that
even with a dispersion coefficient orders of magnitude greater than
commonly used, the attenuation of the concentration equivaient to that
predicted in fissure flow transport cannot be expected in porous-flow
transport. In this assumed case, an axial dispersion coefficient greater

than about 4x104 mzlyr will be needed to obtain the same attenuation

as that predicted in fissure-fiow transport.

5.3 Transport With a Finite Plane Source

In a real waste repository the waste sources wi11‘be arranged in
a finite array. Although the analytical solutions for fissure-flow transport
with an infinite plane source, which neglect transverse flow and dispersion
in the fissures, give important insights into radionuclide transport in
fissure flow, application of these solutions will lead to an over-
estimate of the concentrations at the point of discharge to the environment.
Here we consider the transport of radionuclides released from a finite b]ane
source into infinite plane fissures surrounded by an infinite rock medium,

with one-dimensional water flow in the fissures.
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5.3.1 Formulation and Analysis

Consider a coordinate system with z in the flow direction, y in the
direction of pore diffusion into the rock and x in the transverse direction
parallel to the surface of the fissure as shown in Fig. 5.3.1. In the
case of dispersion ﬁree, the convective transport of the nuclide in the
z direction is usually much more effective than dispersive transport in
the z direction, 51 the Tatter will be neglected. In the transverse
x direction, howev%r, because of no water flow in that direction,
dispersion and eveﬁ molecular diffusion play an important role in nuclide
transport. Here wé will solve the problem Titerally for infinite planar
fissures, so the a?propriate coefficient Dx for Fickian transport in the
transverse planar airection x is the molecular diffusivity Dm] of the
nuclide in the liquid. When sorption in the micropores is locally
equilibrated, the transport equations for the aqueous concentrations of

the nuclide in the fissure and in the micropores are given by

N, o, BZN.I 2 .
ERAAETIRL" B 2 L Tl o &30
oM Dy %M, (5.3.2)
e e o e+ WM, = 0 5.3.2
3 K1 ay ™

t-0, 2>0, -e@<x< tw, y >0

where N](z.x,t) and M](z,y,x,t) are the agueous concentrations of the

mother nuclide in the fissure and micropores, respectively, v 15 the water
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Fig. 5.3.1 Coordinate system for release from a finite source into
planar fissures.

XBL 827-620!

=



20.

velority, D] is the pore molecular diffusivity, Dm] is the pure molecular
diffusivity,'A] is the radioactive decay constant, K] is the retardation
constant, b is the spacing of the interstice fissure walls, and dq is the
diffusive flux of the nuclide due to transport into the micropores.

aM,

1 5y yt>0,250, ~m< x<+o (5.3.3)

J.I = -(-;D
y=0

where ¢ is the porosity of the fractured medium excluding the fissures.

The initial conditions are

N] (z, x, 0) = 0, z>0, mw< X< +oo (5.3.4)
M] (z.y,x,0) = 0, z >0, ~wecX< +too,y>0 (5.3.5)

The boundary conditions are
N0, x, t) = (4 (t), t>0, [x ] <a/2 (5.3.6)
0 [x | > a/2
M {2,0,x,t) = Ny(z,%,t) ,

for

t >0, z >0, ~m <X <+
M](z,ie,x,t) =0, t >0, z >0, -~ m<x < + o (53,8)

Taking the Laplace transform ov Eq. (5.3.2) with respect to t and
solving with the aid of the initial and boundary conditions, we obtain the
concentration of the nuclide in the micropores and diffusive flux at the

surfaces of the fissure in the transformed form:



{5.3.9)

’K
A " -y D_1 (s+A1)
M](z9y5x!5) = N](Z;X,S) e 1
N L K-I
Ji{zaxes) = eD1N1(z,x,s)v o (s+1)) (5.3.10)

N
where M,(z,y,x,s) is

G

~ -st
M (2ay,x,5) = [e My (z,y.%,t) dt (5.3.11)
Define 0
v . -ixo-st
N1(z,w,s) = f fe N1(z,x,t) dt dx (5.3.12)
~-00 o

Taking Laplace and Fourier transforms of Eq.(5.3.1) with respect to t and
x, and solving the resultant equation with the appropriate initial and

boundary conditions, we have

stA D
N s I e P 1]
N-I(Z,CI),S)= ¢-|(S) H(m)e v r4 aisz S+A-| + ('I.(H) v F4 (5.3.13)

where a; is the same constant as given by Eq. {5.2.16) and the function
H(w) is given by
2 sin (%Q)

- (5.3.14) ¢

H{w) =

Inversion of Eq. (5.3.13) can be found by using the Fourier inversion

formulae:
2
1{ (1m)20} 1 e
FFiie = (5.3.15)
oV fB

F-] {H(w)} = h(x + %) - hix - -‘2’-) (5.3.16)
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thus, from the convelution rule

2
2 ta - £5/40
F! {n(w)e““’ °}= = j S [hteer - ixee- 3] e

=€ (2 +x,6) ! (5.3.a7)

|

where ¢ is a dummy integral variable and the function E](a/21x,e) is given

by a4y, a_
L) +erf (& )] (5.3.18)

=21
Ey(z 2 x,0) = 7 [erf ( Ty v

and the Laplace inversion formula:

_ o e4t_klt

2 'lrt3

There results the solution for the concentration of the nuclide in the

2
-1 - av/s+;\.‘ -8 .
L % }- = Py (tsa) (5.3.19)

fissure
M.ot-2

D -—2 v
N](z,x,t) = EI(%i X, —T—] z)e Y f P](T;a]z)cp](t-r— %) dt (5.3.20)
0
The concentration of the nuclide in the micropores is then, from
Eqs. (5.3.9), (5.3.13), and (5.3.19)
A

by . M
M](z,_y,x,t) = E](—g- + X, —Tl z)e v z
-3
-/ P](t;a]z+b]y) 4 (t-1- é) dt (5.3.21)
0 \
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where the constant b] is given by Eq.(5.2.18).

5.3.2 Solution for an Impulse Release

When the function ¢1(t) is specified by the impulse release function:

o(t) = ™ () (5.3.22)

the solutions can be written as
‘ By

z D
M (zxat) = TAe ¥ “h(t- 2) B\ + x, I 2) Py(t- 25 a.2) (5.3.23)
A

al D
maont) < TH & VT -3 G 2 L)

Pt -25a,2+b;y) (5.3.24)

where N? is the initial concentration of the nuclide at the waste repository.
Because of infinite characteristic of the boundary data, the concentration
N] shows an infinite value at the leading edge at z = vt when D] -+ 0.

5.3.3 Solution For a Step Release

The step release function is characterized by Eq. (5.1.12), especially

for the first nuclide

«
’

¢;(t) = By(t) n(t) (5.3.25)
where the function B.I (t) is given by '
L2}

= 1 - NO
By(t) =bjye ', by =M (5.3.26)



Substitution of Eq. (5.3.25) into Eqs. (5.3.20) and (5.3.21) gives the
solutions for the aqueous concentrations of the nuclide in the main and

micropore fissures. They are respectively,

=it D,z a,z
Ny (zox,t) = N0 e B3+ x, M) erfe(——) h(t-z/v)  (5.3.27)
2vt-z/v
=5t D .z a,2+byy
Mz.yaxt) = Me 1 Ej(E 4 kT erfe(-L—1) n(t-z/v)  (5.3.28)

2/-z/v

where 2, and b] are the constants given by Egs. (5.2.16) and (5.2.18),

respectively,

5.3.4 Solution For a Band Release

For a band release, the function ¢](t) is given by
o (1) = By(t) [nt) - n(t - 1] (5.3.29)

where T is the leach time.

The solutions for a band release can be obtained directly by applying
the theorem of superposition {H-1). The concentrations of the nuclide in
the fissure and in the micropores are given by, respectively

-A]T

N1(Z.y,t) = N](Z’yat; b”) - N1(Z.y,x,t-T; b'” e ) (5-3~30)

AT
My (2,y,%t) = My(zoysxots byy) = M (zaysxt-Ts byye 1) (5.3.31)

5.3.5 Effect of Transverse Molecular Diffusion on Fissure-Flow Transport

The concentration profiles of 237Np released stepwise from a finite

24,



Ny(z, x,t)/NO

Py

I | ] ! |
t =10,000 yr
Dy* 0.0l m2/yr
zzi0m Dyt *0.05 m%/yr
© K rI00
- v s [Om/yr
10 L \3Om b *0.0Im -
d=03m
€ = 0.0
I00m
-2
0 + -
1000 m
10% .
Ki4 1 1 1 ] 1
o) 2 4 6 8 10
Transverse distance in fissure, m
XBL 827~ 6202
Fig. 5.3.2 Concentration profiles in transverse

direction in fissure, step release
{z=distance from waste source).



plane source, with the ratio of fissure width b to fissure spacing d of

30, along the transverse direction x at various values of the migration
distance z are shown in Fig. 5.3.2. “he molecular diffusivity in the

water in the main fissure Dmi is assumed to be 0.05 nF/yr, five times
higher than the assumed micropore diffusivity D]. The micropore diffusivity
is usually related to the pure molecular diffusivity Dmi as D] = Dmi/qz,
where q2 is a geometric factor, the tortuosity coefficient. The assumed
parameters are listed in the figure. For a relatively smalil axial distance
z the concentration profile in the transverse direction shows a smalier
diffusion path length and a greater gradient in concentration, which would
cause a greater diffusive flux in that direction. The concentration
gradient becomes smalier and the diffusion path length becomes greater

with increasing migration distance z. This behavior is quite different
from that noticed in the concentration profile in the y-direction in the
rock medium. The profiies along y-direction shows a smaller diffusion path
length but a greater concentration gradient at a greater distance z.

This behavior in concentration in the transverse x-direction is well
understood by introducing the concept of an effective diffusion time te.
Since the diffusion field in the transverse x-direction moves with the
water at the same velocity, the effective time for the molecular diffusion
1 this field can be determined by te = zfy. At z = 10 m, for instance,
te = 1 yr, whereas at a greater distance z = 1000 i, te = 100 yr. Therefore,
at a greater distance z there is a greater effective time for diffusion in
the x-direction.

The diffusion field in tne y-direction in the rock medium, on the

other hand, is a stationary field, since the water in the micropores is
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at resi. Therefore, the effective time for diffusion in the micropores is
given by te=t- z/v. At a given time, te at a smaller z gives a greater
effective time for the diffusion in the micropore fissures. The case is
just contrary to the case for the transverse diffusion in the flowing water
in the main fissure. Because of the longer effective time, a nuclide at a
greater z can diffuse to reach a greater distance in the transverse x
direction, thereby resulting in a considerably lower concentration along

z at x = 0.

The concentration gradient in micropores becomes very steep near the
leading edge of the band moving through the fissures, whereas the
concentration gradient in the transverse direction becomes quite low in
that region far from the source but becomes infinite in the medium adjacent
to the source, at the edges of the source. Therefore, attenuation of
concentration at x = 0 due to transverse diffusion is very smail at the
leading convection edge of the band, and consequently transverse diffusion
has no significant effect in refarding nuclide migration velocity, even
though it does appreciably attenuate the maximum concentration of the
nuclide.

In fact, taking a Timit of the solution given by Eq. (5.3.27) of
IJ.l - 0 yields

Dm]z

gt
Ny(zoxt) = W e 1 h(t-2) E (5 x x, T (5.3.32)

This equation shows that the nuclide convected from the waste repository
is only attenuated in concentration by a ratio of the function
E](a/Z + x, q“] z/v). Although the E] function decreases with distance

z at a given x, it is still finite at the water-trayel edge. This means
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that E] function contributions has nothing characteristic of a retardation
effect on the nuclide migration velocity. When the molecular diffusivity
q“i becomes zero, on the other hand, the solution approaches the solution
fo; transport without transverse diffusion, namely,

-A,t a,z

Ny(z,x,t) = Npfz,t) = NS e | h(t-2) erfe (—1—) (5.3.33)

2vt-z/v
This equation gives zero concentration at the leading edge z = vt.

In Figure 5.3.3 the concentration profiles of 237Np at the center of
the repository source {(x = 0) and along the z?direction, for a step release,
are compared with the concentration of that nﬁc]ide in transporl without
transverse molecular diffusion. As seen from this figure, the concentra-
tion at a given z is reduced appreciably by transverse diffusion in the
x-direction, even with a relatively smalier diffusion coefficient.

Figure 5.3.4 also shows a comparison of the concentration profile along
z-direction at x = 0 in transport with transverse diffusion with that in
transport without transverse diffusion, but for band release. The size

of the repository source is assumed to be same as that assumed in transport
with step release. The figure shows that the maximum concentration is much
reduced by transverse diffusion, even with a small value of the diffusivity.
The maximum concentration with Dm1 = 0.05 mz/yr for instance, gives a

value almost a hundredfold less than the maximum concentration without
transverse diffusion. However, transverse diffusion has negligible effect
on the locus of the maximum concentration, nor does it appreciably shift

the leading edge of the concentration band.

27.
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5.3.6 Transport of a Nuclide Released From Arrayed Finite plane Sources

When many plane sources are arrayed at a plane at z = 0 as shown in
Fig. 5.3.5, nuclides released from one source will affect the concentration

from another source. Let hy, h hy» ... be the positions at x axis

70 e
of the each plane source, then the concentrations of the nuclide in the
fissure and micropores are given by the superposition of the solutions
n

-\t - ©Aq2 D .z
N](z,x,t) = N? e L h(t-z/v) erfc(—]—) E] %1(x-h ),-—"11—] (5.3.34)
2vt-z/ =

t-z/v

n
My {22y xt)= N e M tezv) erfe(- i o Z E][—Hx-h y,nl® :](5.3.35)
2h-zlv. 4

when n 1s the number of finite plane sources.

The step-release concentration profiles in the transverse x-direction

f 237Np assumed to be released from array of finite waste sources with

an assumed scale b = 0.01 my d = 0.3 m, and Ah = 3 m, and at a given time
t = i0,000 yr are shown in Fig. 5.3.6, with the migration distance z as a
parameter. As seen from the figure, the distinctly separated concentration
steps travel along z-direction at a smaller z, but because of the effect
of transverse diffusion, the separated concentration steps superpose with
each other and make a new wavelike concentration step at a greater distance
z. In this assumed case, the concentration profile becomes almost flat
at z = 100 m. The dashed 1ines show the concentration profiles resulting
from transport without transverse diffusion. The figure shows that neglect-
ing transverse diffusion can lead to significantly overestimates not only

of the maximum concentration but also of the local concentration of a

nuclide.
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5.4 Transport of a Nuclide in a Plane Fissure With Flow in the Surrounding

Permeable Rock

In the previous analysis we have neglected water flow through micro-
pores. However, it is possible that a transverse pressure gradient may
induce very slow water flow through micropores. The purpose of this section
is to derive the analytical solution to the transport of a mother nuclide

through a fissure with some crossflow of water through the micropores.

5.4.1 Formulation and Analysis

Consider a single infinite-plane fissure of average interstice b,
both sides of which are bounded by rock surfaces permeable to water. If
there exists a pressure gradient in the direction as shown in Fig. 5.4.1,
water should flow in the y+ direction in the micropores in the upper medium
A, and in the negative of the y~ direction in the micropores in the lower
medium B. Although water flow through micropores is usually very small,
due to the considerably lower permeability of the rock, it can affect the
concentration profile of the nuclide in the fissure, especially at smll
2 distances where the concentration gradient of the nuclide in micropores
near the surface of the fissure {s so small that convective transport by
permeating water in micropores becomes comparable to diffusive transport.
Let N](z,t) be the aqueous concentration of the nuclide in the fissure
and M; (z,y*,t) amd M; {z,y ,t) be the concentrations of the nuclide in
the medium A and in the medium B, respectively. The transport equations
which govern these concentrations are given By

aN, aN

1 c o gt g 5
ST HV Rt MM T - )t ) (5.4.1)
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a% ::ﬁ' ;l‘ : Mlz + MMy =0 (5.4.2)
1 3y 1 ay+
- _ 2.
M, M Dy oM i 5.0.3)
okt O O et At IOV S 5.4.3
R e A L

where v is the water velocity in the fissure, ut and u” are the velocities
of the permeating water in the micropores in media A and B, respectively,
D-I is the pore molecular diffusivity of the nuclide, K] is the sorption
retardation constant, A] is the radioactive decay constant, and b is the
width of the fissure. The functions J; and J; are the sums of the
convective and diffusive fluxes of the nuclide at the surface of the

fissure given by

Mt
g = ¢ty =1 + et ut (5.4.4)
1 1 T 1
vt ],
y =0
_ . o
3y = - €T — -y, (5.4.5)
V2N
y =0

where ¢t and ¢ are porosities of media A and B, respectively. If we
assume that the water velocity v in the fissure is independent of space
and time, and there is no accumulation of the water in the fissure, we

can write from the equation of continuity

s e (5.4.6)



Especially, when et=e" ,

Geut=y (5.4.7)
The initial conditions are

N](z, 0)=0, z>0 (5.4.8)

M%(z,y,o) =0, z>0, yi-> 0 (5.4.9)

The boundary conditions are

N (0, ) = ¢ (t), t>0 (5.4.10)
Mi(z,9,0) = Ni(z, t), z>0, t>0 (5.4.11)
M]i(z,w,t) = 0, z>0, t>0 (5.4.12)

Equations (5.4.1) (5.4.3) with the appropriate initial and
boundary conditions of Eqs. (5.4.7) (5.4.11) can be solved by the method
of Laplace transforms. Taking the Laplace transform of Eqs. (5.4.2) and
(5.4.3) with respect to time t and introducing new transformed functions

%} (z,yi ,s) defined as

+
ﬁ% (z,y,s) = %%-(z,y,s) eV 2 (5.4.13)
where «
W (2.y5,s) = / et Mr (z.y5 t)dt (5.4.14)
(o]
=1 ﬁ (5.4.15)

we have the differential equations which govern the functions %}(z,y,s)

31.
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s X 2

I_D_l(s +.,\1+4£JD),,,"’]1=0 (5.4.16)
o D 1
r“n'—; (2,0,s) = Nv](z,s) ' (5.4.17)

[l
o

M (2,2,5) = (5.4.18)

The transformed sclutions of Eq. (5.4.16) subject to the boundary

conditions are K )
1 u
-y D] (S+}"|+ 4D-‘K-|) (5-4.19)

m‘l‘ (Z,y,S) = H] (Z,S) e

From Egs. {5.4.13) and (5.4.19), we can obtain the convective and
diffusive transport rate of the nuclide at surface of the main fissure

in the transformed form:

K 2 on
W N €u 1 u
G (z,5) <[+ G+ ey f—D](s+A}+ o ElN](z,s) (5.4.20)

Taking the Laplace transform of Eq. (5.4.1) with respect to t, and
solving the resultant aquation after substitution of Eq. (5.4.20)

subject to the boundary condition, we have

s+h

TZ - a.'z S+)\.l+

n ~ -
N) (2,5) = By(s) e 404K (5.4.21)

where g is the same constant as before, defined by

2€D] K.|
ay = gy W - (5.4,22)
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Using the Laplace inversion formula:

2
R {e-aﬁJs +hq *+ US/4DK,

L
a,z a%zz u

e L R € +W]KT) t
2/xt3

=) (t;a1z) (5.4.23)

we have the space-time-dependent aqueous concentration of the nuclide in

the main fissure
z
M,
N1(Z-t) =e Y J' ¢1(t-1-%)EJ(T;a1z) dr (5.4.24)
(3

From Eq. (5.4.13) with Egs. (5.4.19) and (5.4.21), the concentration

of the nuclide in the micropores in media A and B becomes

A t-2
u_ + 1 v z . +
N A sz #(toe-By (a2 =) fo (5.4.25)
M‘T (z,y—t) = ¢
()

where the constant b1 is

K
b= J5 (5.4.26)

1

5.4,2 Solutions For an ulse Release
When the aqueous concentration of the nuclide at repository is

given by an impulse release function,

8y (t) = (TN & (¢) (5.4.27)



the solutions become

M
0, ~ Vv ? z z
N](z.t) = (t N]) e f](t - a]z) h(t - V) (5.4.28)
A
u_ o+ 1
ik e

+ + _ 0 5 t _E

My (z,y~,t) =(T N]) e f](t- o a7t b]y ) h(t v) (5.4.29)
where N? is the initial concentration of the nuclide at the repository,
the function f] (t,a) is given by Eq. (5.4.22), and the constants a and

B] are given by Egs. (5.4.21) and (5.4.25).

5.4.3 Solutions for a step release
When the boundary value of the concentration of the nuclide is

given by a step release, the function ¢](t) is given by
o) (t) = By (t) h(t) (5.4.30)

where the function B](t) is given by Eq. {5.1.13)
Substituting Eq. (5.4.30) into Eqs. (5.4.23) and (5.4.24), we have the

solutions for a step release,

34.
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-t o 2, a12uzz2
Ny(z,t) = by e hit-z/v) = a]zexp ANt ———5|

.'IGD]K]n
2Ji-z/v
1 “ht a,uz a]zJK]D] + u(t - z/v)
=5 b”h(t-t/v) [ ole ——— erfc [
Zs)K.ID.I ZJK]D] t - z/v)
ayuz
-Zv’ D a,2vK;0;y - u(t - z/v)
ve SNl erfc[ L ] (5.4.31)
2JK]D] t - z/v)
u * 2
= At vt a,z+y/K. /D7) “ul
Mi(z.y5,t)= by e M ey 2 exp [ n2- (1) 2]dn
T a1z+y+ ,—-K1 D] 'IBK-l Dyn
2t - 2]y
(a]z+y—~/+ K;/D¢)}u
Attt eyt -
=lbge U nieayy) (e 2Dy
a1z¢K1D] + K]yi +u (t - %—)
-er'fc[
2/K0, [t - 2/v)
- (jx_,z+yi,/K1/D.|)u
2 KID'i a]ZVK]D] + K]yi - u(t - z/v)
+ e erfc [ (5.4.32)
ZVK.IDl!t -~ z/v)
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5.4.4 Solutions for a Band Release

For a band release, the time-dependent concentration at the reposi-

tory is given by
¢ (£) =By () [h(e) - hit - T)] (5.4.33)

where T is the duration time of release.
The solutions for a band release are obtained by applying the

theorem of superposition (H-1). They are

-MNT
Ny (2,8) = Ny (2,85 byy) = Ny (2,t-Ts bppe ') (5.4.34)

AT
Mzyht) = MizyStsby) - M (zyStTib e V) (5.4.35)

where the functions N](z,t; bij) and M% {z,y; bij) stand for the space
and time dependent concentrations of the nuclide for the step release

with Bateman coefficient bij’ respectively.

5.4.5 Effect of Micropore Flow on Fissure-Flow Transport

Figure 5.4.2 shows the concentration profiles of 237Np in the
micropore fissures in the rock media A and B at fixed distance z = 1 m,
at time = 10,000 yr and at t = 100,000 yr, with a permeating water
velocity u = 0.05 m/yr in the positive y+ direction. The release mcde
is assumed to be a band release with a leach time T = 10,000 yr. Note
that the concentrations at t = 10,000 yr are equivalent to those for the
step release. The concentrations of the nuclide in transport without

permeable water, i.e., with u = 0, at corresponding times are shown as



dashed lines. The concentrations with u = 0 in medium B are not given
in this figure; their profiles are completely symmetrical to the profiles
in medium A.

The permeating water in medium B acts on the nuclide to migrate
in the negative y- direction against molecular diffusion, whereas the
water in the medium A convects the nuclide in the positive y+ direction
in the same direction as that of molecular diffusion. Many of the
nuclides that have diffused into medium B are convected to the medium
across the flowing water in the main fissure, resulting in a nonsymmetric
concentration profile with a greater diffusive path Tength in medium A
but with a smaller path length 1n medium B. The penetration thickness
of the nuclide at t = 10,000 yr reaches almost y+ = 10 m in medium A,
but the thickness in medium B is only 1 m deep.

The effect of penetrating water on the concentration along the yi
direction becomes more significant as the migration time increases. At
.~ t = 100,000 yr, the concentration band of the nuclide in medium A travels
a greater distance in that medium. The concentration of the nuclide in
the medium B, on the other hand, is extremely small and the concentration
band does not appear in this figure. Also, because of convective transport
from medium A to B, nuclide transport with permeating water shows a
greater maximum concentration within the micropore, and the maximum
occurs at a greater distance from the fissure surface.

Fig. 5.4.3 shows the aqueous concentration profiles of 237NP in the
fissure with permeating water velocities of u = 0.005 and 0.01 m/yr, as
well as for u = 0. This figure shows that convective transport in the

medium across the flowing water decreases the concentration of the nuclide

37.
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over the entire migration distance. This means that the convective
increase in the amount of nuclides entering the upper micropores is more
important than the convective decrease in the amount of nuclides diffus-
ing into the lower micropores. The permeating water in micropores has
no effect on the retardation capacity, i.e., the maximum concentration,
as well as the concentration band, occur at almost the same position, at

all values of the micropore velocity shown in Figure 5§.4.3.

§.5 Solubility Limited Migration of a Radionuclide in Fractured Media

In the foregoing analysis for transport of nuclides in fractured
media, the effect of a solubility 1imit of the nuclide has not been
taken into consideration. However, many of actinide elements, such as
plutonium, uranium, and neptunium, may exist in chemical forms of very
low solubility. Such a species of the nuclide released directly from
the dissolving waste matrix can precipitate at the waste surface, and
the aqueous concentration of that nuclide will remain constant at the
waste location while the precipitate is present, thereby changing the
boundary condition for transport of that nuclide. Neglecting the 1imited
solubility will lead to an overestimate of the maximum concentration of
the nuclide.

It 1s important to develop the analysis presented in this chapter
to include the effect of 1imited solubility of the nuclide. For porous
flow the solution for transport of a parent nuclide with a limited
solubility has been presented in our previous report (P1). This section
presents the solutions for transport of a parent nuclide in a fractured

medium with @ solubility-1imit boundary condition. 1t demonstrates the



importance of limited solubility on the transport behavior. For this
purpose, we first consider the material balance of the nuclide at the
waste location in order to know the time-dependent aqueous concentration
at the source boundary. We then derive the solutions for the concentra-

tions of the nuclide in the fissure and in the micropores.

5.5.1 Transport Equations

The transport equations which govern the aqueous concentrations of
the nuclide in the fissure and micropores are, assuming local sorption

equilibrium,

SN] BN.l 2

A I L P (5.5.1)
a0 oM,

a_t - -'q—a;z—"‘ A-IM-I =0 (5.5.2)

t>0, 0<2<=>, y>0

where N](z,t) and M](z,y.t) are the concentratirns of the nuclide in the
fissure and micropores respectively, v is the water velocity, Dl is the
pore molecylar diffusivity, K1 is the sorption retardation constant, N
is the decay constant of the nuclide, b is the interstice of the main
fissure, and J, is the diffusive flux of the nuclide at surface of the

main fissure
aM]
Jy = - € Dy = t>a z2>0 (5.5.3)
1 1 9y y=0 ?
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The initial and boundary conditions are

N](z. 0) =0, 250 {5.5.4)
M1(Z,y.0) = 0, z2>0, y>0 {5.5.5)
N(0, t) = ¢, (t), t>0 (5.5.6)
My (2,0,t) = Ny(z,t), z > o; t>0 (5.5.7)

M'l (Z :“‘:t) =0

The function ) (t) is determined from a material balance of the nuclide

at the waste surface, as shown in the next section.

5.5.2 Material Balance at the Waste Surface

Consider a waste form of length L in the axial direction z and of
infinite width in the x direction of the fissure plane, as shown in
fig. 5.5.1. Suppose that the waste matrix is dissolving continuously
from that surface into the water flowing in the fissure of width b. Ffor
a mother nuclide with no precursors, if its precipitate forms it will appear
at the beginning of waste-form dissolution. While the precipitate is
present the 11quid at the waste location will be at a constant concentra-
ticn Ny* of the nuclide, where N* denotes the solubility. Assuming
complete mixing of the nuclide in the water inmediately above the waste
surface, we can write the total material balance for the precipitate of
that nuclide in the form:

%
SRR TR CEE T (5.5.8)

40.



where P] is the amount of precipitate per unit volume of water at z = 0,
¢; (t) is the release rate of the nuc1idé fnto the water from the waste

per unit width of waste, and 1 is the residence time determined by

T % (5.5.9)
The initial condition for P, is
Pp(@)=0 ' (5.5.10)
The solution of Eq. (5.5.8) subject to Eq. (5.5.10) is
t
Py(t) = e-A't4{. e A1e[?%; 8 (8) - () + D) N]*] do (5.5.11)

0

The release rate ¢{ (t) of the nuclide from the waste, per unit

width of waste is
, ) n1(t)N$b

9 (t) = —— (5.5.12)
where wg is the total initial amount of waste per unit cross-sectional
area of water flow in a fissure, b is the spacing of the fissure walls,
T is the leach time, and n1(t) is the time-dependent atom fraction of
the nuclide in the waste. For the mother nuclide
-A]t

n,(t) = n,° e (5.5.13)

where n1° is the initial atom fraction of nuclide i in the waste form
by an initial total amount of nuclides in the waste form and n](t)

is the time-dependent atom fraction in the waste.

4.



Substituting Eq. (5.5.12) into Eq. (5.5.11), we have

0o

N-| -}.-It
P1(t) = _T_t e

-t
* 1 1
- N A]T)(l -e ) (5.5.14)

where N]O is the initial aqueous concentration of the nuclide that would

occur if there were no precipitate,

0, O « 0
NI M L I (5.5.15)
1 Vi v T

where m]° = n1°M°/bT is the initial release rate of nuclide i per unit
cross-sectional area of water flow. We now introduce the amount P]S(t)

of precipitate per unit surface area of waste at z = 0

L
p]S (t) = ] Py (t) dz = L Py (t) {(5.5.16)
[o]

Multiplying Eq. (5.5.14) by L and taking the 1imit of L - 0, we have

At -At
1 *y 1
-N-I iT(l-e )

PR ()= vt e (5.5.17)
This is equivalent to the solution presented for porous-flow transport
in our previous report (P1).

We can now evaluate the aqueous concentration of the nuclide at the
waste. Since time is measured from the time at the beginning of
precipitation, the aqueous concentration remains at the saturated

concentration until the accumulated precipitate all dissolves. Then,

=N, tew (5.5.18)

where t* is determined from Eq. (5.5.14) or from Eq. (5.5.17) by setting

42.
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P](t) equal to zero. Note that Eq. (5.5.17) gives t* at the 1imit of
T-+0.
At t > t*, the following material balance holds for the aqueous

concentration of the nuclide at the waste surface

=5 1 >\1¢1 + T ¢-| “por H EtF (5.5.19)
The initial condition is

*
¢ (t*) = Ny (5.5.20)

The solution of Eq. (5.5.19) subject to Eq. (5.5.20) gives the time-

dependent aqueous concentration of the nuclide at the waste surface.

| RV
* E-(A]+ ;)t

1
At -t -(A+ Ot
o (L) = N1° e | [% LR ] + N

t' >0 (5.5.21)

where

tl =t - t* (5.5.22)

When T ~ 0, this equation reduces to
o -A]t* -A1t'
¢](t) =N~ e e , to>t* (5.5.23)
This equation is equivalent to that derived in our previous report (P1)
for the plane boundary condition for porous-flow transport. In this case

when the residence time approaches zero, the aqueous conce-*ration of the
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nuclide at the waste surface has a discontinuous jump at t = t*, The
residence time usually is much smzller than the half life of the nuclide,
e.g., for L=10mand v = 10 m/yr, T =L/v =1 yr. This means that

Eq. (5.5.23) gives a sufficiently good approximation to the time-dependent
boundary concentration of a nuclide of long half life. For a nuclide of
very short half life, L .:5 approximation becomes less valid. When

T + », Eq. (5.5.19) reduces to a.simple decay equation for the mocher
nuclide in a stationary system. Also, from Eq. (5.5.8) and the initial
condition given by Eq. (5.5.10), we find that there no longer exists a
precipitate at the repository at t > 0. If we consider the case wherein
a finite concentration P.lo of the precipitate designated exists
initially, the solutions give a nonzero value for the concentration of

the precipitate
_ *
P] (t) = P e - N (1-e
0 t>t* | (5.5.24)
The aqueous concentration of the nuclide is

o = (& £ <t

w Ay {t-t*)
N e , Lyt (5.5.25)
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where by solving for P1(t') = 0 in Eq. (5.5.24) we get:

1 Py’
t* = i—i- In (] + N-IT ) (5.5.26)

The boundary condition for the transport equations is, from

Egs. (5.5.18) and (5.5.21)

¢ (t) = N]* » t<t¥
Aplt-te) Oy Dt
e + ¢y , t>1t* (5.5.27)
where
At At
[ 1 * ¢} 1
o N] e » Cy N] - N] e (5.5.28)

5.5.3  Solubility-lir.ited Transport With a Step Release

The space-time-dependent concentrations of the nuclide can be
obtained by solving the basic transport equations subject to the initial
conditions given by Eqs. (5.5.4) and (5.5.5) and the boundary conditions
given hy Egs. (5.5.6) and (5.5.7) with the function given by Eq. (5.5.27)

The solutions are
gl

v

N](z,t) = N]‘ e h(t-z/v) E](z,t,a1z) -

v

-ZA]
- N]* e ¥ h{t-t*-z/v) E1(z,t-t*,a]z) +

£ A {t-t*) 3,2
+ ht-t* - o) €y e erfc ) o+

2/ ]y

* 0 exp[VZT- - (A l—)(t-t')] . E]+(Z,t-t*.a]z) (5.5.29)
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-?A1
. —0
M](z,y,t) = N] e Vv [h(t - %) E.I (z,t,a]z + b]y) -
- h{t-t* - 2/v) E; (z.t-t*, ajz + b]y)] +

—A](t-t*) a]z+b]y
+ h (t-t* - z/v) C” e erfc (————) +

2/t-t*-z/v

*+ Cyp exp [Vz_r - ~~("+-]F)(t-t*)] . E'I+ {z,t-t*,a124by) } (5.5.30)

where
ZeD]j?]
a] = by D—]— . (5.5.3])
K
b] = N (5.5.32)

The functions P](t;u), E1(z,t;u), and E]+(z,t;u) are given by

2
-8 LAt
P(tia) = —2—¢ 0 (5.5.33)
2vut
2
{ )= 2 /“" -t - h
E.(z,t;a) = — e ? dn (6.5.34)
1 /1? a 4f]
2/t-z/v
o 2
2 o
+ -2 -+
E {z,t;a) = = / e Z dn (5.5.35)
1 /TT a 4
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The function E, (z,t;a) can be reduced in terms of the complementary error
function with the aid of the formula:
2,2 b
2 T b 2 b
e X dx = %[e?'ab erflax + ;(-) + e 20 gpp (ax - ;)] (5.5.36)

. a+2(t - 2/v)AY
E](z,t;a) =zqe erfc [———————-]
.tz

-a/f\T o - 2(t - 2/vI/A ]
+ e erfc [————-—-———] J (5.5.37)
2/t<z]v

When t -~ 0, the solutions can be simplified as
ek

N](Z,t) = N]* e v [h(t - Z/V) E] (Zst)a]z) -

- h (t-t* - z/v) £ (z.t-t*.a]z)] +

- A](t-t*) a2
C'I'I e h{t-t*-z/v) erfc (——) (5.5.38)
2(t-t-z/v
*
M](z,y,t) =N e v [h(t-z/v) E (z,t,a]z+b1y) -
- h(t-t* -z/v) E](z,t-t*,a]z+b.|y)] +
= A (t-t*) a,z+b
+ e ! h{t-t*-z/v) erfc (—-]——]L) (5.5.39)

L 2/t -2V
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5.5.4 Solubility-limited Transport With a Band Release
Let T be the time of duration of the release. The function ¢](t)

for the band release can then be written as

* * ‘(A ]t
o (t) = N [h(t) - h(t-t*)] N e 1) h{t-t¥) +

* 1
At (et} () (t-tr
O (ot e ] (eh( )-e( o ))

[n(t-t=) - ne-1)) (5.5.40)
The solutions are
g
*
N](z,t) =N e v [h(t-z/v) E](z,t,a]z) - h {t-t* -z/v)x E](z,t—t*,a]z)]

. - tu)]+—) + = .
+ N] e h(t-t* - z/v) x E] (z,t—t*,a]z)

alz

)
2ft-t*z/v

- Mt
+8,%e 1 nT-te) (et - By« erfe (

)]+

a2
- h{t-T-z/v). erfc (———
2/t-T-z/v

° h(T-t*). exp [—A]t- 1— (t-t* - z/v)] . [h(t-T-z/v)x

+
x £ (z,t-T,a,z) - h{t-t* - z/v) E]+ (z,t-t*, a]z)]

(5.5.41)



A]z
M](:._v.t) = N]* e VY [h(t-z/v) E](z,t.a]z-rb]y) - h{t-t*-z/v)x

- Mt- T (tezyv)

*
X E](z.t-t*,a] z+b1y)] + N e h{t-t*-z/v)x

P
X E](z,t-t*,a1z+b]y) th e h(T—t*)[h(t-t*-z/v)x

a]z+b]y a,z+b,y
x érfe (———————) - h(t-T-z/v). erfc (————————] +
2/t 3]v 2/-T-2Iv

+ N]oh(T-t*) exp [- k] - :I—[- (t-t*-z/v)] . [h(t-T-Z/v)x

X E]+ (z,t~T,a]z+b]y) - h(t-t*-z/v). E]+ (z,t-t*,a] z+b]y)]
(5.5.42)
when 1 + 0 the solutions become
)\]z

N](z,t) = N]’r e YV [h(t-z/v) E](z,t,a,z) - h{t-t*-z/v)x

o "Mt
x E] (z,t-t*.a]z):[ + N] e h(T-t*)[h(t-t*-z/v)x

a,z 3,2
x erfc (——————) - h(t-T-z/v). erfc (———)| (5.5.43)
2vt-t*-z/v 2vt-T-z/v

M](z,y.t) = N]* e VY [h(t-z/v) E](z.t,a.z+b,y) - h{t-t*-z/v)x

t
xE](z,t-t*,a] z+b]y)] + N]° e ! h(T-t*) [h(t-t*-z/v)x

a,ztb,y
x erfc ( a]z+b]y ) - h(t-T-z/v).erfc(—-—!—-l-——
2/t-t*-2/v 2vt-T-z/v

):l (5.5.44)
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where t* is the solution to the following equation

M oat xo0 1 Ayt
- [t*-(t*-T)h(t*—T)] SN g (e T (5.5.45)

5.5.5 Aqueous and Precipitate Concentrations of a Nuclide at Repository

Figure 5.5.2 shows a variation of relative concentration of precipitate
at repository with the time measured from the beginning of precipitating.

237Np which are calculated for

These curves show the concentrations of
various assumed values of saturated concentration from Eq. (5.5.14) with
a par§neter assumed to be unity. As is expected, the precipitate first
increases from zero with the time, reaches a maximum, and then decreases
to redissolve into the water with increase of the time. A1l of these
curves intercept zero concentration, the time axis. Each of these inter-
ceptions is corresponding to the time t* defined in Eq. (5.5.18). After
that the precipitate no longer exists. The figure shows that a lower
saturated concentration causes a higher concentration of the precipitate
and a greater time of t*,

The variation of aqueous concentration of 237Np with the time for
various assumed ncrmalized values of saturated concentration are given in
Fig. 5.5.3. The time t* when the precipitate has all dissolved is
determined from Eq. (5.5.14) by setting the precipitate P](t) equal to
zero. The concentration of the nuclide at the waste surface remains
constant at N1* until the time t* decreases almost discontinuously at
t = t*, and then decreases smoothly subject to the exponential function
as given by Eq. (5.5.23). The concentration jump at t = t* is attributed

to the resident time, T assumed here to be extremely small compared with
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with limited solubility, step release.



the inverse of the radioactive decay constant of the nuclide. For

T << 1/A],Eq. (5.5.23) is a good approximation for the time-dependent
concentration of the nuclide with precipitation. For a short-lived
nuclide, Eq. {5.5.23) becomes Tess exact, and the exact solution

Eq. (5.5.27), which gives a continuous concentration profile at t = t*,

should be used.

5.5.6 Effect of Limited Solubility on Fissure-flow Transport

Relative concentrations of 237NP for step release calculated from
Eq. (5.5.29), with different normalized values of the solubility concen-
tration, are shown in Fig. (5.5.4). The solid lines show the concentra-
tion profiles for transport with solubility 1imit and broken 1lines show
those without solubility limit. Two typical cases, with the retardation
constant assumed to be K] = 10000 and with K] = 100, are considered. The
pore diffusivity and the other relevant parameters are listed in the
figure. For this case with no precursor, precipitation occurs only at
the waste surface, causing a decrease in the aqueous concentration of the
nuclide over the whole range of migration space. The concentrations
shown by the broken lines for K] = 10000 and for K] = 100 are reduced to
a lower concentration by a factor almost equal to the ratio N]°/N]* of
the maximum possible initial concentration to the solubility concentration.
However, because of the accumulated precipitate, the aqueous concentration
at the saturated level can persist at a greater time than expected when
neglecting the limited solubility. The space-time concentration surface

is shown in Fig. 5.5.5.
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transport by porous flow, assuming the same porosity as the fractured
medium excluding the main fissure. As is already discussed in section 5.2
for transport without solubility 1imit, the porous-flow model gives an
overestimate of the retardation capacity for transport with a larger
retardation coefficient and an underestimate of the retardation capacity
for transport with a smaller retardation coefficient. In concluding,
precipitation of the nuclide at the repository has two important effects,
one is to reduce the maximum concentration as well as the local concentra-
tion of the nuclide and the other is to shift the concentration band at

a given distance to a greater time.

5.6 Transport of a Radionuclide in Multi-Layered Fractured Media

Fissures and micropores in fractured media usually form a geometrically
complicated matrix with layered solid phases of different geophysical
properties, and 1t is important to analyze radionuclide transport in
layered fractured media. We here consider the transport of a mother nuclide
through a series of many planar fissures, each bounded by surfaces of

rock of different physiochemical properties.

§.6,1 Formulation and Analysis

Consider the transport of a mother nuclide through series of fissures
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of different interstices, as shown in Fig. 5.6.1. Let us designate the
fissure of 1nterstic§ ™, and the surrounding rock medium, located between
distances 222, 4 and z=z as, the mth fissure and mth medium, respectively.
We take a distance z from the waste in the flow direction and the distance
my from surface of the mth fissure in the mth rock medium. If we assume
that the concentration of the nuclide in the solid phase is equilih:ated
locally with that in the water phase in the micropores, the transport
equations which govern the concentrations of the nuclide in the mth fissure

and micropores are given by, respectively

m m
3 N] m 9 N]

.2 m
_3T+ V—aT"" )\] mN]--ﬁI-E J-I (5.6.1)
amM.i mD] azmM] m, \
_Bt—+ﬁl?_ﬁ_2-+ A-l M-, =0 (5-6-2)
y oY

t>0, z>0, y>0, m=1,2,3, ...

where mN](z,t) and mM1(z,y,t) are aqueous concentrations of the nuclide

in the mth fissure and micropores, respectively, mD], is the pore molecular
diffusivity, mK] is the sorption retardation constant, Mv is the water
velocity, and mJ] is the diffusive flux of the nuclide at surface of the

mth fissure.

m
M, = - M '—rﬁl (5.6.3)

'y my =0

m=1,2,3 ...
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Initial conditions are
"‘N](z, 0) = 0, 2> 0, m=1,2, ... (5.6.4)

"H](z, y,0)=0, z2>0, my>0 m=1,2, ... (5.6.5)

From the equation of continuity, assuming a constant density of
water,

mlymlyam M m=2,3, ... (5.6.6)

Also from the mass conservation of the nuclide, assuming transport without

tongitudinal diffusion .

mely, Bl Ml My My s 2,3, L. (5.6.7)

1

The boundary condition for mN](z.t) at z =z, . is given by

™y (2 qit) = mly (2,15 t) » m=2,3, .. (5.6.8)

The boundary conditions for mM](z,y,t) are

™, (2,0,t) = ™ (z.t) . m=1,2, ... (5.6.9)

mM](z,w,t) =0, m=1,2, ... (5.6.10)

Let us introduce a new variable:

m, f
s 22, 4>z 0 (5.6.11)
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Then the transport equations can be rewritten as

a’“N]+mva’"N1+)\mN 2w
at My 1M m 1
a"'M] ™, az'"n] m

—_—t — + A =0

at "'K] amyf 1T M

m :
t>0, y >0, Zy - Zn.q

The initial and boundary conditions become

(mz’o) =0, Zm - Zm_-l > mZ >0

(™2, M,0) = 0, -y >z

™y (0,8) = h(t),  t>0

iy

1 (mzvoit) = mN] (mzit)t t>0,

m m © = - m
M Czemt) =0,z -z 4> 72>

where the function m']x(t:) is defined as

m-1
x(t) =[ ¢(t), tx0, m=

rrl']N](z t),t>0, m

m-1*

o,

Z2o-2n

>mz>0, m= 1,2, ...

y >0

12 m >0

2,3, ...

(5.6.12)

(5.6.13)

(5.6.14)

(5.6.15)

(5.6.16)

(5.6.17}

(5.6.18)

(5.6.19)
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The system of Eqs. (5.6.12) (5.6.19) is the same as the equations for the
transport of a nuclide in a single fissure as presented in section 5.2.
Therefore the solutions in that section can be directly applied to this

problem. The solutions are given in the recursive form by

A] m t- £
m ) ﬁ; : mvm~] my m, m
™, ("z,t) = e . %7 (t=1= =5 (1378, 2)dv (5.6.20)
0 v
m
Mo t- -2
Y My m
mM](mz,my,t) =e v . m-1 x](t-r- EEJP1(T;ma]mz+mb1my)dT
o v
(5.6.21}
where
2 M M. Mg
m 1 1
a, = —— (5.6.22)
1 m_m m
b"v D]
’"b1 (5.6.23)
The function P](t;a) is given by Eq. (5.2.19), i.e.,
ol
- -t
Pittie) = —2=e i A (5.6.24)
2vnt

5.6.2 Transport in a Two-layered Fractured Medium

Equations (5.6.20) and (5.6.21) are still in recursive form. We now
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apply these solutions to the transport of a nuclide in a two-layered
fractured medium for three different release modes
i} Impulse release

When the function ¢](t) in Eq. (5.6.19) is given by the impulse

release function, the solutions become

I >
—_

4
Wo(z,t) = (% e ¥ Pt - f%i]a]z) Wt - ) 2pp0 (5.6.25)

-]

(Z-Z-| 21)
- A=+t -z, oz
2N](z,t) = (TN1°) e M 2y ]v P](t - _?;l - T%;za](z-z1) +

1 ik
312) h(t - —E;— - T;J, 22>Z>Z] (5.6.26)

M
T TR
]M](z,t) = (TN]O) e V P](t - f%; ayz+ b] y) h(t - fi)

1y20, 2y>250 (5.6.27)
z-2 z
1 1
- A ( + ~_)
3 1 2-2 z
2 _ 0 v v 1 1.2
M-I(Z,t) = (TN-I ) e P.'(t - —zv - -_.]v, a](z-z.l) +

Z-Z-I Z]

1 2, 2 2
ayz+7h, y) h(t - 2v - T:?' y 0,2,>2>2, (5.6.28)



ii) Step release
For a step release, the solution for the concentration of the nuclide

in the fissure is given by

1
- At a,z
]N (z,t) =N 0e N (t - &) erfc 1 » 275250 (5.6.29)
1 1 T 5 1
v 2 t-v

. 2 1
- At z-z, 2 a,(z-21)+ 2,2
? (z,t) =N ' h(t - ot Ly epf] 1 T1)
1 1 2V lv

257272, {5.6.30)

The concentration of the nuclide in the micropores is given by

1.1
a72+ b? ¥y

) . 7y>0,z]>z>0
aft-z7v

1 o "Nt F4 ]
Ml(z,t) =N e hit - T;) erfc

(5.6.31)

231(2‘21)"]"121*2"123’)
v

~ At 2-2 2
2M1(z.t) = N]o e h(t - _E_l - T%) erfc(

2y>0. 75>2>Zy (5.6.32)

i11) Band release

The band-release solutions can be obtained by employing the super-

position theorem (H-1).
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5.6.3 Migration Behavior in a Two-Layered Fractured Medium

The aqueous concentration profiles of 237Np in a two-layered frac~
tured medium with a contact surface at z = z (= 500 m) for a step release
are compared in Fig. 5.6.2 with the concentration profiles of the nuclide
in transport in a single layered fractured medium. The solid 1ines show
the concentrations of the nuclide in the two-layer medium and the broken
lines show the concentrations in the single-layer medium. (The dashed
line which connects the solid line in each’phase sh?wéAan expected
asymptote. Numerical integration of Eq. (5.6.30) gf;és a less exacf T
value for a smaller value of z - z].) The assumed parameters are included
in the figure. Because of the assumption of transport without dispersion -
in the fissure, the nuclide at a distance less than z = 3 is not affected/
by the existence of the second layer. Here we assume a greater water
velocity and a smaller pore diffusivity in the second layer, so the
nuctide can migrate a greater distance than would be predicted for in a
single layered medium, even though there is a greater assumed value of

the sorption retardation constant for the second layer.

§.7 Iransport in an Infinite Diffusion Field With Nonequilibrium Sorption

Analytical solutions for transport in a porous medium without local
chemical equilibrium of radionuclides in the 1iquid and solid have been
presenied in our previous report. In fissure-flow transport, as described
in section 9.2, the retardation effect originates not only from the
sorption process but also frnm the molecular diffusion into and out of
micropores within the rock medium. Here the effect of nonequilibrium
sorption becomes more important than expected in porous flow transport, even

for the transport of long-lived radionuclides. In this section, we consider



the more general case of fissure~flow transport with nonequilibrium

sorption in micropores.

5.7.1 Analysis

The governing transport equations to be solved are from Eqs. (5.1.18)

through (5.1.20)

ML, M 2

v leam=-2y, (5.7.1)
2

oM M

1 1 m M -

E v A R Tl Bt R

28

AR L $.7.3)

t>0, z>0, y>0

where
k a
Alm =+ 2 (5.7.5)
§ i (5.7.5)
=, 4+ 7.
NEN TGS
k a
m_ m
K] = EEB; (5.7.6)
k a
K5 s M (5.7.7)
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and J] is given by

My
J1(z.t) = - ehy Y 40 N t>0, z2>0 (5.7.8)

The initial and boundary conditions are, from Egs. (5.1.23) through

(5.1.28)
N (z,0) = 0, z>0, (5.7.9)
My (z,y,0) = 0, z >0, y>0 (5.7.10)
S](z,y,o) =0, z >0, y>0 (5.7.11)
Np(0,8) = ¢(t), £ >0 {5.7.12)
M (2,0,t) = Ny(z,t), t >0, z>0 (5.7.13)
My (z,=,t) = 0, t >0, z>0 {5.7.14)

The solutions of these equations can be obtained by the method of Laplace
transform. Taking the Laplace transform of Eqs. (5.7.1), (5.7.2), and

(5.7.3), we have

Ny o+ bz—vﬁr] =0 (5.7.15)
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M dzﬁl my mY .
S My =Dy —p+ ANTM - KT 5= 0 (5.7.16)
dy
N N aN
s S ¥
S S1 + A1 S1- K] M] 0 (5.7.17)

Eliminating the transformed concentration of the nuciide in the solid
phase from Eqs. (5.7.16) and (5.7.17) and solving the diffusion equation
subject to the boundary conditions given by Eqs. (5.7.13) and (5.7.14),
we can find the transformed solution for the concentration of the nuclide
in the micropores ™
A S K%
YT (s )

N n,
M1(z,y,s) = N](z,s) e (5.7.18)
and the transformed diffusive flux:
K", S
n n,
J (z,8) = ¢ VU;.N1(Z,S) s+A1m S (5.7.19)
(s+1y°)
Also from Eq. (5.7.17) KM S
SN PP -
') Dy (s+4y")
N
$ (2uys5) = K N, (2,5) & (5.7.20)
1 1T s+A. S
1

Substituting €£q. (5.7.19) into Eq. (5.7.15) and solving the .
resultant equation with the boundary condition given by Eq. (5.7.12), we

Apts m s
N] (z,s) = wl(s)exp (- 5 i-dz s+/\.I ) (5.7.21)

have
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where d1 is the constant defined by

2&:»’5]_

17 b (5.7.22)

The transformed function of the form similar to Eq. (5.7.21) has been
studied by Lapidus and Amundson in their analysis in adsorption of species
in bed (L-1). In order to find the inverse of Eq. (6.7.21), we use the

following general formula for the Laplace transform:

L {j (t u) sz [ZJaut- au ]f(u)du} = ;21_+T g(s+ %) (5.7.23)

where g(s) is the transformed function of f(t) with respect to t,

L [f(t)] = g(s) (5.7.24)

Especially, when v = 0, we can write
t
{]Jo [ZJaut- au2] f(u)du} = -:— g{s+ %) (5.7.25)
0

From the displacement rule,

t
on [.Z‘au(t-u)] f(u) du }
0

) (5.7.26)
s+




Let KlmKIS
m
- d]stH\] - s (5.7.27)

H(s) = e

For a direct application of Eq. (5.7.26), we split the function g(s)

into two parts, thus
H(s) = A]S h(s) +s n(s} (5.7.28)

where the function h{s) is defined by

. <2 m, s m S_,m, S
_ 4 ZJS S I I I MY
1
e

s+A.|s
(5.7.29)

h(s) =
s+A1s

Now consider the function g{s) which takes the form:

- dyzystc
gls) =e ! (5.7.30)
of which the inversion is
d-‘zz2
d]z i ct
f(tidy2) = e (5.7.31)
2yt
Then
s a J§2+(2A]s*c)s+(A]s)2+cA]s+a
gls+hy” + S) -4z
sth e s+A]S
= (6.7.32)

S"’A'I S S+A-| s
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Equating Eq. (5.7.32) with Eq. (5.7.29), we find

_ o, m S
c—l\1 -I\1

(5.7.33)

_ .M, S
a—-K] K1

Noting that the relation among Egs. (5.7.30)%(5.7.32), we can write the

inverse of function h(s) directly from Eq. (5.7.26)

! {h(s)}
B d1222 - (A=A S)u
=g ]—i— e M L -Io[ZJK1mK]mu(t-u)] du
02 nu3
= F(t;d-IZ) (5.7.34)

where Io(x) is the modified Bessel function of zero order. Also since

F(O;d]Z) =0,

! { s h(s)} = aF(t;:]Z)

s
- A%t
se | f(tiagz) - ASF(tid2) + 6(tsdy2) (5.7.35)

where the function f(t;d]z) is given b Eq. (5.7.31) and the function

G(t;d1z) is given by
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— d.2 2
s, ¢t m, s 17z m.,s
- ATt K, Ky "u dqz - = (A-8,7)u
G(tsdyz) =e | j A1 W 1A 11[2 K1mK1su(t~u)] du
o t-u ZJnUB

(5.7.36)

where I.I(x) is the modified Bessel function of first order. From

Egs. (5.7.34) and (5.7.35), we have the inversion of the function H(s),

S

t
L)} =e T ftg2) + altiagz) (5.7.37)

Applying the equation directly to Eq. (5.7.21) and using the shift
rule, we can finally obtain the sclution for the aqueous concentration

of the nuclide in the fissure

Mot 2 s
v v 2~ M
N](z,t) =e ¢1(t—r— V) Le f(r;d]z) + G(T;d1z)] dt
0
(5.7.38)

The concentration of the nuclide in the micropores is, from Eg, (5.7.18)

t S
- ATt
M](z,y,t) =/ N1(z,t-r)[e 1 f('r;e1y) + G(r;e]y):l dt
0
(5.7.39)
where '
= '
e = — 5.7.40)

Vor
Also, the concentration of the nuclide in the solid phase is given by

to. A St
5 (2,5,t) = K1S] e ! My (zyy,t-TidT (5.7.41)
°
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5.7.2 Transport With an Impulse Release

The solution for the concentration of the nuclide in the fissure,
£q. (5.7.38), involves a double integral term and is not suitable for direct
numerical calculations. However, if the boundary value of the concentra-
tion at the repository is given by the impulse function given by
Eq. (5.1.18), the solution can be simplified, and is given by

z
<)
Vif(t- é;d]z)+ G(t- é;d]z)] {5.7.42)

s
N (z,t) = (TN,%) h(t - &) [e- e
where the functions f(t;d]z) and G(t;d]z) are given by Eqs. (5.7.31) &nd
(5.7.42). The solutions for the concentrations of the nuclide in the
micropores and in the solid phase are given by Eqs. (5.7.39) and (5.7.41),
with substitution of Eq. (5.7.42).

The concentration profites of 237Np at t = 10,000 yr for transport
with nonequilibrium sorption, which are calculated from Eq. (5.7.42) are
shown as the solid lines in Fig. 5.7.1 for different assumed values of the
mass-transfer coefficient k and the interfacial area a per unit volume.
Each nonequilibrium curve shows a higher concentration at greater
distances than the concentration given by the equilibrium curve, whereas
the nonequilibrium concentration 1s lower at the smaller distances. For
the migration times considered here, the "seed pulse" has moved with the
water velocity to a distance of 105m. Therefore the long concentration
tail results from nuclides emerging from the micropores by molecular
diffusion. The penetration thickness within the micropores is greater
far nonequilibrium sorption, resulting in a smaller concentration gradient

and a smaller diffusive flux of nuclides returning to the fissure in the
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region of the concentration tail. The effect at the greater distances in
the region of the leading edge of the concentration band, non-equilibrijum
sorption promotes faster penetration into the micropores, thereby lowering
the concentration in that region. As seen from the figure, nonequilibrium
sorption spreads the concentration profile over a greater distance than

for equilibrium sorption, resulting in a lower maximum concentration.

As the mass-transfer coefficient increases, the nonequilibrium concentration
curve approaches the equilibrium curve.

Shown in Fig. 5.7.2 is the variation of the concentration profile of
237Np with migration time. The pore diffusivity and the mass-transfer
coefficient are assumed to be D1 = 0.01 mZ/yr and kma =107 1/yr. The
time required to reach equilibrium depends mainly on these two parameters.
For a greater diffusivity, the nonequilibrium characteristic is governed
predominantly by sorption, whereas for a smaller diffusivity, the transport
is governed by diffusion process. In this assumed case, the nonequilibrium

effect persists until a time of almost 50,000 yr.

5.8 Transport of a Multi-Member Nuclide Chain, Convective Transport in

Micropores

In the foregoing sections the fissure-flow transport of a single
mother nuclide has been discussed. In evaluating the biological hazard
due to long-lived actinide elements which are possibly released into a
migration field from high-level waste repositories, il 1s desired to provide
the analytical solutions for the transport of a multi-member nuclide chain,
in order to estimate the chromatbgraphic behavior of daughter nuclides.

Among the nuclide chains contained in radioactive wastes, the following



nuclide chains are considered to be important, because of the relatively

high biolégical hazard of the radium daughters.

246, | 2425, , 238, , 234 , 230, | 226,

24zm, -, 24z,
237Np - 233Pa N 233U N 227Th - 225Ra
In succeeding sections the transport of a multi-member nuclide chain in
fractured media is considered. Numerical demonstration of the solutions
applied to three-member nuclide chains are also given.
As one of the simplest cases, we first consider the fissure flow

transport of a nuclide chain with convective transport of the nuclides

in the micropores.

5.8.1 Formulation and Transport Equations

Consider water flow in the z-direction in an infinite plane fissure
of interstice b. The fissure is bounded by surfaces of rock of porosity
e, through which the water can penetrate outwards in the transverse
y-direction at a constant velocity w, as shown in Fig. 5.8.1, Because
of the water flow through the medium, the water velocity v in the fissure
is space-dependent and is specified by the conservation equation:

2
g% - . _%ﬁ (5.8.1)

Thus the water velocity is given by

2
v(z) = v, - BE (5.8.2)

where Y is the water velocity in the z-direction at the repository site.
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The transport equations which govern the concentrations of the nuclide
i in the main and micropore fissures are given by, with assuming local

sorption equilibrium in the micropore fissures

N

s U IV (5.8.3)
st P Vom AN T e Wt 0N -8.
M. M. As K.

i, w 23 L -1 T§-1
3 Ry MM K M (5.8.4)

t >0, z >0, y>0, i=1,2,3, ...

where N1(z,t) is the concentration of the nuclide i in the main fissure,
ﬁi(z,y,t) is the concentration of the nuclide i in the micropore fissures,

Ai is the radioactive decay constant, and Ki is the sorption equilibrium

coefficient.

The initial conditions are given by

N, (z,0) =0, z>0 (5.8.5)

Mi (z,y,0) = 0, z2>0, y>0 (5.8.6)
The boundary conditions are

N (0,t) = ¢;(t), t >0, (5.8.7)

M-| (Z,O,t) = N'l (Z,t), t> 0, z>0 (5.8.8)

where the function ¢i(t) is the time-dependent concentration of the nuclide i
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at the repository, given in section 5.1.2. The M1(z,y,t) tends to zero

as y + o,

5.8.2 Solutions to Pore Convection Transport

Since Egqs. (5.8.3) and (5.8.4) are related to each other only by the
boundary condition given by Eq. (5.8.8) and are not coupled; they can be
solved independently.

Now we introduce a new variable z' defined as

Z
z! =[ v_(]_z-)_dz’ z' >0, z>0 (5.8.9)
4]

then Eq. (5.8.3) becomes

Ny M 2 .
—a—t"“'sz—r*')\;‘ Ni=-eBWNi+)\i_]Ni_1 ,t>0,2z" >0 (5.8.10)

The initial and boundary conditions for N;(z',t) are, from Eqs. (5.8.5)

and {5.8.7)
N;(z',0) = 0, ' >0 (5.8.11)
N (0,t) = ¢;(t), t>0 (5.8.12)

The solution for the space-time-dependent concentration of nuclide
i in the fissure can be obtained by Laplace transform, and is given in

the general form:
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- Oy
Ni(z',t) = e h(t-z") ¢;(t-2")

i-1 45 - (g %fw)z'
DR D I g5tz h(tz')  (5.8.13)
R (A1)

r=j

r{2

In the original coordinate system, the solution becomes

- O+ E%a(2)

Ni(z,t) = e h(t-q(z)) ¢;{t-a(z))
. . 2em
i-1 i1 1 - ()‘2+ T) q(Z)
+ (Aq) e h(t-q(z)) ¢;(t-a(z2))
. q=j - i
J=1 =3 T (>¥ A )
Y‘=J
r#2 (5.8.14)
where
alz) = - % (1- 222 (5.8.15)
0

The system of Egs. (5.8.4), (5.8.6), and (5.8.8) is just the same
form as that employed in analysis for the porous flow transport, with the
exception of a slight difference in the expression of the boundary condition.
Therefore, we can directly apply our previous solution for porous flow
transpori (H-1) to this problem. The solution for the concentration of

the nuclide i in the micropores is then given by



= (A.i/w.i ).V

Mi(z'sy,t) = e

m r=j °r ¥
r#m

AL —

rm
m (A -4 )

R r
e=j —qr =rm
qfmir
with
A - A'_w -)\mwr
=rm Wom W

The function g (t) is given by
T

m

-~ A

g (t)=nt-LDe
rm m

—=rm

N‘l (Z_I st~ %)

/ g_m(t-r)Nj(z',r)dr

(5.8.16)

(5.8.17)

(5.8.18)

(5.8.19)

(5.8.20)

(5.8.21)

(5.8.22)
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5.8.3 Transport With an Impulse Release

When the function ¢1 (t) is given by an impulse release function

given by Eq. (5.1.17), Eq. (5.8.14) becomes

- (4 + &Y q(2)

Ny(zat) = TN e 5(t - q(z))
i1 44 1 - 0+ 2 q(2)
+T (g e N 8(t - al2)) (5.8.23)
=i 1
j=1 ¥ g=j qr (- 2)
r=j
r#2

This equation shows that every concentration pulse travels along the
z-t line given by t = q(z). Thus, if the removal mechanism of the nuclide
in the fissure is only from cohvective transport, every nuclide can
migrate at the same velocity with no retardation. The only effect to
be expected is attenuation in concentration of the nuclide.

The concentration of the nuclide i in the micropores can be

obtained by substitution of Eq. (5.8.23) into Eq. (5.8.16), and is given by

- (n/m) - (g v B0
Mi(z.yst) = e i [T NCe haz) 8(t - _- q(z))]
i-1 44 I . Zew)q(z)
TR IO e~ 7 NSelt- - a(2)
=1 9=J Py 711' - i
r=j r
r#8
i d Ly L - (g B
+1 Y Al ; e Mol E(‘])[N.oe SR e
J=1 i = B (6] g3 ™ J rm
“m
31 g i - Oy )
T (Ag) Z NCe [} (t-q(z))] (5.8.24)
k=1 9=k 27k ';T ()‘r ) rm
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The characteristics of the solution given by Eq. (5.8.24) have already

been discussed in our previous reports (H-1, P-1).

5.9 Transport of a Multi-Member Radionuclide Chain, Diffusive Transport

in_Micropores

In sections 5.2~ 5.7, analytical solutions to the transﬁort of a
single mother nuclide in a planar fissure, with diffusive transport in
micropores, are presented. In this section we develop the analysis for
the equilibrium transport of a multi-member nuclide chain in a fractured
media, with diffusive transport in micropores. Here we present the exact
solutions to the problem in recursive form. Because of mathematical
difficulty in reduction of the recursive solutions, the nonrecursive
solutions in general form are not given here. Mathematical approximations
yield nonrecursive formulae which describe the space-time-dependent
concentrations of the nuclide in the fissure and micropores, as given in

the following section.

5.9.1 Recursive Exact Solutions
The transport equations of an arbitrary radionuciide chain with one-

dimensional fissure flow are, assuming local sorption equilibrium

N, N, ’ :
SE Yt AN T - Edy t A N (5.9.1)
My oy o', a1 Ko (

PR + A\ M, = —— - M._ 5.9.2)
ot ; ay? i K i-1
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where Ni(z,t) is the aqueous concentration of the nuclide i in the main
fissure, Mi(z,y,t) is the aqueous concentration of the nuclide i in the
micropore fissures, v is the water velocity, Di is the pore molecular
diffusivity, Ki is the sorption equilibrium coefficient, A is the radio-
active decay constant, and b is the interstice of the main fissure. The

function Ji(z,t) is the diffusive flux at the fissure surface, given by

.

(z,t) M 0 6, i=1,2,3
Jd.(z,t) = ~ ¢ D; — N z >0, t>0, i=1,2,3, ..
i iay y=0

(5.9.3)
The initial and boundary conditions are
N;(z,0) = 0 2>0 (5 9.4)
Mi(z,y,O) =0, z>0, y >0 (5.9.5)
Ni(D,t) = (t), t>0 . (5.9.6)
Mi(z,O,t) = Ni(z,t), . z>0, t>0 (5.9.7)

where the function ¢1.(t) is the general time-dependent concentration
of the nuclide i at the waste repository. The function ¢1(t) is given
by Eq. (5.1.12) for a step release, by Eq. (5.1.15) for a band release,
and by Ey. (5.1.17) by an impulse release. The pore concentration
Mi(z,y,t) approaches zero as y approaches infinity.

Equations {5.9.1) and (5.9.2) are connected by Eq. (5.9.3), subject
to the appropriate initial and boundary conditions given by

Egs. (5.9.4) - (5.9.7), and can be solved by Laplace and Fourier sine



transforms.
given in recursive form:
s+)

. 2eD,z K.,
i i il
v Z" by 4 (sta4)

Y N
N,(z,8) = ¢5(s) e

+

2eD; ') o, A K
P Z j - ( ) 2)
bv K5 =

, + sth, 2eD.g
i it D (stx ) - i, bv1
Z Z B N (z-z, s)e
r=j q=J
q#r
o 1.0, i Ak i "
Mi(z0,5) = 3y T (FE) T (—p il (2.5)
j=1 it oe=j. L r=j 02 r(s+)~ )

2 S+}\1- ZeD [4 ( )
As - —r - f SHA;
i-1 v Bv
-~ / Ni_](z-;,s) e
0

~ 4
The transformed solutions for Ni(z,s) and Mi(z,m,s) are

K
D_( 5+;\.i )
i dz

(5.9.8)

(5.9.9)

where s and ¢ are the transformed variables with respect to t and y,

respectively.

Inversion of theseeguations gives the aqueous concentrations of

the nuclide i in the fissure and micropores in recursive form:
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Mo, ot
Ni(zt)—e v f ¢4fc- )P(tr.az)d-r

t M,
] [ e V N (z=g,t- %) Pilt-rsa z)dr dg
0 .
i-1 i i
) ZED'I b, T‘iT (AEKE) BJ1
bv }‘1'(1‘ L—-j‘ DE 9
31 r=J 4%
9fr
. Ay
z t-t -V &
1
. / /] e v Nj (Z'Cﬂ'z' %) Pi(t'T,‘Tz;aic)
o0/0 /o :
.qrq(r1)dtzdr]d; (5.9.10)
t
M'i (z,y.t) =/ N.i(Z,t-‘r) Pi(TEb-i.V)dT
5
i-1 . i t
D. i A K
+ ;\_'1]<‘ ™ (%) Z B‘(]; j Nj(z,t-1)R q(y.r)dt
= itoe=j =
qfr
(5.9.11)
where
ZE’D K.
ay = b", Lo i=1,2,3.... (5.9.12)
K
by = |t , 1=1,2,3, ... (5.9.13)
i
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and the function P,l(t;a), qu (t), and qu (y,t) are given by

2
o )
=%t
a e 4t i
™

Pi(tsa) = e T ‘ (5.9.14)

Q. (1) = -

R

1
q

'JD;r' Ap J%] l e52d5 A <D
. g At o

4 K, e- At . T -D;rt T
D, f-n_t ‘,hr’ qu e .erf[\l(xr- qu)t]

A > Dge
. a (5.9.15)
-Dot = vk
Ry, t) = e 9% 2. (_2--*__r *
pyat) =e = exp(-&- O qu)4D 7 dg.x, < D,
—y _ r
JaD /K,
f » K.
* 1Y ()‘r-u )D_ *
-D t L y+2tJ(>\-D)D/K
%e arle erfc ( r_grrn

VD t/K_
( . K
-yy(r -~ D )"
. r Tar'D. y -2t V(;\r- D;r)nr/Kr)
VT

*

AL > qu (5.9.16)

erfe (
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with the constants:
. -1
31__]_1 * *
Bq T d TG [dzr (Dzr - qu{]

qr = qr /%r

]
1

ar = Ka/O = A K/Dp

dqr = Kq /0 = ¥, /0, (5.9.17)
For the mother nuclide, Eqs. (5.9.10) and (5.9.11) give, for a step

release f

- At
) h(t - —) (5.9.18)

1
Jt z/v

N](z,t) = N erfc(

yzaot) = 00 e 1 erreCIEm e L 2y (5.9.19)
2fe-2/v v

The equations are just the same as those given by Eqs. (5.2.25) and °
(5.2.26). Equations (5.9.10) and (5.9.11) give the recursive expressions
for the space-time-dependent aqueous concentrations of nuclide i in the
fissure and wicropores. OQur remaining problem is to reduce the solutions
into nonrecursive expressions. However, because of the rather complicated
mathematical forms, it is difficult to derive nonrecursive solutions
directly from these recursive solutions. In the following section, the

approximations that allow us to derive nonrecursive solutions will b

nresented,
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5.10 Approximate Solutions in Fissure-Flow Transport of a Multi-Member

Nuclide Chain, With Diffusion in Micropores

In the foregoing section, the exact solutions to the transport of
radionuclide chain of arbitrary length, in fractured media with one-
dimensional fissure flow, is given in recursive form. We here present
approximate solutions in which the radioactive decay of an individual
daughter nuclide in the micropore liquid and in the solid phase are
neglrcted. For a chain of long lived radionuclides, the resulting solutions
can give a good approximation to the exact recursive solutions described in

the foregoing section.

5.10.1 Formulation

Consider an infinite plane fissure of interstice b in which water
is flowing in the z-direction at a constant velocity v. The nuclides
released from the waste repository located at z = 0 migrate in this
fissure and can diffuse into the stationary water in the micropores. The
transport equation that describes the aqueous concentration of the nuclide

i in the fissure is

aN. aN.

SVt M - B g Ny (5.10.1)

t>0, 0<z<w, y>0, i=1,2,3, ...

where Ni(z,t) is the concentration cf the nuclide i in the fissure,
Ji(z,t) is the removal rate of the nuclide i at surfaces of the fissure,

and N js the radioactive decay constant of the nuclide i,



For diffusive transport in the micropores, and neglecting the radio-

active decay of the nuclides in the micropores, the: transport equation is

s Ao s AP t>0, y>0, i=1,2,3,... (5.10.2)

where Mi(z,y,t) is the concentrat%on of the nuclide i in the stationary
water in the micropores, Di is the pore molecular diffusivity, and Ki is
the sorption retardation constant of nuclide i in the rock medium.

The diffusive flux J%(z.t) which relates Eq. (5.10.1) to Eq. {5.10.2)

is given by

oM.
= i i =
Ji(z,t) = - el 3y y=0’ z>0, t>0, i=1,2, ... (5.10.3)

The initial conditions are
Ni(z,o) =0, z >0, i=1,2,3... (5.10.4)
Mi(z,y,o) =0, z>0, y>0, i=1,2,3... (5.10.5)
The boundary conditions are

N, (0,t) = oy(t), t>0, i=1,2,3, ... (5.10.6)

Mi(Z.G,t) = Ni(z,t). t >0, y >0, i=1,2,3, ... (5.10.7)
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where the function ¢1(t) is the general time-dependent concentration of
the nuclide 1 at the waste location. The Mi(z.y,t) approaches zero as

y approaches infinity.

5.10.2 Nonrecursive Solution

Let s be the Laplace transformed variable with respect to time t,
the transformed solution of Eq. (5.10.2) subject to the initial and boundary
conditions given by Egs. {5.10.5) and (5.10.7) s

i

M (z,y.5) = N (z,s) e (5.10.8)

The diffusive flux in the transformed form is then given by

u K. N
Jjlzss) = ¢ 01E Vs N(z,s) {5.10.9)

Taking the Laplace transform of Eq. (5.10.1) with vespect to t and
with respect to z with the aild of the initial and boundary conditions,

and solving the resultant equation with substitution of Eq. (5.10.9), we

have .
Al v
a %1(5)"‘1—‘" -|(PS)
;{p»s) (5.10.10)
s+Ai
p+ v + aif;-
where p is the transformed variable with respect to z.
Let the solution take the form:
i
Ni(Z’t) = Z Nij(znt) (5.10.11)

J=t



the general form of N” (p,s) is then

N
¢-i(5)
Nj3(Pss) = oW
+—L+afs
P -~ ai s
i-1 ()
m =1
=] e ¢l
vi-J 2
2=
with constants:
i3 i
¢ 1
:;Jl Apg *1 oS
url T -3, 72
po=lr M
rg v v
) - 2(-:Dr E!
r bv D

TV

(5.10.12)

(5.10.13)

(5.10.14)

(5.10.15)

(5.10.16)

a3t 26 (2,t) i

(6.10.17)



with the functions Pi(t;a) and G, (z,t):

2
.
13
P.itsa) = = & (5.10.18)
! oqm 3
2.2 : .
- a,2 /4t 2
[% a, s z+ 6 ,t a,z
Lre r& L
G, (2,8} =& e -5 e <™ erfe(-=+ 6 ,ft) (5.10.19)
rL m ri Zﬁ- rzr
and the constants:
iy _ 4 1
AY = T ) (5.10.20)
q=] “aqg-°ry
r#f
q#r
A A~ A
= _r %
5r2 T m) (5.10.21)

Substituting Eq. (5.10.17) into Eq. (5.10.11), we have the space and
time dependent concentration of the nuclide i in the fissure in the

nonrecursive form:

M, gt
Ni(zt) =e 7 j by(t-e- §) Py(riagz)de
0
- P4
jhd J'r](A,L) ald -E&z vy
+ R'=J1 ; i: : 3 e ¥ ¢j(t-r— %)Grk(z,r)d'r
3=1 v =3 r=j T_T.(ur) 0
r#s Iod
r#L

(5.10.22)
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The concentration of the nuclide 1 in the micropores is given by, from

Eq. (5.10.8)
t
M (2,y.t) =f Ni(z,tr) Pi(r,byy) dr (5.10.23)
0
where
K .
b, = Voo (5.10.24)

i) Solution for a step release
When the function ¢1.(t) is given by the step release concentration

given by Eq. (5.1.12), the solution becomes

: - Az
e L %) in \1/_
Ni{z,t) = bai © f, (z,t) e
n=1
: i-1
L /(Y IR I I s Tl
9 nj .~ “nt v n
¥ ZE: jg: T ) Vs :E: {ff-e -y (zt)
§=1 25 v=j T Vgt n=1 n
r#t G°J
r#f
2 z L
b .é a,6 .z+685(t-%)- =2 a .
-_"J_."_%.e(irl rf viT v ).erfc( +5Q/t:_:z/v
A+ 2Jt r
nork
A -An
- %
bpibpy - Mt Tv 26
- e [—5& £, (z,t)- f;"(z.t)] (5.10,25)
Ant Spp *n
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where the function f]zn(z,t) and fzzn(z.t) are given by

2.2
A.a “z
{A ft-z/v n g
n ) n2” Z
f,’"’(z.t) = —f?/ e T an hit-z/v) (5.10.26)
[}
222
-ty Lz—
(z t) = r 4n dn h(t-z/v) (5.10.27)

2 t- z/v

ii) Solution for a band release
The solution for a band release is given by, from the superposition

theorem (H-1)

AT
= . . J -
Ny(z,t) = Ni(z,t,bij)h(t) Ni(z,t,bij e Y )h(t-T) (5.10.28)
jT
Mi(zuyat) = Mi(z,t;bij)h(t)- Mi(z.t,b1j e Yh{t-T) (5.10.29)
where the functions Ni(z,t; b, ) and M, (z,y,t b , mean the solutions
for the aqueous concentrations of the nuclide i for step release with the

Bateman coefficient bij'

5.10.3 Accuracy of Approximate Model

In Table 5.10.1, the time-dependent concentration profiles of the

mother nuclide 2.14x10%-yr 287np,

calculated from Eq. (5.10.25), are
compared with the exact profiles given by Eq. (5.9.18). The approximate

solution gives a fairly good approximation to the exact solution over the



Table 5.10.1 Comparison of approximate solution, neglecting radioactive

decay in the micropores, with the exact sclution for a

first-member nuclide 237Np. step release, K.|=100, D]=0.01 mz/hr,
v=10 m/yr; b=0.01 m, £=0.01. .
Distance Ny (z,t)/A9 x 10
m t='|.0x'|04 yr t=1.0x105 yr t=1.0x106 yr
approx. exact approx. exact approx. exact.
0.1 9.967 9.967 9.681 9.681 7.233 7.223
0.2 9.965 9.965 9.681 9.681 7.233 7.233
0.4 9.963 9.963 9.680 9.680 7.233 7.233
0.6 9.961 9.961 9.679 9.679 7.233 7.233
0.8 9.959 9.959 9.679 9.679 7.233 7.233
1.0 9.956 9.956 9.678 9.678 7.232 7.232
2.0 9.945 9.945 9.674 9.674 7.232 7.232
4.0 9.923 9.923 9.668 9.667 7.230 7.230
6.0 9.900 9.900 9.661 9.661 7.228 "7.228
8.0 9.878 9.878 9.654 9.654 7.227 7.227
10. 9.855 9.855 9.647 9.647 7.225 7.225
20. 9.743 9.743 9.614 9.612 7.218 7.217
40. 9.519 9.518 9.547 9.543 7.206 ¥.201
60. 9.295 9.293 9.480 9.474 7.194 7.184
80. 9.072 9.069 9.413 9.405 7.183 7.168
100 8.849 8.846 9.346 9.336 7.172 7.152
200 7.751 7.746 9.011 8.991 7.119 7.070
400 5.696 5.690 8.342 8.307 7.009 6.907
600 3.941 3.934 7.680 7.633 6.895 6.744
800 2.556 2,552 7.030 6.974 6.776 6.582
1000 1.550 1.547 6.398 6.337 6.655 6.420
2000 0.04273 0.0426i 3.646 3.588 6.013 5.622
4000 0.00000 0.00000 0.7239 0.7073 4,650 4,134
6000 0.00000 0.00000 0.07076 0.06889 3.349 2.864
8000 0.00000 0.00000 0.003268 0.003176 2.246 1.864
10000 0.00000 0.00000 0.000070 0.000067 1.401 1.136
20000 0.00000 0.00000 0.000000 0.000000 0.04401 0.03354
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entire range of migration distance, for times smaller than and comparable

to the half life.

5.10.4 Transport of Three-Member Nuclide Chain

The relative concentrations of a three member-nuclide chain
234y, 2300, , 226p, at t = 10,000 yr, with no daughter initially present,
calculated from Eq. (5.10.25) for.a step release, are shows as the solid
1ines in ig. 5.10.1. The pore diffusivity of each nuclide is assumed
to be a constant value, D] = 0.01 m2/yr. The other parameters used in
this calculation are listed in the figure. At this assumed migratinn
time of 10,000 yr, the water can travel in the fissure to a distance of
100,000 meters from the waste. Because of the surface retardation
effect due to the molecular diffusion into the micropores, however, all
of these nuclides cannot arrive at such a great distance ouring this time.
At 200 m Trom the concentration of 234U, waste is attenuated a thousand-
fold below the concentration at the waste. Because of its relatively low

zssumed retardation constant, 226Ra can migrate farther than its precursor

234U and 230Th. The dashed lines show the concentration profiles

nuclides
of the nuclide chain calculated from the porous-flow transport model. The
migration path length for each nuclide in porous-flow transport is less
than for fissure-flow transport. In fissure flow transport, the maximum
concentration for both parent and daughter nuclides occurs always at the
waste location.

In Fig. 5.10.2, the concentration profiles of 237Np-* 233U-+ 2ngh in
fissure-flow transport with step release and those in porous flow transport

with step relzase are compared.
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90.

The concentration profiles of 234U-+ 230Th-+ 226Ra at t = 50000 yr,
with no daughter nuclide initially present, calculated for a band release
Trom Eq. (5.10.28), are shown as the solid 1ines in Fig. {5.10.3). The
dashed curves show the concentration profiles calculated for the porous-
flow transport. Assumed values used in these calculations are included
in the figure. The relatively sharp concentration band of the nuclides
in porous flow transpart is smoothed in fissure-flow transport by pore
diffusion, with a Tower maximum concentration than in porous-flow
transport. Even at a time exceeding the leach time, a nuclide can still
remain at the waste location, because of re-release of the nuclide from

the rock medium by molecular diffusion.

237 233 229

Concentration profiles of Np - U~ Th for a band release are

shown in Fig. 5.10.4. For the nuclide 237Np, with a lower retardation
constant, the maximum concentration occurs at a smaller distance than
expected in porous-flow transport, whereas for the daughter nuclides, 233U
and 2ZgTh, with higher retardation constants, the maximum concentrations
are found at greater distances than in porous-flow transport. The

maximum concentration of each nuclide is an order of magnitude less than

in porous flow transport.



5.1

Nomenclature

: interfacial area between stationary water and solid phaseé
width of waste repository/ constant defined by Eq. (5.7.33)

: constant defined by Eq. (5.2.16) or by Eq. (5.9.12)

: constant defined by Eq. (5.6.22)

: constant defined by Eq. (5.8.18)

: constant defined by Eq. (5.10.20)

: interstice of main fissure (distance between planer walls)

: constant defined by Eq. (5.2.18) or by Eq. (5.9.13)

: constant defined by Eq. (5.6.23)

: Bateman coefficient, Eq. (5.1.14)

: constant defined by Eq. (5.8.19)

: constant defined by Eq. (5.8.19)

: constant defined by Eq. {5.59.17)

: Bateman function, Eq. (5.1.13)

: constant defined by Eq. (5.7.32)/ integration constant in
Eq. (5.5.36)

: constant defined by Eq. (5.2.29)

: constant defined by Eq. (5.2.30)

: relative concentration of nuclide 1 normalized by total
concentration at repository

: initial concentration of nuclide i1 at repository, Eq. (5.5.13)

: constant defined by Eq. (5.5.28)

: constant defined by Eq. (5.10.13)

: width of repository/ spacing of fissures

: constant defined by Eq. (5.7.22)



d : constant defined by Eq. (5.9.17)

r

Dq : dispersion coefficient

D1 : molecular diffusivity of nuclide i in micropores

mDi : molecular diffusivity of nuclide i in micropores in the mth
medium

Dmi : molecular diffisivity of nuclide i in water

o) . constant defined by Eq. (5.8.20)

qu : constant defined by Eq. (5.9.17)

e : constant defined by Eq. (5.7.40)

eqr : constant defined by Eq. (5.9.17)

E](x,e) : function defined by Eq. (5.3.18)
H(Ltm):fmcﬁondﬁimdbyEq.(&SA)

E(z,t;a) : function defined by Eq. (5.5.5)

f(tia) : function defined by Eq. (5.7.31)
ffn(z,t) : function defined by £q. (5.10.26)
fa"(z,t) : function defined by Eq. (5.10.27)
F(tia) : function defined by Eq. (5.7.34)
gls) : function defined by Egq. (5.7.30)
grm(t) : function defined by Eq. (5.8.22)
G(t;a) : function defined by Eq. (5.7.36)
Gm(z,t) : function defined by Eq. (5.10.19)

h2 : spacing of repositories
h(s) : function defined by Eq. (5.7.29)
h(t) : Heaviside unit step function

H(s) : function defined by Eq. (5.7.27)

Ji(z,t) : diffusive flux of nuclide 1 at surface of fissure



mJi(z.t) : diffusive flux of nuclide i at surface of fissure in mth medium

kn
k0,1

Ki : sorption equilibrium coefficient defined by Eq.(5.2.3)

mass transfer coefficient

distribution coefficient

L : length of waste repository in direction at water flow

mi(z.y,t) :+ function defined in Eq. (5.4.12)

mi : release rate of nuclide i per unit time and unit cross-sectional
area of water flow

Mi(z,y,t) : concentration of nuclide 1 in stationary water in micrepores

M}(z,y,t) : concentration of nuclide i in water in micropores with
permeating water

mMi(z,y,t): concentration of nuclide i in stationary water in micropores
in mth medium

n : amount of nuclide i in waste per unit amount of total waste,
Eq. (5.1.16)

Ni(z,t) : aqueous concentration of nuclide i in fissure

mNi(z.t) : aqueous concentration of nuclide i in fissure in mth medium

N, : initial concentration of nuclide i at waste loc-tion
Ni* : saturated concentration of nuclide i in water

Pi : concentration of precipitate of nuclide i

P? : concentration of precipitate defi..ed by Eq. (5.5.16)
po : initial concentration of precipitate of nuclide i

pi(t;a) : function defined by Eq. (5.10.18)
P.{t;az) : function defined by Eq. (5.2.19) or by Eq. (5.9.14)
gi(t;a) : function defined by Eq. (5.4.23)



q : geometric factor, tortuosity coefficient

q; : rate of mass transfer of nuclide 1 at interface between water
and solid phases

q(z) : function defined by Eq. (5.8.15)

s : Laplace transform variable

Si(z,y,t) : concentration of nuclide i in solid phase

t : migration time

t* : duration of a finite amount of precipitate
t' : relative Llme defined by Eq. (5.5.22)

T : duration of release, leach time

T : time defined by Eq. (5.5.45)

u : dummy integration variable

w,ut,u™ 1 velocity of permeating water

v : velocity of water in fissure

v : water velocity main fissure at waste location

W : velocity of water in micropores

W : migration velocity of nuclide i defined by Eq. (5.8.17)

Ng : dissolution rate of total waste per unit width of fissure

X ¢ distance in transverse direction parallel to the fissure surface

y.yi : depth of rock medium, distance in rock medium measured from
surface of main fissure

my, : depth of mth rock medium

z : distance from waste in direction of water flow

z' . time variable defined by Eq. (5.8.9)

In + distance of interface surface of (m-1)th and mth media from waste

m ¢ distance defined by Egq. (5.6.11)



n

n(z,t)

$;(t)
p;(t)
M (t)

w

: arbitrary parameter

constant defined by Eq. (5.4.14)

: constant defined by Eq. (5.10.21)

: delta function

: constant defined by Eq. (5.8.21)

: porosity of fractured medium excluding main fissure

: porosity of mth rock medium

: dummy integration variable

: dummy integration variable

: penetration thickness defined by Eq. (5.2.30)

: parameter in Eq. (5.3.15)/ dummy integration variable

: radioactive decay constant of nuclide i

: constant defined by Eq. (5.7.4)

: constant defined by Eq. (5.10.15)

: constant defined by Eq. (5.10.14)

: dumy integral variable

: resident time defined by Eq. (5.5.9)/ dummy integral variable

: time-dependent aqueous concentration of nuclide i at waste location

: time-dependent source of nuclide i

: function defined by Eq. (5.6.19)

: Fourier transform variable
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6. Radionuclide Transport Based on EPA Assumptions for Generic Repositories
6.1. Introduction

As technical support for its draft proposed standard for a geologic
repository, EPA has applied ; one-dimensional calculation to estimate the
long-term release of radionuclides from conceptual repositories and to
estimate the health effects therefrom (S1). EPA has included in its model
the effects of solubility 1imit of radionuclides and the time-dependent
thermally driven buoyant flow of groundwater within the host rock due to
decay heat. These effects have not been included in analyses by DOE
contractors (C1) of the long-terw radionuclide release from conceptual
repositories in salt, granite, and basalt. The EPA approach also differs in
that it provides for element-specific release rates of radionuclides from the
dissolving waste form, due to solubility effects, whereas the DOE contractors
have assumed congruent dissolution.

However, the EPA analysis is limited to the transport of a single radio-
nuclide, with no decay precursor, so EPA's consideration has been limited to
the fission products and the first member of actinide decay chains. EPA has
neglected the important daughter nuclides, such as radium-226, that contribute
significantly to the total release and health effects. As an aid to under-
standing the EPA analysis and conclusions of the performance of conceptual
repositories and the implications therefrom, we present here our derivation
of the analytical solutions of radionuclide transport consistent with the
assumptions stated by EPA. We have extended the EPA-type analysis to deal
with the transport of radionuclide decay chains. The results are 1liustrated
for the radionuclides considered in the EPA calculations and for the decay

chains leading to radium-226.



6.2 EPA's assumptions
In reviewing EPA's calculations of the transport of radionuclides to the

accessible environment, it was concluded that EPA made the following
assumptions:
1. The repository is a porous medium containing a finite volume of
water, in which the dissolved radionuclides are well-mixed.
2. The repository lies between an underlying lower aquifer and an
overlying upper aquifer, with a natural flow of groundwater from a
Tower aquifer to an upﬁer one.
3. Time-dependent thermally driven buoyant flow, due to decay heat, is
superimposed on the natural flow which was described in 2.
4. Contaminated water from the répos1tory is injected as an equiva-
Tent plane source into lhe upper aquifer.
5. There is one-dimensional advective transport of a radionuclide in
a one-dimensional flow field in the upper aquifer.
6. The effect of dispersion is neglected.

6.3 Time-Dependent Concentrations Within The Repository

6.3.1 General Concentration Equation

Although EPA's assumption of complete mixing of water within the
repository is of questionable validity, we will adopt this assumption for
the purpose of developing a general analytical solution to compare with EPA's
calculated results. For complete mixing within the repository, the time-

dependent concentration Ci(t) of radionuclide i within the repository is

given by:
dCi(t)  Q.(t)C,(t) B, (t)
e MG = g €

t>0, 2=0,1¢= 1,2,3... (6.1)



where Qr(t) is the time-dependent volumetric flow rate of water through the
repositary, ¥ is the volume of water within the repository, L9 is the decay
constant of the ith member and Bi(t) is the time-dependent rate of dissolution
of nuclide i within the repository. EPA's analysis does not include the
terms relating to the precursor radionuclide i-1.

Assuming that at time t = 0 the dissolution begins, the initial

condition is:
C1(0) =0 1=1,2,3... (6.2)

According to our previous studies {H1,P1}, the dissolution rate Bi(t)
can be expressed by any on2 of four different release modes, or by
combinations thereof:

(1) band release, wherein the waste dissolution rate is constant
during the leaching process, {.e., congruent release.

{2) exponential release, wherein all radionuclides in the undissolved
waste undergo dissolution at the same constant fractional amount
per unit time,

(3) preferential release, wherein the fractional dissolution rate
constant of (2) can differ for different radionuclides,

(4) solubility-limited release, wherein the dissolution rate of
each element is controlled by its solubility limit in
groundwater.

Applying the technique of our earlier study (H1), the solution for

Eq. (6.1) with Eq. (6.2) can be obtained recursively:
t
£;(t) = exp [- 3yt-R(t)] ] exp [TeR(r)] x
o

X U:‘_]Ci_'\ (t) + B-[(T)/V] dx (6.3)



or generally

¢;(t) = ¢ exp [-4t - R(E)] x
T Tas

i -l t i i-1
X TN /exp[(xi-ki_-l)-ri]./exp[(xi_-l-ki_z)-‘ri_,]x /
=11 o A

/ exp [A +R('t V] B (T )d-r ...... dr;_qdt; (6.4)

where

" .0
R(t) = v dt (6.5)
(4]

R(t) is the number of repository water volumes that have flowed through the

repository during a time period t.
For a radionuclide with no precursors, i = 1, and Eq. (6.4) becomes:
t
C.I(t) = ]vexp [-A]t-R(t)] /exp[ A]T+R(-r)] B-I(T)d'r
0
t>0 (6.6}
For a nuclide whose concentration reaches a solubility limit C;*, the
time-dependent concentration is studied in greater detail in Section 6.3.3.

6.3.2 Time-Dependent Flow Through The Repository

The time-dependent volumetric flow rate of water through the repository

is given by:

Qn(t) = k.AG (t) (6.7)

where k. (m/yr) is the time independent hydraulic conductivity (m/yr)
of the repository, Ar (mz) is the cross-sectional area of the repository,
and Gr(t) is the time-dependent potential gradient for flow through the

repository. EPA approximates the latter by:



—oqt -opt -agt
Gr(t) = ae + aze + Go(l +age ) (6.8)
where GO is the constant gradient between the lower and upper aguifer, and
3 and aj (i = 1,2,3) are constants determined empirically from separate
calculations of the time-dependent thermally induced flow through the
repository.

Substituting Eqs.(6.7) and (6.8) into (6.5) yields:
k A 3, -yt a, -a.t a -0qt
1 ] 2 2 3 3
R(t)=—"—'[-—e -Le “ag(t-=e )] (6.9)
[ o o 0 a3 3

where R(0) = 0.
6.3.3 Concentration of a Single Radionuclide With a Solubility Limit

Here we consider the time-dependent concentration of the first member
of a radionuclide chain in the repository. In EPA's model of rapid mixing
of liquid and dissolved radionuclides in the repository, the concentration
C](t) of a radionuclide is initially zero at the beginning of dissolution
{t = 0). It increases with time, and if it reaches a solubility limit C]*,

it does so at a time t]*. From Eq. {6.9), C]* and t]* are related by:

* * * t]
C] = yexp [- Mty - R(t] ﬂ exp [A]r + R{1) R](T)dT {6.10)

*
The radionuclide will begin precipitating at time t] . To determine the

length of time that the precipitate will exist within the repository, we
write a material balance on the amount P1(t) of precipitate of species
1 per unit volume of water in the repository:

LG

*
dp.(t)  0.(t)C
1 r 1
S S L8 Wl S [

dt

t>e", (6.11)



The initial condition is
*
Pty ) =0 (6.12)

Equation (6.11) can be solved with Eq. (6.12) to yield

t
P(t) = ]Vexp (-3t / *EXP(A]T) [ By(1) -Cf(xlv +Q.(1)) Jdr

* t'l

t <t (6.13)

As a result of radioactive decay, tonvective transport from the repository,
and complete dissolution of the sclid waste, the precipitate will eventually

*
dissolve at a time tz , which satisfies the equation:

*

%* *

After the precipitate disappears, the concentration of the nuclide again
*
becomes time-dependent, as given by Eq.(6.1) for t > t, and with the

ijnitial condition:
* *
C](t2 ) = ¢y (6.15)

Equation (6.1) for i = 1 is solved with the side condition Eq.(6.15) to

yield: t
C(t) = :,—exp [- 2t - R(t)]{ exp[ Ayt + R(x)] By(x) dr +
t
v e [agty” + R(t,")) } t, <t (6.16)

In summary, the concentration C](t) for a mother nuclide with a solubility
limit C]* is given by:
C)(t) =  Eq.(6.6) , t;" >t >0

* ¥* ¥*

5 t] <t t2

| K

!
*
Eq.(6.16) , t, <t (6.17)



6.3.4 Approximate Solution For Concentration in the Repository

Tne time-dependent concentrations given in Section 6.3 and 6.5 are

complicated because of the time-dependent integral R{t) of repository

flow. To simplify, and to obtain a nonrecursive solution for the nuclide

chain, we approximate the time-dependent normalized water flow rate

Qr(t)/V by a constant value Ar averaged over a time period from t = 0 to

t=ts so that
] LA
Al“ = Vq Qr(t )dt
Substitution of (6.18) in (6.1) yields:

dCi(t)

B,(t)
gt et A C) = —— Ay Gy ()

t>0, A°=0, i=1,2,3, ...

The initial condition is the same as Eq.(6.2). Taking the Laplace

transform of Eq.(6.18) with respect to time:

i

<i_._“’|

IR R R

where Ei is the transformed concentration:

Ei = fi(s) =[ exp (-st) C,l(t) dt
From Eq.(6.20), Ei is

-~ 5 A1 G

¢ VKT Y s

where

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)



For i = 1 through n:

Ei
g, =
1V s+k]
C, = l. [8_24. A]B-‘ ]
2 v s+k2 is+k]$[s+k2)
B A1 B

l[ n n-1 “n-1
C =5 + +
n v s+Rn (s+kn_1$ls+knj

Ayeedpoy B ]
+
(s+k1)(s+k2)...(s+kn)

The general form for C; is

i )':(k"a*k)

BRGED T (s+kyp)

By using the same technique as in our previous report (H1, p4-40),

EqQ.(6.25) can be rewritten as

B

2E1 F
N 2: J] s+k1

where:
i 4
Ei q=Jj Aq
EEAS
g#]

The inverse of Eq.(6.26) is

i i .
¢ (t)- W 2 1§ FJ.,’ exp(-k, tYDB, (t)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)



where

exp (-k]t)"Bj(t)

t
'fexp (-k‘t)Bj(t-r)dr (6.30)
()

w

Equation (6.29) is the general exﬁression of the approximate solution for
the radionuclide concentration in the repository, under the constant-flow
approximation. As mentioned in Section 6.3 we have four different dissolu-
tion modes for Bi(t). The constant-flow solution for the three different
release modes which does not include the solubility limits of individual
radionuclides is derived below.

(a) Band release mode: Here Bi(t) is given by
()Ml
By(t) = ——— [h(t)-h(t-T)] (6.31)

and

i
n1(t) = Z% bij exp (-Ajt) (6.32)
i=

where ni(t) is the concentration of nuclide 1 in the solid waste, M0 is the
jnitial amount of waste, h{t) is the Heaviside step function, T is the
leach time, i.e., the time for total dissolution, and b1j is the Bateman
coefficient

J . i
L 0l
b= 200l Frag s -A-)] (6.33)

1 m%im)‘i[():“\ T Py
J

By substituting (6.31) in (6.29) one obtains the concentration of nuclide

i in the repository as

o L L i by
Gl 2B N P B k) Hnl®) (6.34)
ij-1 1=) my ™ 1
where ulm(t) is:

Winlt) = [exp(-k;t) - exp(-a )] h(t) -

- exp(-k‘T) [exp(-k](t—T))-exp(~xm(t-T))] h{t-T) (6.35)



(b) Exponential release mode: In this case the B.l(t) is defined as

B(t) = fn, (t)Mh(t) (6.36)

and i
n;(t) = Z‘i bijexp (-th) (6.37)

J=

where f is the fractional release rate for all nuclides, and nj is

nj Ta e (6.38)

The Bateman coefficient bij is given by Eq.(6.33).

The concentration of nuclide i in the repository is then

i i . J b,
M° i i jm
C.(t) = 7 E. F. —— X, (t) (6.39)
i VAi £ J F::J AR mz=:l ™ k] m
where X]m(t) is
Xm(t) = [exp(-k1t) - exp(-nmt):l h(t) (6.40)

{c) Preferentia! release mode: For this release mode the Bi(t) is given by

Bi(t) = £yn (t)H0h(t) (6.41)
and
i
n;(t) = J; bij exp(-th) (6.42)
where
Qj ES AJ. + fj (6.43)

The Bateman coefficient b'iJ' now becomes:

b-ino'rirx/1(n o | [+ (6.4
1.j.m=1 m em 9 Em] J ?; 48
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The concentration of nuclide i in the repository is then

L d L by .
where Y]m(t) is
Y]m(t) = [exp (-k]t) - exp (-q“t)] h(t) - (6.46)

6.4 Far-Field Concentration of Radionuclides

6.4.1 Exact Solution for a Single Nuclide

The contaminated water from the repository is assumed to mix
uniformly with the upper aquifer which it crosses. The mixing point is
designated by z = 0. Assuming that the flow rate Qa of the upper aquifer
is constant and is much greater than the repository flow rate Or(t),

the concentration boundary condition Ni(o,t) in the upper aquifer at

z =0 is:
C;(t).(t)
N;(0,t) = ———, t >0 (6.47a)
a

The governing equation in the one-dimensional flow field without dispersion

given by:

aN, aN., K.
i i 2 -l
Vit AN T

-t Y Ay Njop » with a = 0 i=1,2,3... (6.47b)

By substituting the C](t) given by Eq.(6.6), and the general solution to
the above transport problem (H], Eq.(6.ll)) one obtains

Mtzet) = g exp [- 4t - Rit2in)] 0tz x

t-z/v
1
x f exp [T + R(x) ] By (1)t Lt > 2y, (6.48)



where z is the distance from the discharge point in the upper aquifer,

and Vi is the migration velocity of nuclide 1:
V] = V/K'l (6.49)

where v is the pore velocity in the upper aquifer and K] is the sorption
retardation constant for nuclide 1. In general, for local sorption
equilibrium

v = v/K; {6.50)

The far-field concentration N1(z,t) of the mother nuclide with a
solubility 1imit is obtained by substituting the C](t) from £q.(6.17)
into (6.47a);

N(z,t) = Eq.(6.48) , 0 < t-z/vy <ty (6.51a)

¢," Q. (t-2/v;)

q exp (-A] z/v]) s

a
* *
t] _<__t-z/v.| 5_t2 (6.51b)
Q.(t-z/v
S il R [} Mt - R(t-z/v])] X

t-z/v
* * *
x{f exp [).]T + R( )] B-I(T)d’t +HC, exp D]tz + R(t2 )]}
*
t
*
sty < t-2/v (6.51¢)
Equations (6.48) and (6.51b,c) have been numerically integrated to obtain
the results shown later in Section 6.5.

6.4.2 Approximate Solution for Daughter Nuclides

For the daughter radionuclides we adopt the approximation in

Section 6.3.4 that the repository flow rate Qr is constant. Substituting



into Eq.(6.47) the equations (6.34), (6.39), and (6.45) derived for band
exponential, and preferential release modes, respectively, one obtains
the general expression for the concentration of the above release

modes as:

A M° o4
Ny(z:t) = Q exp (-A;2/vy) zi Es ;;'Fj] x

J b,
x X, =l xplt-a/vph(t-z/vy) +
ml “m 1

i

Me i i
A J J
+ _vﬁa— ‘E] § exp (-a,z/v,)/8.°) ]§j Oip X

. 1#m
J
cRel Tl b
p=1 g=p s=1 %"
t
XJ I T)xgs (t-T)Q(t-T)dr (6.52)
0

where Ni(z,t) is the concentration of nuclide i at distance z and time t, and

A = F/T band release
; exponential release (6.53)

1 f; 5 preferential release

—_

i_1
q

37

(Aq/vq) (6.54)

n
(=N

W
[
n

§-

L (Wvg - 1vy) (6.55)

3

o0
wh
- 3 &

j .
pl - ;g; (Bqm = 1n)] (6.56)

qfm,1#m
Gnt) = exp EA-,m (t-z/vm)] h(t-z/v) {6.57)
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. (A1/v1 - Amlvm)

A — (6.58)
m “/V] ”Vm)
“qs; band release
Xgs™{ Xqs} exponential release (6.59)

qu 5 preferential release

The convolution integral in Eq.(6.52) has been performed analytically,
and Ni(z,t) can be easily calculated from Eq.(6.52).

6.5 Numerical Demonstration Using EPA Parameters

Here we demonstrate the application of the foregoing analytical
equations to calculate the time-dependent concentrations and cumulative
releases of radionuclides from the generic repositories considered by
EPA. The same parameters adopted by EPA (S1) were used in numerical
evaluations. Principal assumptions and parameters are:

1. The repository contains unreprocessed spent fuel initially

containing 100,000 Mg of uranium.

2. Dissolution begins 500 years after emplacement.

3. Dissolution follows the exponential release mode, with a rate

constant f = 10'4/yr.

4. The effective transport distance in upper aquifer from the

mixing point z=0 to the biosphere is 1600 m.
§. The average groundwater velocity in the upper aquifer is 2.1 m/yr,
resulting in a water transport time to the biosphere of 760 years.
Table 6.1 shows the radionuclide inventories (S1), sorption retardation
constants (S1), solubilities (S1), and health effects per curie released

to the environment (52) used by EPA.



Table 6.1 EPA's Properties of Radionuclides =

a/

Retardation Solubility Health

Nuclide Half Life Inventory Coefficient Limit Effect
Factor
Yr Ci ppm

c-14 5730 2.8 x 10° 1 - 4.58 x 107
5r-90 28 6.0 x 10° 1 - 1.21 x 107
7r-93 1.5 x 10 1.9 x 10° 100 0.00} -
Te-99 2.2 x 10° 1.4 x 108 1 0.001 2.86 x 1074
Sn-126 1.0 x 10° 5.6 x 10° 10 1.0 1.20 x 107!
1-129 1.7 x 10 3.8 x 10° 1 - 1.09 x 1072
£s-135 2.0 x 108 2.3 x 10° 1 - 3.83 x 1073
Cs-137 30.2 8.6 x 10° 1 - 1.98 x 1072
U-234 2.5 x 10° 1.5 x 10° 100 - -
Np-237 2.1 x 108 3.3x 104 100 0.007 5.98 x 107}
Pu-238 86.4 2.2 x 108 100 0.001 2.29 x 1072
Pu-239 2.04 x 10 3.3 x 107 100 0.001 6.93 x 1072
Pu-240 6600 4.9 x 10 100 0.001 6.50 x 1072
Pu-242 3.87 x 10° 1.7 x 10° 100 0.001 6.77 x 1072
An-241 458 1.7 x 108 100 50 7.31 x 107
An-243 7370 1.7 x 108 100 50 2.77
Ra-226 1620 - 1 . ERL

a/ A1l values, except for radium-226, were taken from (S1).

derived from data in (S2).

For radium the retardation
coefficient is set to be equal to that of strontium, and the health effects factor is

1t
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6.5.1 Repository Characteristics and Groundwater Flow Specifications

Two different conceptual repository sites were considered by EPA which are
discussed here. The first site considered is basalt which is characterized
as a host rock of high permeability (conductivity) and with an underlying
aquifer. The second site is granite which has a low permeability and no
underlying aquifer. EPA assumes that those of a geological characteristic
are identical to basalt site. For the same ratardation constants and
solubilities calculated results for EPA's basal! repository will be identical
to EPA's tuff repository. EPA also considers a salt repository, but the
emphasis is on the unexpected failure mechanisms so the salt repository
is not considered here.

Egs.(6.7) and (6.8) are the governing equations for the thermally
driven buoyant flow in basalt and granite repositories respectively. Fig.
6.1 shows the buoyant flow as a function of time given by Eqs.(6.7) and
(6.8) and are shown for these sites. Empirical constants of Eq.(6.8),
dimensions of the repositories, and the conductivities of host rocks are
listed in Table 6.2. EPA has adopted for granite a hydraulic conductivity
and hydraulic gradient which is terfold smaller than that of a basalt
site. Water flowrate in the basalt repository decreases by about tenfold
during the thermal period. After 20,000
years of implacement a constant flowrate of 2,400 m3/yr is obtained. In
the first two hundred years after waste implacement the water flow rate in
the granite repository is 1/100 that of the basalt site. The water flow
rate in granite decreases rapidly thereafter and eventually reaches zero.
This is caused by lack of Tower aquifer to supply water.

Dissolution of the radioactive waste i; assumed to begin 500 years

after waste implacement. The flowrates tRrough the repositories are
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Table 6.2 Parameters used by EPA in calculating thermally

driven buoyant flow (Sl)

at 500 yr

basalt granite
Empirical a, 1.32x1071 1.32x10-2
constants for
thermally a, 1.02x10"1 1.02x10"2
driven buoyant} s | e e
gradient a3 2.88 -
i U s O l.ex1073
a2, yr-l 3.1x10™4 »
%3, yr-} 2.6x10-4
Constant
gradient from | Gg 1.0x10"1 -
lower aquifer
Conductivity 4
of host rock | ky, m/yr|3.0x10"3 3.0x10”
Cross~ 6
sectional Ar' m? 8.0x10
area of :
repository
Volunme of 3 6
water in the Vv, m 2,0x10
repository
Holdup time of 2 o
repository water, yr, 1.67x10 5.7x104




18.

12,000 m3/yr for basalt and 35.2 malyr for granite.
6.5.2 Radionuclide Concentrations

Fig. 6.2 shows the variation of the concentration of plutonium-239
in the repositories with time, in absence of solubility 1imit. The higher
concentration of Pu239 in the granite repository is due to lower groundwater
flow in the site. Figure 6.3 shows the calculated time-dependent rate of
discharge of plutonium-239 from the dissolving waste and from the repository,
neglecting the plutonium solubility limit. The discharge rate of plutonium-239
from the dissolving waste to the repository water is almost the same as the
discharge rate from the repository to the upper aquifer, because of the
relatively small assumed holdup time of the groundwater in the basalt repository.
From EPA's data we estimate a holdup time of groundwater in the basalt
repository of 170 yr at the beginning of dissolution,increasing to 830 yr
at 20,000 yr after emplacement. The discharge rate in the basalt repository
will decrease eventually because of the exponentially decreasing dissolution
rate of the undissolved waste.

from the EPA data we estimate the holdup time of groundwater in the
granite repository to be about 6 x 104 yr when dissolution begins, increasing
to 2 x 106 yr at 10,000 yr after emplacement. Because of this relatively
long holdup time, the increase in the concentration and discharge rate in
granite is slower than that of a basalt repository. During the period of
concentration increase, the groundwater flowrate is continuously decreasing,
and the product of the concentration (Fig.6.2) and flowrate in (Fig.6.1)
yields a maximum at about 2,500 yr. As the flowrate tends to zero so does
the product of concentration and flowrate. After 104 yrs radioactive decay
of plutonium-238 further decreases this product.

EPA assumes a plutonium solubility of 1 part per billion (ppb) in
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groundwater, which corresponds to 6 x 10'5 01/m3 for plutonium-239.

Solubility interference from other plutonium isotopes is neglected. The
calculated concentrations shown in Fig. 6.2 for basalt and granite repositories
exceed the solubility, so the results shown in Figs. 6.2 and 6.3 are un-
realistically high. The calculated concentrations of plutonium-239 at EPA's
assumed distance of 1600 m to the blosphere are shown in Fig. 6.4. The
concentrations are calculated with and without the solubility limit. There

is a thousand fold reduction in maximum concentration due to solubility

limit. For basalt, the solubility 1imit causes an increase in discharge

239 to the biosphere. This is due to formation of precipitate in the

of Pu
repository. This broadening of the release band is not seen for granite
within the concentration range of Fig. 6.4. The solubility limit greatly
dec»eases the maximum concentration of plutonium discharged to the environ-
ment from EPA's granite repository, because the lower water flow rate through
granite reduces the rate of dissolution of plutonium and the rate of discharge

of plutonium to the upper aquifer.

6.5.3 Cumulative Releases

In EPA's analysis, the cumulative ampunt of radionuclides released
during 10,000 years is used tp evaluate the total health effects from the
geolongic repository. Here we will calculate the cumulative release as a
function of time, but the time period of this release will not be
arbitrarily terminated at 10,000 years.

The cumulative release Ui(z,t) of radionuclide i at position z and up

to time t is obtained by:

t
Uylz,t) = Qa/ Ny (z,7)dr (6.60)
0

Fig. 6.5 shows the increase of the cumulative release with time at z = 1600 m

for basalt; similar results for granite are shown in Fig. 6.6. Parameters
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used by EPA (S1) in calculating these releases are listed in Table 6.2.

As shown in Figs. 6.6 and 6.7, carbon-14, technetium-99, jodine-129, and
cesium-135, which are the radionuclides with no sorption retardation,
appear in the environment after a time delay of 1262 yrs, which is the sum
of two delay times, a 500-year delay in the onset of dissolution plus EPA's
assumed water transport time of 762 years. The Tin-126 with assumed
retardation constant of 10 is released to the biosphere after 8100 years.
EPA assumes retardation constants of 100 for the actinides, so actinides
are released to the biosphere after 76,700 years. Consequently, health
effects from released actinides do not enter into EPA's analysis of the
potential health effects of its conceptual repositories, because EPA does
not consider radionuclides released after 10,000 years.

EPA's analysis (S1) does not include radium-226, possibly because this
radionuclide is not the first member of a decay chain. Radium-226 is not
initially present in the radioactive waste, but is a decay product of
plutonium-238, americium-242m, and curium-242, which are present in the waste.
Although the precursors of radium-226 are all actinides and, according to
EP4's assumptions, until well after EPA's cut-off time of 10,000 years, the
daughter radium-226 is more mobile and must be considered. In our analysis

226. He assume that the radium sorption constant

we include the effect of Ra
is the same as that of the other alkaline earth, e.g., strontium, for which
EPA assumes no retardation, i.e., K =1, On this basis some amount of
radium will appear in the environment, along with the other non-sorbing
radionuclides, after 1,260 years.

The curves for radium-226 in Figs. 6.5 and 6.6 are examples of the
application of the equations developed in this chapter for the transport of

radionuclides in a decay chain of arbitrary length. In the first 1000 years
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after .emplacement. for the basalt and granite repositories, neglecting
solubility limit, only technetium-99 and cesium-135 are predicted to have
curie releases exceeding that of radium-226. As we shall see later, the
calculated health effects from released radium-226 far outweigh those from
the other radionuclides released during this time period. It is apparent
that the release of radium-226 must be considered in a realistic amalysis
of the potential hazards from a geologic repository, even during the
relatively short time period of 10,000 years assumed by EPA. The equations
for the transport of radionuclide decay chains are vital for this anélysis.

The equations used to predict the transport and release of radium-226
are the approximate exponential-release solutions of Section 6.4.2, where
it is assumed that the flowrate of groundwater through the repository is
constant. To estimate the value of the flowrate to use in these calculations,
the cumulative release of uranjum-234 predicted for time-dependent flow is
compared in Fig. 6.7 with that predicted for constant flow. The calculated
curve for uranium-234 for an assumed constant repository flowrate of 3,850
m3/yr is identical with the exact curve for uranium-234, calculated by
applying Eq.(6.6) and using the time-dependent repository flowrate deduced
by EPA. A constant flowrate of 3,850 m3/yr through the basalt repository
is used to estimate the cumulative release of radium, in the absence of
solubility limits. It is this average flowrate that has been used in the
calculations for Figs.6.5 and 6.6.

6.5.4 Cumulative Health Effects From Released Radionuclides

A stated objective of EPA's draft proposed standard is that there shall
be no more than 1,000 calculated health effects over 10,000 yr from the
environmental releases of radionuclides from a repository containing waste

from 105 Mg of uranium fuel. EPA has provided data (52), shown in Table 6.1,
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to be used in calculating the number of -health effects -per curies of
activity released to the biosphere, based upon its estimates of world
population and worldwide averages for the consumption of surface water for
drinking and for the consumption of food grown in or irrigated by water.

Our resulting calculations of the cumulative health effects as a function of
time for EPA's basalt and granite repositories are shown in Fig. 6.8, and 6.9.
The 1abels on the curves for the total health effects of all radio-

nuclides other than radium-226 indicate the radionuclides that are the main
contributors to the cumulative health effects during the period indicated.
Within this mixed group, technetium-99 is the main contributor during the
period up to 10,000 yr, except when the solubility 1imit of technetium is
considered. In the latter case carbon-14 becomes the main contributor.

4 to 105 yr. From 105 to 106 yr

Tin-126 is the main contributor from 10
plutonium-239 is the main contributor if solubility Timits are not
considered, and tin-126 and americium-243 are the main contributors when
solubility Vimits are considered.

EPA's draft proposed standard lists curie releases of individual radio-
nuclides that are upper-limit releases for 10,000 yr. The upper-limit
release for technetium-99 is 2 x 103 Ci per 1000 Mg of U, which corresponds
to 2 x 105 Ci for a 105 Mg repository. This compares to our calculated

5 Ci of technetium-99 in 104 yr, as shown in

cumulative release of 6.4 x 10
Fig. 6.5, ignoring solubility 1imit. There is an apparent inconsistency,
in that the calculated curie releases of technetium-99 for basalt are ten-
fold greater than allowed in EPA's draft standard, yet the calculated
health effects from technetium-99 just meet EPA's goal of 1,000 health
effects in 10,000 yr. The discrepancy occurs because EPA has decreased the
allowable curie release of technetium-99 tenfold below that which is

calculated by EPA data to result in 1,000 health effects (P1). This results
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from EPA's view that uncertairties in the data on uptake of technetium-99
by plants justify tnis reduction in the allowable curie release limit for
technetium-99.

The curves for the health effects from radium-226 are calculated on the
basis of no solubility limit of the uranium precursors of radium-226. It
is apparent that even during the 10,000 yr period adopted by EPA radium-226
contributes over an order of magnitude more health effects than the sum of
all the other radionuclides released during this period. The cumulative
health effects increase rapidly and level off only after about 105 yr,
based upon the use of EPA's assumptions and parameters. Separate calculations,
to be reported later, show a decrease in the cumulative health effects from
radium-226 when the solubility of uranium is taken into account, but the
conclusions concerning the importance of radium-226 remain valid.

t is apparent from Fig. 6.8 that when radium-226 is considered EPA's

goal of no more than 1,000 hLealth effects in 10,000 yr is not met by EPA's
basalt repository. This i¢ a consequence of the large flowrate of ground-

water within the basalt repository, as estimated by EPA.



6.6 Nomenclature

a5 (i=1,2..) Emperically fitted constant for buoyancy

A Defined by Eq.(6.54)

A Cross-sectional area of repository, (mz)

Bij Bateman coefficient, £qs.(6.33) and (6.44)

Bi(t) Release rate of nuclide i from waste, (atoms/yr)
B i Defined by Eg.(6.55)

C;(t) Concentration of nuclide i at repository, (atoms/ma)
Ci(s) Defined by Eq.(6.21)

Ci‘ Solubility limit of nuclide i, (atoms/ma)

D, ) Defined by Eq.(6.56)

Eji Defined by Fq.(6.27)

£ Fractional release rates of all nuclides, (1/yr)
f; Fractional release rate for nuclide i, (1/yr)
Fj]i Defined by Eq.(6.28)

g]m(t) Defined by Eq.(6.57)

G0 Constant hydraulic gradient from lower aquifer
Gr(t) Hydraulic gradient from repository

Ky Permeability of host rock, (m/yr)

K1 Retardation coefficient of nuclide i



M Initial amount of nuclide i, (atoms)

nio Initial concentration of nuclide i in the solid waste

ni(t) Concentration of nuclide i in the solid waste

N, (zt) Concentration of nuclide i in groundwater, (atoms/m3)

Pi(t) Amount of precipitate at repository, (atoms/m3)

Qa Volumetric water flow rate in upper aquifer, (m3/yr)

Qr(t) Time dependent water flow rate from repository, (m3/yr)

R(t) Defined by Eq.{6.5)

t Time after beginning of leach, (yr)

t1* Beginning time for precipitation, (yr)

tz* Time at precipitate disappears, (yr)

T Leach time for band release, (yr)

Ui(z,t) Cumulative amount of nuclide i at distance z and up to time
t, (atoms)

v Groundwater velocity in upper aquifer, (m/yr)

vy Migration velocity of nuclide i, (m/yr)

v Volume of water within the repository, (m3)

H]m(t) Defined by Eq.(6.35)

X]m[t) Defined by Eq.(6.40)

Y]m(t) Defined by Eq.(6.46)



uT(i='l,2.3)

Alm

Distance from repository, {(m)

Emperically fitted constant for buoyancy flow, (1/yr)
Constant defined by Eq.(6.58)

Constant defined by Eq.(6.23)

Decay constant of nuclide i, (1/yr)}

Constant defined by Eq.(6.18)

Constant defined by Eqs.(6.38) or (6.43)
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7.1 Mass Transfer From a Fuel Canister by Diffusion

Paul L. Chambré

Consider a cylinder of finite length imbedded in a porous medium. The
cylinder matrix contains a diffusing specie such as Si(OH)x or U0, which
is set free at the surface of the cylinder at the solubility limit és of
this specie in water and then diffuses into the exterior unbounded space.
The diffusion coefficient is assumed constant. The governing equation for
the conservation of mass of the diffusing species outside the cylinder in

absence of any losses is

K& =D.v¢C (7.1.1a)

Here Df is the diffusion coefficient of the species in water and K its

retardation coefficient.

The boundary conditions are respectively

¢ =cg (7.1.1b)

on the surface of the cylinder and

c=0 (7.1.1¢)

on an infinite spherical surface enclosing the cylinder. If the concentra-
tion at infinity is non-zero, a change in the reference datum of ¢ reduces
that problem to the above formulation, Prior to the time t = 0 the diffusing
nuclide has zero concentration in the exterior (porous) medium.

For a cylinder i finite length, the Laplace operator in eq. (7.1.1a)
has the form

2 2
VZ( } = 9_%,_1 + %'gﬁ' ) 4 = 312 ), 2 é ) (7.1.2)
or LYY 9z

-—




where r, 6, 2 are cylindrical coordinates. For the exterior diffusion
problem which we wish to solve, compact analytical solutions of eqs. (7.1.1)
and (7.1.2) are not possible because the interior bounding surface is a
cylinder and the exterior surface is a sphere. This of course does not
mean that the posed problem does not possess a solution. Indeed one can
obtain it in numerical form or by analytical approximations. Since we
wish to retain a compact analytical solution to this problem, a suitabie
appreximation is made for the shape of the cylinder. The finite cylinder
shape is approximated by a slender prolate spheriod which is generated by
rotating a family of confocal eilipses about their major axis. This
family generates not only the replacement for the finite cylinder, but
produces also the outer spherical boundary which is a member of this
family.

One might consider also other forms for the approximation. Suppose
the inner surface of the domain is maintained in the exact form of a
finite cylinder and the outer boundary is now a cylinder, but of infinite
extent. For simplicity, consider furthermore that a steady state prevails
so that one deals with the solution of Laplaces equation in the exterior
field. Subject to the boundary condition (7.1.1b) the solution sought is
mathematically equivalent to the problem of determining the capicitance
of a cylinder in an infinite cylindrical box. It is well known that this
problem does not possess ar exact closed form solution although it can
be readily shown that such a solution exists and is unique and can be
approximated by various means. With these comments in mind, we reiterate
that the interior cylinder surface will be approximated by a slender
prolate spheroid which is described by the prolate spheroidal coordinates

{a,B,9). Since the reader may not be familiar with this coordinate system,



we review and summarize in the following its main characteristics.
The relationship between prolate spheroidal coordinates (a,8,y) and

the common rectangular coordinates (x,y,z) are given by

x = f sinha sing cosy
y = f sinha sing siny (7.1.3)
z = f cosha cOS8

where f is the focal distance of the prolate spheroid measured from the
coordinate origin, see Fig. 7.1.1. To exhibit the geometric significance
of o, take o to be constant and let

a = f cosha, b= f sinha (7.1.4)
in eq. (7.1.3). If these three equations are squared and added, there

results

(%Jz + (%)2 . (g)z =1 {7.1.5)
Since o and hence a and b are constants, this represents a prolate spheroid
in the x,y,z coordinate system (see Fig. (7.1.1)). One observes from
{7.1.4) that as o becomes small, the prolate spheroid tends to a small diameter
"cylinder". This "cylinder" has a radius b and a length given by (7.1.5)
as 2a. In the following, we shall approximate the cylinder by small
positive values of a. On the other hand, as « becomes very large, so do
both a and b and (7.1.5) tends to the description of a sphere of large
radius. The entire o range generates a family of prolate ellipsoids.

In order to exhibit the geometric significance of g, take p to be a
constant and let

a=fcosB, b= fsing (7.1.6)

Again square the equations in (7.1.3) and add so that
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Fig. 7.1.1. Prolate spheroidal coordinates (a,Ba0).
Coordinate surfaces are prolate spheroids
éa = const}. hyperboloids of revolution

g = const), and half-planes (y = const).



A

2, .2 2
- ("_;_.-V_)»f( ) = (7.1.7)
b

Hence for B constant and thus a and b constant, this equation represents

a family of hyperboloids of two sheets with foci at + f as shown in

Fig. {7.1.1). When =0, a = f and b = 0, while when g = 7, a = -f

and b = 0. For either of these cases (7.1.7) reduces in the limit to

the collapsed hyperboloid, i.e., the positive and negative z axis from f

to « and -f to ~» respectively. When B = %3 a=0,b6=f for which (7.1.7)
reduces in the 1imit to z = 0, i.e., the x-y plane. Finally, as can be
seen from Fig. (7.1.1), the family of half planes ¥ = constant with

0 <y <2 7 forms the third member of orthogonal coordinate system a,g,p

~

which has the range
Ogoago®;0gBgT; 08P 3 2n (7.1.8)
In this coordinate system the square of the element of arc length is
given with help of (7.1.3) by
(ds)? = 2 (sinha + sin’g) [(da)? + (d)?] +
+ t2sinhfa sinp(dp)? (7.1.9)

From this one obtains the metric coefficients of this coordinate system

as
2

h = h,=f (sinh

@ R ot sinze)l/z; hw = f sinhg sing (7.1.10)

Now the form of the governing eq. (7.1.1a) in this curvilinear orthogonal

) .

hh, .a
5% (_gzﬁ é%) ] (7.1.11)

coordinate system is

K%%‘”f hhh T%ac ‘hﬁ_‘y‘
ey aa o 68

q;‘n:

B



which reduces with help of (7.1.10) to

ac 1

K5

1 -]
* I8 % (sinB ) ( inha

o, <@ <®, 02 BgMO0< w g2n

1 { 2 (
D —_ S‘lnha +
at [;2(s1nh2a - sinze) sinha 3a aa

2n
2.¢ 7.1.12
s1n ) ;;f }] ( )

An alternate form of this equation 1s useful. Let

g = cosha, u = cosB, ¥ =y

then {7.1.11) transforms into

ey (% [ £]

2 2 2
M RTYIN ?}

Bg <L<®, lgug T,0<pgen

(7.1.13)

5= [(1~u2) %c:-‘] +

(7.1.18)

as one can readily show. In (7.1.12) and (7.1.14) ag and i describe

the cylinder {prolate spheroid) surface.

Particular solutions to this

equation can be constructed by separation of variables. MWith

-52t

E(C.H.W-t) =e [ (C, MW)

1
i (7.1.15)

5.



¢ satisfies the Helmholtz equation in prolate spheroidal coordinates

22 2
2 2_])AQ] .2 [(1_2) ag],, b %,
r,[(C 2 I I R A e YO R 2
+ k2 (r,z-uz) =0, where k% = lﬂ)—" (7.1.15)

This equation can be separated again with

¢ (awy) = Ry (kog) S (kapd) oon (my) (7.1.7)

Here the radial function R (k,g) and the angular function S_ (k1)

satisfy the differential equations

d 2 d m2

& |- & R (kst) C—_— K2 (, + —2: R (ks2)

d [, 2\ 4 22 ol .
o (1-u W Sun (kawd | * b -Ku® - ;t;? Son (kou) =10

(7.1.18)

The separation constants k2 and Kmn® which are eigenvalues in our problem, would

be determined by boundary conditions imposed on Rmn and smn‘ This method

of solution is not pursued in the following since the determination of the

spheriodal eigenfunctions and eigenvalues for the exterior problem are

mathematically quite involved. We will instead obtain the necessary

information about the solution by application of Laplace transform techniques.
Before proceeding with this, we make the simplication that the concen-

tration of the diffusing element on the cylinder surface is independent of



the angle y and constant over the entfre surface so that c(z,u,t) obeys,

see eq. (7.1.14).

2 2
bl gy [eox])

tg <f <o, ~lgusgl (7.1.19)
efzoms0) =0, g s <>, -1 gugl (7.1.20)
c(;s,u,r) =3, -1Tgugl,1>0 (7.1.21)
c{w,u,1) = 0 -lguglst20 (7.1.22)
EEL%ﬁgzll =0 g sL<®,T20 (7.1.23)
where
E(;:Hs'l'! th
c{zou.1) = =2 it =7 (7.1.24)
Cg Kf

The initial condition is given by (7.1.20). The boundary conditions on

the surface of the cylinder and on the spherical surface at the point at
infinity are given by (7.1.21) and {7.1.22) respectively. Eq. (7.1.23) describes
the symmetry of ¢ about the midplane u = 0 of the cylinder. We now develop

the steady solution as well as the early time and large time (approach to

the equilibrium) behavior of this solution.

The Steady State Solution

For this case the governing equation for ¢{z) and its side conditions

reduce to

-3—,; [(cz-l) %%] S0, gosp<w (7.1.25)



c(;s) =1 (7.1.26)
) =0 (7.1.27)
If the concentration at infinity is ~on-zero, a change in the reference
datum (¢) reduces that problem to the above formulation. Here c has no
u dependence because the boundary conditions (7.1.21) to (7.1.23) can be
met in the indicated way. The solution to this problem is & cmentary

and is given by

Q,(z)
clr) = 2 < o (7.1.28)
where
Qlz) = 7 Tog 5F (7.1.29)

is the Legendre function of the second kind and zero order. In view of

£+l _ cosha 41 _ 2q
Z-T = cosha =T - Coth™ 3 (7.1.30)

Eq. (7.1.28) yields

log coth %
C(a)=—————3, ag g a<® (7.1.31)
Jog coth 25
The diffusion flux is then given by
-+ A
)= -De Cg grad ¢
D c
R gg (7.1.32)
a

Here De = eDf is the effective diffusion coefficient of the species in the
water saturated porous medium, and € is the porosity of the medium. Eq.(7.1.32)
with the help of (7.1.10}, yields the diffusion flux from the surface of the
prolate spheroid

D, T
To= |52 ! (7.1.33)
: f (sinha_ + sin?8)1/210g(coth Ots) sinh a
U gicoth 7= 5




1.

c(z,2n,p) = ,(I;]c(c.u,p) Pon (1)dy (7.1.38)
where the P2n (u) are the Legendre polynomials of even order. Only even
members of the set are required on account of the symmetry condition
(7.1.23). We have shown that for the leading term of the solution, only
Po(“) = 1 and thus c(z,0,p) are required. The details are omitted.

Applying (7.1.37) to (7.1.19) yfelds with help of (7.1.20).

%E [(‘;2'” e *E)']" Em [“-uz) M%{f—‘a)] = p(F-P)elcamp)  (7.1.39)

Then applying (7.1.38) gives with n = o,

1
/ 1
% [(;2-1) de(za00) ]+ (1% 2elpuwd) fap 1 (27,

L\

<c(g,pp) du (7.1.40)

One observes, having first Laplace transformed equations (7.1.19) - (7.1.23),
that the second (integrated) term in (7.1.40) vanishes by (7.1.23). The
integral on the right hand side of (7.1.40) has the form

1 1
.{; (22-17) c(gou,p)dy = (;2- %)C(;.o.p) - %,{ c(guP)Py(u)du (7.1.41)

The last integral can be shown to have no contribution to the leading term,

so there results for c(g,0,p) = c(z,p)

gz [(EZ-” %%]= P (;2- lg) Cigg<g<m (7.1.42)
with the boundary conditions

c(z .p) = ;—; c(=p) =0 (7.1.43)
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We propose a solution to (7.1.42) of the form

=q(5-2,)
c(z,q) = ¢(z,q)e » Q= V9 (7.1.44)

where ¢{g,q) s to be determined by substitution into (7.1.42). There

results

% [(:2-1) %3] = Rl4.a) (7.1.44)
where

R(¢,9) = Zq[(cz-l) g—g + c¢]+§ o%e (7.1.44p)

In view of eq. (7.1.43) we take the boundary conditions on ¢(z,q) to be

1
$(2¢,9) =
s & (7.1.45)
¢(=,q) = 0

We now define the Green's function G{z,t) for the differential operator

in (7.1.44a) in order to solve that equation. Let

% [(:2-1) iﬁ—féﬁl] = -8(z-E) (7.1.46)
6(tg:E) = G(=,E) = 0
b
Then with F(a,b) = —%—- (7.1.47)
a (g°-1)
we have
2 .. dg
{£7-1) gr = A or 6{g,E) = AF(Lg,E) s gg < g <€ (7.1.48)

(52'1) g’g‘ = -B or G(Z,£) =-BF(E,») , E < <™

The continuity of G(%,£) and the unit jump discontinuity of (a2-1) g%
at 5 = &,



determines
A=0F(Ew) , B = D“‘F(;s,s) 3 D= Flgg™) (7.1.49)
so that
[D'IF(E.w)] Flegt) » 5o L < &

G(z.£) = (7.1.50)
[D-]F(CSDE] F(Cs‘”) Egp <

On evaluating D and F there results

Q, ()

EZE) [o,(e) - qz)] + tost<e
G(z.¢) = - (7.1.51)
) [QO(E) - Qleg)] sEsT<
0’5

Returning now to the solution of eq. (7.1.44) we consider as our starting

point Green's theorem

f;{sgf [(;2-1) %%] e & [(1;2-1) g—g-] Ja -

S
= {(cz-n [G;% -¢%§_]} l: (7.1.52)
S

One substitutes for the differential operators under the integral sign the
equations (7.1.44a) and (7.1.46), then one makes use of the integral

property of the delta function and applies ihe boundary conditions (re-stated)

6(=6) = $(=,E) = 03 6{zg.E) = 0, 6(zgua) = % (7.1.53)
a .
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There results

d6(g.E) o
$(E0) = (521 —go— 3= [ G(5.E) R (6(2).0) @ (7.1.54)

ts
But by (7.1.48)

dG(z,t)
2 s?
i’;s -1) ——dl;—— (7.1.55)
where A is given by (7.1.49). If one evaluates the integrals, substitutes
the result into (7.1.54) and interchanges the labels ¥ and z,there results

the Fredholm integral equation
Q,(z) w
#lesa) = g2 ci!" -/ 6(€.5) R (6(5),9) dE (7.1.56)
0'°s Le

The large time behavior of the solution is determined by the "small p"
behavior of its transform. For this reason, one usually expands the
transform of the solution ¢ in powers of p or q. This amounts to the
iterative solution of the integral equation in form of a.Neuman series,
For our purpose (7.1.56) shows that the leading term in such a series is

the first (integrated) term on the right hand side, i.e.,

$°(£.q) = G 1 {(7.1.57)
05T 7 i

Higher approximations can be computed by substituting this into (7.1.44b)
and then evaluating the'integral (7.1.56) provided that this is done to
the correct order of the dismissed u terms. In the present, we restrict
ourselves to the zeroth, i.e., the leading approximation to c(z,q) which
is a combination of eqs. (7.1.44) and (7.1.57)
Q (z) ' 'Q(C-Es)
c{r.q) = n—-(—)- 2 _ ) (7.1.58)
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The Laplace and Legendre inversions produce then the desired approximation
for the large time solution

c( ) = %{%) erfc T (7.1.59)
LolsT W 2—‘1‘7'2‘ ..

T

As T + =,the complementary error function tends towards unity so that
this expression agrees with the steady solution given by Eq.(7.1.28).
The diffusion flux from the surface of the prolate spheroid is given in

the ¢ coordinate system by

I X 2_2
it % where h, = § 5-2—_L
4 z=-1
=g
02, Ja ()
T ___e’s )Jlots 1
J o \TE) A (7.1.60)
Cs 0'’S

The time span necessary to establish the steady state to 1% requires that

1 2 | sl
Ae =0 (7.1.61)
" oits
0yfcs) 2 2
With (L7y) = 20, | @y [~ tohtdoy = 33-5 D = 5x107° &, k<100

o'%s
and f = 150 cm, eq (7.1.24) yields

4 a2
10* x 2.25 x 10* x10 1
t = - =1,28 x 10" sec
steady state 3 14 , 5 x 107 (33.5)2

= 4000 yrs (7.1.62)

This is an appreciably long time period and its consequence in establishing
the steady state in laboratory experiments must be appreciated. For

increased retardation this time span increases.



It is within the context of such experiments that the early time
behavior of the solution is of interest. We turn next to the analysis of

The Early Time Behavior

In contrast to the large time behavior wh’ 1 is characterized by
small values of the Laplace transform parameter p, we are now interested
in the large valued parameter .ase as p + w.

The starting point of the analysis is eq. (7.1.42) for c(z,p)

2,y d 2 1
SE [(t; -1 ﬁ] =p -3 e ggepcw (7.1.63)

with the boundary conditions (7.1.43)

ClzgeP) = 33 clop) = 0 (7.1.64)

One of the most useful techniques for obtaining the asymptotic solution
of (7.1.63) for p » » is with help of the Liouville appﬁoximation. For

this introduce the new independent variable

L2 1y V2

,,:f (_5_3) d.- (7.1.65)
. (") 1

S

and the new dependent variable

14
N = ([;2-1] [;2- ’3]) " (7.1.66)

There results the greatly simplified equation

2
%-%: [p+s ()] W (7.1.67)
n

16.



for which

N(=,p) = 0 (7.1.68)

Since one treats p -+ =, the function g(n) is as usual treated as a
negligible contribution and its specific form is of no further interest
in the following except for the fact that it is a continuous and bounded

function.

The dominant solution of (7.1.67) which satisfies (7.1.68) is

-P]/Zn

N(n,p) = Ae (7.1.69)

If this is substituted into (7.1.66) and the boundary condition (7.1.64)

is applied there results

c(z.p) = (ESZ']J E’sz' %‘])

BT 3]

174 _'31/2n
e
= (7.1.70)
g p

On inversion there results

1/4

2 2 1

- [;s ']] [Cs':f] n
c(g.u.1) = 5 5 erfc =7z (7.1.71)

] -3 2

where n(z) is given by (7.1.65). The early time surface diffusion flux

can be determined from this equation and it exhibits, analogaus to the

secor.d term in eq. (7.1.60), a 1'1/2 behavior, but with a different

numerical coefficient.

17.



7.2 Mass Transfer From a Fuel Canister by Diffusion and Forced Convection
Paul L. Chambre

Consider a cylinder of infinite length imbedded in a porous medium
through which water is flowing steadily in accordance with Darcy's law.
The cylinder matrix contains a diffusing nuclide which is set free at the
surface of the cylinder at the solubility iimit of the species in water and
then diffuses into the exterior unbounded space. A1l material properties
are assumed constant. The fiow is taken normal to the axis of the cylinder,
but inclined flows can also be treated by the analysis given below. The
governing equation for Fhe conservation of mass of the diffusing species

from a cylinder of radius T in the presence of radicactive decay is

A n ~ "~ "~ 21\ A~ 2’\
aC 3¢ , vi(r,0) 3c 3 1o ,1 3 "
K&+ u(r,8) 5+ ==D |tz Ft S5 ]| - K,
at ar r 20 f (arz roar rZ 392)
Ty < Fre<w,o0 c0g2m, t>0 (7.2.1)
Here 2 . 2
u(r,8) = -U {1- :%—) cosf; v(r,8) = U [ 1+ :%— ) sing (7.2.2)
r r

are the radial and tangential pore velocity components derived from D'Arcy's
potential flcw in the porous medium with U the free stream pore velocity far away
from the cylinder. r %s.the radial distance from the center of the

cylinder and 6 the angle measured in the tangential flow direction from

the frontal stagnation point at the cylinder surface. K is the retarda-

tion caefficient and Df 1s the diffusion coefficient of the specias in the
liquid.

Prior to the time t = 0, the diffusing nuclide has zero concentration



in the porous medium. At time t = 0 the concentration at the surface of

the cylinder is changed to a constant value ¢,
E(ro,a.t) =c,056¢2m, t>0 (7.2.3)

and maintained at this surface concentration g subsequently. The

boundary condition far from the cylinder is held at zero concentration

to,8,t) =0 ,050g2m, t >0 (7.2.4)

It is convenient to introduce non-dimensional variables with

~ P at
ut r c(r,o,t
1T==,r=2= ,c(r,0,1) = e
Kro' o ? ? [
Uro
Pe = =—= , the Peclet number (7.2.5)
f
Kar

Da = —-ﬁﬂ, the Damkohler number for convective mass transport.

Then the governing equations for c{r.9,T) transform to

o (1oL e dee (10 k) e s p{dfe, 1ae 1 0 )
l<rc<w,og0g2n1T>0 (7.2.6)
c(1,8,1) = D‘",o\<e.52n.'r>/o (7.2.7)
c(=,06,7) =0, 080 &2m, T3%0 (7.2.8)

with the initial condition that c¢(r,6,0) = O.



For typical porous media flows the Peclet number Pe may be large.
Typically, with U=2 m/yr, L 0.15 m, and Df = ‘lxw'5 cm2/sec will
yield a Peclet number of 10.

This suggests an asymptotic solution of the equation system for
large Peclet numbers. In this case the principal resistance to mass
transfer from the cylinder surface is in a direction normal to the fluid
layer surrounding the cylinder, i.e., in the r direction. The diffusion
transport tangential to the surface, i.e., the term 1—23—33‘%, can then be
neglected as will be shown below. To obtain the asyrrr.vpto‘:.’lc form of the

equations, introduce the new independent variable R in place of r

R
r=1+—=— » 7.2.9
e (7:2.9)
then eq. (7.2.6) takes on the form
2
ac ac ac _ 3¢ -1/2
v - 2R cosp Zz + 2 sing 2= a_RE +0 (Pe ) (7.2.10)

This is to be solved for c(R,0,1) subject to, see {7.2.7), (7.2.8)

clo,0,1) = e Lo cag2n, T30 (7.2.11)

cf{=,0,7) =0, 040 g2m, T30 (7.2.12)

with zero initial condition.

For large Pe numbers the last term in eq. (7.2.10) is neglected. By an
additional change of the independent variables, one can reduce the time
dependent diffusion and convection eauvation (7.2.10) to a simpler time
dependent diffusion preblem without convection. New independent variables

n({R,8}, o{1,8) are introduced which transform c{R,8,t) into &(n.z)



i.e., cn.z) = c(R,8,1) - (7.2.13)

These variables are given by

5(1,8) = - %—cose + %- {v}i;{%:%}} (7.2.14a)

where £(x,0) = ¢4 A& with ao) = (F%ﬁ) » blo) = (1-czose)

and
n{R,8) = R sing . (7.2.14b)

As the reader can readily verify, these transformations, which are
deduced by group-theoretical considerations, change eq. (7.2.10) to a

very simple equation for ¢(n,z), i.e.,

- 2-
€. 3—% yN>0,5>0 (7.2.15)
an

subject to the side conditions

[l

closr)=1,130 (7.2.16)

clwg) =0, 530 (7.2.17)

with the condition that &(n,0) = 0.

The solution to this problem is

Snc) = erf __n_}
c(n,t) erC(zk—

The solution in R,8,7T variables is obtained by substituting n(R,8),

(7.2.18)

and Z(9,T) in (7.2.18). One ohtains after some simplifications that:
J——
c(R,0,7) = erfc (R YEQLD2T ¢ cosh) (7.2.19)

This solution satisfies (7.2.10) with side condition (7.2.11)

replaced by unity. To obtain the ¢ dependent boundary condition given



by {7.2.11) we use Duhame)‘'s integral, i.e.,

T 4 ;
c(R,8,1) -/ c(0,6,1') & [erfc(k\’“"“ 2lrt’) * cosh )]d-r‘ (7.2.20)

0

a

Integrating by parts and transforming back to the original variable € one

obtains

&(r,Pe,Da,t,0) = < exp(- E%FQE) erfc [:(—- -1 Jbe(coth aue cose)J
o

ut

Kr n
+cg Da ] 0 oDaT onge [(rL - 1) \I%‘i (coth 2t + cosa) :l dt
)
0

(7.2.21)

This solution (7.2.21) describrs the time dependent concentration field
in the presence of radioactive decay in a Darcy flow about a cylinder.

The surface mass flux for a diffusing nuclide is

j(pe,a,t,0) = -0, % |
ar 1f=r
0
D c
= 25 [2Pe [exp( Da Ut){coth 2Ut 4 coso +
T T
0 o
Ut
K
+ coth 2T + cose dr ] (7.2.22)
()

wherg Dy = ¢ Df in the effective diffusion coefficient of the diffusing
nuclide and € the porosity of the medium.

The surface mass flux, according to (7.2.22) depends on time and the
angular position. The angular dependence is removed by averaging the
surface mass flux over the cylinder perimeter. On the account of symmetry

we have



k.S

Jay (Pe,Da,t) = ,}—/ § (pe,Da,t,0) do
o

Ut

Dc Kr_
_ ‘e’s [2Pe Da Ut <] ~Dat
-}r_\[_"_[exp(- alty 1 (4t )+Daj e I('r)d'r]
0 0
(i
(7.2.23)
where .
n 1/2
I(7) = {coth 21 + cos8) de

To evaluate I{7) we proceed as “ollows

i 227 e
I(7) "[ ("] + 7{.?? + COSB) de
et
]

= %(\g E [m(1)] (7.2.24)

1/2
where m(T) 2 (l-e T) and E[x] is the complete elliptic integral of the

second kind. Substituting for I(t) in (7.2.23) one obtains

B Yo pLal (250

ut
ap ¢ J-—— exp{- K 2
= _es JPe _.-..°.-____h_°n. o _-Dat E[m"(t)]
Jav(Pe.Da.t) iry o { + Da e ——ﬁrgr—dr
[1]

] (KF )
[
(7.2.25)

In absence of radioactive decay (i=Da=0) there results



2/Ut

E[m“{p= )]

-> 4D ¢ Rr.

j Pe,0,t)= es E‘ J 7.2.26

Jay(Pes0st)= o= {3 E) (7.2.26)
o

For application in section (7.5), we require the steady state,
average surface mass flux in absence of radioactive decay. Hence, (7.2.26)
yields as t+o, with m{=) =1 and E[1] = 1, that

Ty = % ﬁ—a (7.2.27)
The mass transfer per unit length of cylinder under steady state condition

is then given by

- - - - )
fi=3,, %2, = 4.5135 0o, pe (7.2.28)

a result well known in heat aﬁd mass transfer studies where it is shown
to be valid for a range of Pe>4 (K2),(L1).

From (7.2.26) one can estimate the time necessary to establish the
surface mass flux to 99% of the steady state mass flux. From table of
complete elliptic integral of the second kind one obtains that the

criteria is given by

{ =

: =1.2 (7.2.29)
0

<

For a flow of U =1 m/yr, To © 0.15m, and K = 100, t = 18 years,
a relatively short time for the establishment of a steady state when
compared with the case of pure diffusion. Theret = 4000 y=ars was obtained
{see 7.1.62).
The analysis leading to the solution (7.2.21) for the iime independent boundary
condition is readily generalized to a time dependent boundary condition.
The starting point for this analysis is Eq.(7.2.20). If in (7.2.3), cg. is

TKr
replaced by ¢(t), one must change c{0,8,7') in {7.2.20) to eDaT‘ ¢(—-U_Q)



As an illustration consider the radioactive decay of the surface concentra-

tion according to

c(ro.e.t) = ¢ e*t oo £ 2m, t30 (7.2.30)

in place of Eq.(7.2.3). Here ¢(t) = e At Hence, we have
-l‘r'Kr‘o_
clogr') =ePT e U . (7.2.31)

After substitution of c¢(0,8,t') into {7.2.20) one can perform the
integration analytically. Transforming back to the & and evaluating

surface mass flux one obtains

+ D.c
3 (Pe.Da,op)s == exp(- Da l”;) \[ [coth (ZUt) + cose] . (7.2.32).
[+]

This shows that the surface mass flux no longer reaches a steady state
but tends toward zero as t + =,

For a flow parallel to the cylinder axis the mass transfer can be
approximated as Follows. The lateral cylinder surface is unwrapped into
a flat plate of length L and width ano, and subjected to a flow in the
direction of the plate length. The steady mass transfer from a flat plate

of width 2m~o and length L under longitudinal flow,is given by

1/2

= 2.257 D, (% 2, (7.2.33)

Mlong [+}

while the mass transfer from a cylinder of length L with the flow normal
to the cylinder axis is in view of (7.2.25)

U 1/2
. _ L
Maorm = 4-513 Dycg (_D;.') L (7.2.34)



Hence
Moo _ 4.513 ( L )”2

Mong (2.257)f2 = o,

For a canister, with an aspect ratio 2—};;— = 13.2

f‘-"-"ﬂ = 1.63

Mmng
This indicates that for flow parallel to the cylinder axis, the mass
transfer is decreased by about 63% compared to that due to the flow normal
to the cylinder axis because the thickness of the diffusion boundary layer
is greater for "4] ong than for ﬁnom'

Finally we note that the large Peclet number approximation made in
the analysis prevents one from letting the free stream Darcy velocity U
become small. If U+ o, in eq. (7.2.1), the convection terms drop out and
the equation describes then a temporal balance between the effects of
diffusion and radioactive decay. For a constant surface concentration,
given by eq. (7.2.3), the modified eq. (7.2.1) generates then a steady
state solution as t + ». Since the § dependence is no longer needed, the

governing equation is

2 ~
1 3 27
=t = -Bc=0,r>1
ar2 r or '
where
2
2_"0}"( T
B = Df ] r=§ » (7.2.35)

with the boundary conditions

Ny = cg » E(=) = 0. (7.2.36)



The solution is given by

a K
c{r) = c, EQ{%§1 yr> {7.2.37)
o

so that the surface mass flux is

B.c " Ky (R) .
__e’s 1 . :
Itry) = o {8 X(8) . (7.2.38)

Here Ko(n), K](n) are the modified Bessel functions of zero and first
order respectively.

A deta‘led numerical evaluation of the mass transfer without radio-
active decay, i.e., eq. (7.2.28), as well as the fractional dissolutien
rate are givan in section 7.5. The other formuiae derived above including

their dependence on radioactive decay will be investigated in the future.



7.3 Mass Transfer From a Fuel Canister by Diffusion and Free Convection
Paul L. Chambre

The problem concerns the mass transfer from a heated vertical cylirder
which is imbedded in a water saturated porous medium. The temperature of
the cylinder exceeds that of the surrounding with the result that a free
convection pattern develops which drives the fluid along the cylinder
surface. This induced velocity affects the mass transport of a diffusing
species from the cylinder surface into the surrounding medium. It is
thought that the effects or free convection might be important during that
time when the fuel canister generates a sufficiently large amount of decay
heat to maintain a temperature difference of about 50°C (or more) between
the canister surface and the surrounding medium. The aim of the analysis
is to determine the velocity, temperature and concentration fields and to
develop a formula for the surface mass flux.

The following assumptions are made:

a) A steady state description is adopted.

b) The vertical cylinder surface is replaced by a flat plate surface
having the same length as the cylinder and a width equal to the cylinder
circumference.

¢) The pore water is assumed to have temperature independent properties
except for its density. The water flow obeys Darcy's law. The fluid
fi11ing the porous medium is assumed to be a single phase.

d) Boundary layer theory simplifications are assumed valid, see eq.
{7.3.14) below.

The governing equations are:

ML W, (7.3.1)

Conservation of Mass 3x * 3y




Conservation of Momentum (Darcy's Law)

u=-—(—E+ pg) (7.3.2)
=.k 3 7.3.3

Conservation cf Energy

A
ST . 2 = e 7.3.4
Ut Viy “VT’“e‘pcp ( }
Conservation of Species
&,y 2. .3.5
u +"ay eva (7.3.5)
Equation of State of Liquid
P =P, {1 "B(T—Tm)} (7.3.8)
where
2 2
Wl (7.3.7)
2 2
o9x

The coordinate system is shown in Fig. (7.3.1). The velocity components u,v
point respectively into the x and y direction. In the above equations
p,T,p,c‘p are the pressure, temperature, density and heat capacity of the
liquid and o its density far away from the plate. k is the permeability of
the porous medium. xe is the effective thermal conduction of water saturated
poraus medium as measured in the laboratory. u and B are dynamic viscosity
and coefficient of thermal expansion of the liquid in the porous medium
respectively. Ds is the diffusion coefficient of the diffusing species in
the liquid.

The boundary conditions for our problem are

v(x,0} = o, T(x,0) = Tys €(x40) = ¢, for x>0 (7.3.8)

U(Xr"‘, = V(X,D) = 0; T(X, ) = Tno; e(x,w) = 0, for x>0 (7_3_9)



Fig, 7.3.1.
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There will be a "s1ip" condition for the u conponent of the velocity at
the plate surface which is as yet unknown. Furthermore, the temperature .
difference (T,-T,) which depends among other parameters on the heat
release from the cylinder is also determined subsequently.

Eq. (7.3.1) can be satisfied in the usual way by introducing the

stream function ${x,y) with

u(x,y) = %3-; vixy) = - - (7.3.10)

If one differentiates (7.3.2) with respect to y, (7.3.3) with respect to
x and then algebraically adds the resulting equations, one obtains with

help of (7.3.6) and (7.3.10),

& o, ) X = o (7.3.1)

On the other hand (7.3.4) and (7.3.5), expressed with (7.3.10), give

ap AT _ 3y aT _

N a4 Ral (7.3.12)
o a8 _ B € _.n o2n .
3y X " Bx 3y eDve (7.3.13)

One has thus these three governing equations for the determination of
the unknown functions y,T and £. For the purpose of establishing the
main physical features of the solution, it is convenient to utilize the
boundary layer simplifications. These imply that the transport of mass,
energy and concentration in the major flow direction (i.e., u) is small

compared to that normal to the plate. With

2 2 2 2 2a 2a
k) ) 3°T 3T 3¢ ac

<< o« g o« 5 (7.3.14)
X 3y ’ X ayz ' ax ay



Equations 7.3.11-13 result in,

. 2
E Y .a_T_s 3 )

(oo 3 B9) 3y ” (7.3.15)
2 .

v o 3y T,

8y 9X ~ 9X 5Y “e';f (7.3.16)
2A

w 28w € .p 3E

3y ax 3 oy Vs ol (7.3.17)

These equations are subject to the boundary conditions,(see (7.3.8},

(7.3.9) and (7.3.10))

W00 L g T(x,0) = T, ; &(x,0) = ¢ (7.3.18)
X w S
3 ais“‘ - Bﬂ_a;_’wl =0, T(x,m) = Too H e(x,no) =0 (7-3\]9)

valid for xso.

Equations (7.3.15) and 7.3.16), which are coupled equations for T and y,
are solved first. One determines thereby the temperature induced stream
function P{x,y) which describes the free convection flow pattern, With
knowledge of y, one can then solve for the concentration £(x,y) separately.
For this reason we concentrate first on the solution of (7,3.15) and
(7.3.16). These partial differential equations are reduced to ordinary

differential equation by the introduction of the similarity variables
n = Ra/?2 (YD) ' (7.3.20)

v = a, (Ra)/2 (112 f(n) (7.3.21)



T-T,
8(n) = y—op- (7.3.22)
W o
eln) = & (7.3.23)
5
where
_ P8 Kk
Ra = o (i) B (T -TIL (7.3.24)

Here L is the length of the plate.and Ra the Rayleigh number of the
liquid saturated porous medium. With these variables the governing

equations reduce to

f* (n) -8 {n)=0 . (7.3.25)
8" (n) + Jz-f (nyo (n)=0 (7.3.26)
Al )+ 3 f () () =0 (7.3.27)
where
2%
A= o, ° Le (7.3.28)

is the Lewis number. The boundary conditions transform to
flo) =0 ;6(0)=13;¢lo)=1 (7.3.29)

f'(=) =0;8(«)=0;cle) =0 (7.3.30)

as can be seen by introducing the new variables into (7.3.18) and (7.3.19).
A final integral of eq. (7.3.25), which satisfies the boundary
conditions (7.3.30) for f' and 6 at n = =, is given by

f' (n) = 8(n) (7.3.31)



Since the x component of the free convection velocity is determined by

= _3_\1{: C‘_e '
u=55= (T Ra) f'ln) (7.3.32)
one observes that the normalized vertical velocity —gﬁﬂl— and
(£ Ra)

the temperature distribution 6(n) are, according to (7.3.31), of the same
form. Thus, the determination of the function f(n) is of central
importance. To obtain an equation for f(n),eliminate & between eguations

(7.3.25), (7.3.26) and (7.3.31), with the result that

3 2

d’f . 1 df _
'—§+‘2'f —2-—0 (7.3.33)
dn dn

Exactly the same differential equation arises in the problem of the
boundary layer flow of a viscous fluid over a flat plate, the famous Blasius

problem (B2). But in contrast to the boundary conditions f{o) = f'(o0) = 0,

f'(=) = 1 in that problem, the conditions for the present case read
flo) =0; f'(0) =15 f'(=) =0 (7.3.34)

The qualitative shape of the solution f(n) of (7.3.33), (7.3.34) and that
of its derivative f'(n) are shown in Fig. (7.3.2). As already stated,
the free convection induced vertical velocity component and the temperature
distribution normal to the plate are both characterized by the shape of
the f'(n) function.

Next we determine the mass transfer from the vertical surface. For

this one requires the normal derivative o¢ which in turn involves & .

y y=0 an n=0
But n contains Ra and in this Rayleigh number there occurs the as yet
unknown temperature difference (Tw-Tw). (Tw-T“) is determined by the heat

flux through the canister surface and the convective and conductive heat



transport into the pordus medium. So one must first find (Tw-Tm). The
local heat transfer from the surface of the plate is defired by

o

L
9 % oy

y=0

which with (7.3.20) and (7.3.22) yields

RwBQ) 1/2 RV

o 8'(o) (7.3.35)

Q" = - 2, (1,-1,)%2 (]'-j

where e is the effective thermal conductive of the saturated porous medium.

The total rate of heat transfer from a plate of length and width W is then

L
W -/; q" (x) dx

3 kK PoB9 12 2
U (1,12 (; —:’:) 2.1/2 o' (o) (7.3.36)

o
']

Fig. (7.3.3) shows the variation of spent fuel heat generation with time.

We now define the magnitude of the average heat flux from the entire plate as

L1
1]

WL

12
32 .89
A (T, T, (4 ﬁf—a;—) [o' ()] (7.3.37)

Hence the desired temperature difference between plate surface and the porous

media is given by

{' ( “) 2 :}?/3
(T,-1,) = :
" 4;\: % L::g [a’(c.)]2

(Tw-Tm) js seen to be a function of the average heat flux issuing from

ko) fo]]

(7.3.38)

the fuel canister and the properties of the porous medium. The assumption



(7.3.30) for c(n). The desired solution is

f"exp (- g—j:ﬂ f(s)ds) dn'

c(n) =1 -5 (7.3.40)
Ara
j; exp (_ 2—]; f(s)ds) dn'
so that the surface mass flux is
= acly) - . an dein)!
3-- Dge m chg _y dan (7.3.41)
' y=0 n=0
where ¢ is the porosity of the medium.
In view of (7.3.20) and (7.3.40).
. \1/2
3= (R L (7.3.42)
s | xL ; A" .
j:exp (- 2—]; f(s)ds] dn
The definite integral
-] n'
1) = Jj exp (- A f(S)ds) dn’ (7.3.43)

involves the functfon f(n),1.e., the solution of (7.3.33) and the Lewis

number parameter {(7.3.28).

ue
A=—E— (7.3.44)
f
We shall discuss the complete evaluation of I{A) for arbitrary A values
at a later time, but develop now the asymptotic form of this integral for
large values of A which may arise due to small values of the diffusion
coefficient in porous media. In this case the concentration boundary

layer is very thin compared with the thermal layer, as sketched ir

9.



Fig. (7.3.2). One can then approximate f(n) by the first term of its

| .
power series expansion, i.e.,

¢

f(n) = n + o(n?) (7.3.45)

If one neglects terms of O(nz).

- An2
=fe b ow o,
= E , for A large (7.3.46)
Thus (7.3.42) yields,
1/2
3 = Deecg (%%-%) , for A large (7.3.47)

If one expresses Ra by (7.3.24) one has in terms of the physical parameters

P8 1/2  Dgec
3 = Deecg (%%Eﬁ; B(T -T.) ‘;) =L (7.3.48)

where the length & is given by

Pl 172 .
13 =(11r—1k756‘ B(1,-T,) ‘;) (7.3.39)
f

The average rate of mass transfer per unit length of plate for a plate
of length L is readily computed from equation (7.3.48).
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7.4 A Model for Leach and Diffusion Rates From Glass Bodies
Paul L. Chambré’

Experimental evidence indicates that when a typical silica base glass
is brought into contact with water two physical processes occur in the
dissolution of the glass. One of these is an alkali ion transfer, such
as for exanp]e,Na+. across the glass-water interface which gives rise to
a gel-like Si02 transition layer. The second process appears to be the
corrosion of this layer resulting in the dissolution of the glass matrix.

A number of theories have been proposed, differing in various detailed

mechanistic ways, which attempt to explain qualitatively or quantitatively

various aspects of experimental observations on glass dissolution. In the

following, we develop a model which is based on only the two, generally

accepted, experimental pieces of evidence. These are

i) The movement of the glass interface with a (regression) velocity v,
which is initiated by

ii) The diffusion of an alkali ion across the glass-water interface.

Three simplifying assumptions will be made. The interface velocity is
assumed to be constant in time. The support for this assumption is indirect.
It will be shown in the following analysis that a constant regression
velocity leads to the often observed experimental result (M4) that the
fractional release of a particular nuclide f(t) follows the empirical
formula

f(t) = c]F+ c,t (7.4.1)

where c1'and C, are constants. On the other hand there exists also some
experimental evidence yielding a different time dependence for f{t)}{M3).
This has been interpreted by investigators to be due to a corrosion layer

which is developing on the glass surface, gradually increasing the resistance



of mass transfer from the interface. In the analysis, the case of accretion,
is also included and the f{t) functfon deduced. The remaining assumptions
concern the nature of the diffusion mechanism of the alkali ion. We shall
assume a constant diffusion coefficient for the ion in the bulk glass and
the gel-1ike surface transition layer despite the fact that the diffusion
coefficient is considerably larger in this layer (H2). Furthermore, we shall
ignore the effect of the negative surface potential on the ion transfer.
Such a potential 1s generated when glass 1s immersed in water. The effects
of the latter two assumptions require future study.
The Analysis

The analysis applies to a body of planar, cylindrical and spherical
shape. We take as the governing equation

2-

€ . Ja%€  macy _,z
E-p oS ARE _ (7.4.2)

Here ¢(r,t) is the concentration of the nuclide, D the diffusion coefficient
and A the radioactive decay constant if the nuclide is radioactive.

m describes the geometric character of the diffusion field. For the case

of the sphere m = 2, for the cylinder (of infinite length) m = 1 and for

the slab m = 0. r is tihe position variable within the region of interest,

t the time and R(t) the position of the movable boundary which will be

prescribed below. The initial nuclide concentration is given as c(r) so that
c(r,0) = c(r), 0<r<R(O) =a. (7.4.3)
At the surface of the solid

c (ﬁ (t),t} =0, t>0 (7.4.4)

put §f the surface concentration is instead Es # 0, it is always possible



to reduce this to the condition given by eq.(7.4.4) by taking the reference
datum for the concentration at Es, provided A = 0. In addition to the
above conditions, one prescribes in case of the sphere and the cylinder
that ¢ (0,t) is bounded and in the case of the slab of thickness 2R(t) that
ac (0,t)/ar vanishes for all times.

The equation for the moving bound&ry R(t) is based on the simple
hypothesis that

R(t) =a-vt, ogtg?v (7.4.5)
where a is the initial'position and v the surface regression velocity.

A regressive surface at time TL = 3y the finite sized body has completely
dissolved. This 1imits the time span for the solution. If there is
accretion, we take v negative in the expression for R(t) and consider

t 3 0. The equations(7.4.2) to (7.4.5) completely define the model.

The solution for the different geometric configurations (fig. 7.4.1a) is
carried out below. It turns out that the solutions for the sphere, cylinder
and slab are very similar. The case of the sphere 1s treated in detail,
then the changes which need to be made in case of the slab are indicated
and the final solution is given. These results are exact and are valid
for any range of the parameters entering the problem. The cylinder is
analyzed by an approximation method which 1s valid for the large values
of the parameter (va/D) usually encountered in practice. By forming the
product of the solutions for slabs of different or identical widths one
obtains at once the soluticn to the case of a parallelopiped or cube,
respectively. Similarly multiplicatiun of the slab and (infinite)
cylinder solutions yields the solution for a cylinder of finite length
(fig. 7.4.1b). These results are consequences of some well known theorems
and are valid for a time span in which the smallest initial dimension of

the body has been reduced to naught by the leaching process.
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The Sphere
Let

c(r,t) = exp (lt)rc':sp(r.t) (7.4.6)

then egs. (7.4.2) to (7.4.5) reduce with m = -2 -to

2 :
g—c=D-a—;-, Ogr<a-vt, 0<t <a/jvy (7.4.7)
c(r,0) = refr) = g(r), 0Ogrqa, (7.4.8)
cla-vt,t) =0 0gtga/ivi (7.4.9)

and on account of the boundedness condition on ¢ (0,t),
c(0,t) =0, O <t <asjv| (7.4.10)

Now the Kelvin function,

Z(ﬂDt) 2(n0t) /2 ( ID_)

is a particular solution to gq. (7.4.7). By the super-position principle
and the method of images one can construct a more general solution to

eq. (7.4.7) which satisfies conditions (7.4.8) and (7.4.10) as a detailed
verification shows. .

This solution has the form,
1 2 . ® .
elrt) = 37z {{ o(s) § (ritis) ds + [ h(s)S(ratis)as )
(7.4.11)

Ogrga-vt, Ogtsa/yvy



where the source function

2 2 ‘
S(ratis) = exp [- ii-r:)—] - exp [- 'LZ%L] : (7.4.12)

In eq. (7.4.11), g(s) is the initial concentration distribution and h(s)
is an as yet unknown source density function which is determined by imposing

the 1ast remaining condition on the moving boundary, i.zs., eq. (7.4.9),

fag(s)s(a-vt,t;s) ds + j:h(s)s(a-vt,t;s) ds = 0. (7.4.13)
o

Now the functions g(s) and h(s) are partly at our disposal.  Since g(s)
is prescribed only for 0 < s < a, we analytically continue it in the

following manner

0, Is] > a
a(s) = . (7.4.14)
-g(-s), [s] <a.
Similarly h(s), which must be determined according to the solution (7.4.11)
and the condition (7.4.13) in the span a < s < = , is chosen in the remaining

part of the range as

h(s), s>a
h(s) = ¢ 0, |sf < a
arbitrary, s < -a. (7.4.15)

With this choice one can now combine both integrals in eq. (7.4.13) by
elementary transformations resulting in integrzls with the same integration

limits, i.e.,

© 2
JE {h(s+a) exp (- %5) - h(s-a) -g(s-a)} .exp (- %ﬁf’)ds = 0. (7.4.16)



The satisfaction of this condition requires that h(s) must obey the
ordinary difference equation,

h(s+a) exp (-vs/D) -h(s-a} = g(s-a). (7.4.17)
The solution to this equation can be constructed in successive s spans of
width 2a, utilizing the properties of the init{al distribution g(s) and

the continuation properties of h(s) with the result

h(s) = g(s-2na) exp nv(s-na)/D],

{(2n-1)a <s < (2n + 1)a, n=1,2,... (7.4.18)

Having found the unknown source distribution h(s), c(r,t) given by
eq. {7.4.11) can be shown to satisfy all the conditions of the problem.
There results, on returning to the original variables, after same minar

simplifications

. _ At a Y-
Egplrst) = ﬁﬁ;r}?{ [asc(s)exp - [%'D%L] ds +

+ 3 o (stna)/D| S (r.,t;s +2na) d
2 :[ sc{s) exp Evsna)/_] {r,t:s +2na) s},

0grga-vt, 0gtga/iv (7.4.19)

For bounded c(s), the series can be shown to converge for the indicated
t range, i.e., for all times for which sphere material remains. It should
be noted that, in view of egqs. (7.4.8) and (7.4.14), the initial distribu-
tion c(s) must be an even function about s = 0.

A case of practical interest is the one where the initial concentration

1s uniform throughout the sphere, i.e., c(r) = ¢, for 0sr¢a. The



integration in eq. (7.4.19) then yields the following explicit result for

the concentration in the interior of the sphere,

(_ ) = E ’T) ex -KQZD
CsplaeT r/a

<{2(r/a) - (erfc g - erfe 52) - 21 (1erfc € - ierfc 52) -

- nE] [:(erfc 8oy * erfc 81} exp (-nga\) -
(7.4.20)

-(erfc g,, + erfc 8,,) exp (-ngs,) +
+ 202 (derfe o, - ierfc 6y;) exp (-ngsy) -
T 21 11} exp (-ngs,

2 (ierfc oy, - ferfc 0y,) exp (-ngs,)3

where

CnQ-gr) + (-1)' + (1) (r7a))
ij . (211/2

8; = n(1-gr) + (-1)1(r/a), (7.4.21)
= {4 g-lf‘!r[all
g = (21 / )

and T = Dt/az; B = va/D, the interface Peclet number. (7.4.22)

erfc (2) and i"erfc (z) denote, respectively, the complementary error

(4,

function and the m repeated integral error function which are tabulated in



For 8 = 0, this reduces to

2
g (51) -A%r w
sp'a = .2 2n+l)-rfa _
= e 5 ’E,o [erfc -(—*7-2-L21
(2n+le + r/a
- erfc
: et ]}

The spatial distribution of the nuclide concentration given by eq. (7.4.20)

(7.4.22a)

is shown in fig. (7.4.2) for a specific value of the dimensionless time

(r = 0.01) and for different values of the dimensionless regression
parameter 8. DOne observes as 8 increases that the regression nf the inter-
face steepens the concentration gradient compared to a stationary interface
(g =0). Fig. (7.4.2) also shows the effects of accrsiion. In contrast to
the previous case the concentration profile is S-shaped and the surface
mass flux shows a marked decrease which indicates a resistance to mass
transfer.

A quantity of primary interest to the experimentalist is the fractional
release of the radionuclide due to the combined effects of diffusion and
interface movement. This may be obtained by integrating the concentration
at any time t over the volume of the sphere, dividing the result by the
initial amount of diffusant present and subtracting this quotient from
unity. Thus for the case of an initially uniform concentration,

() =1 - g{r)/q,, (7.4.23)
(1-81)a 2.
where Q(1) = 4 (r/a,z) dr,
T '£ mrCg,(rfa,T) dr

Q- %msco ' (7.4.24)



f(1) has been evaluated numerically with help of eq. (7.4.20) for A = 0.

Fig.(7.4.3) shows the numerical results of the evaluation of eq.(7.4.23) for a
number of regression Peclet numbers 8 and for a limited range of 0 < T < 2x10'3.
One observes that the fractional release is initially a linear function of
1]/2 and then it begomes quadratic in 1]/2. This is exactly the behayior
observed in many Taboratory leaching experiments as already stated in

eq. (7.4.1). More extensive numerical evidence will be given in Section

(7.6). To pressage this result, we will show here that eq. (7.4.23) is

closely approximated by
12 ‘
_ [Dt 3 fvt +
f(t) = 6(——“2) *3 (—a )o stst 04T (7.4.25)

for both regression (v>0) and accretion (v<o).
The Slab

The system of egs. (7.4.7) to (7.4.9) describes the diffusion process
in a slab of half width (a-vt), with an initial concentration distribution
g(r) = c(r), in absence of radioactive decay. If the solid is exposed to
regression.over both faces, with the center of the slab located at r = 0,
the boundary condition is replaced by the symmetry condition

aésL(o,t)

o =0, 0gtg a/lv] (7.4.26)

In order to satisfy this relation, one chooses as the source function

2 2
5(r,t;s) = exp |:- %—B—%—-} + exp !-- -(-rTi-)—] . {7.4.27)

fnstead of eq. (7.4.12). The analysis proceeds then along the same lines as



for the sphere. However, the function g(s) must now be defined as follows:
0, Is| > a
g(s) = (7.4.28)
g(-s), |s| < a.
The final result is

a 2

® a
+ -y" + . ot
n{_.'] (-1) '[aC(S) exp E\v(s na)/D] s{r,t;s + 2na) ds}
(7.4.29)

0‘< [ri§ (a'vt), 0‘<t\<a/]v|

For a bounded even function c(s) this result can be shown to converge to
the solution of our problem. Again if the initial concentration is
uniform throughout the slab one obtains with the shorthand notations

introduced in egs. (7.4.21) and (7.4.22) the following result

E(g,r) = Esl_(!"/a.'r)/c0 = %—exp (-AaZT/Dj {{erf e, + erf e1)

+

§] -n" [(erf Byy ~ erf 612) exp (-ngs;) + (7.4.30)
n:

+

(erf 8y, - erf 812) exp (-nBGz)]} .
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for B = 0, this reduces to

(2nt1) - £ (2n+1) + T
5L(‘ =exp(‘7\a T){ 2 -n" erfc ST 2 +erfc 17 a]
T T

(7.4.30a)
The total fractional release is given by eq.(7.4.23) with
(1-Br)a -
ry =2 f & (r/a,T) dr (7.4.31)
(]
Qo = Zaco.
Performing the integration one obtains
1/2
f(r) = Bt+ 1—]/2 [ierfc (Biz—) - ierfc (3'—%2—] +
o nel
ng] S:-;-gs—— exp [ne(n-l)]. (erf uyq- erf "12) + (7.4.32)
+ exp [ns(nﬂ)]. (erf Hpp - erf uﬂ) +92(n) - Ql(n) }
where . )
woz e ente ()3 (e
ij~ 21'1/2
) (7.4.33)
- i j 1-g7) 2o+ (1) J (1)
g(n) zexp |- ng(1-g0) [ (Y]] B (1)) erve [x_&_,%_lu]
! { (0] 31 2/

For 8=0 this reduces to

£(1) = zTIIZ[r+ 2 5_‘, {-1)" derfe 172] (7.4.34)



12.

A numerical evaluation for A = 0 is shown in Fig. 7.4.4 for some ranges
in g and 1.
In section (7.6) we will give numerical evidence that eq. (7.4.32)

can be closely approximated by

1/2
£(t) = 2 (D—tz) + %("T‘)% (7.4.35)
ma a

The conclusions for the slab are thus quite comparable to those obtained

for a sphere.

The Cylinder

In the case of the cylinder one can proceed in the same manner as
above. Instead of the source function eq. (7.4.12) one utilizes the

fundamental solution.

S(ratss) = (s/(20t)} exp [- (rBes?)zant]]. 1 (rs/(200))  (7.4.36)

where Io(z) is the modified Bessel function of the first kind, zero

order. However, this case leads to a rather complicated integral equation
for the unknown source density h(s) and for this reason the following
approximate solution is recommended.

For large values of the parameter 8 = va/D (about 200 or more) the
interface regresses at such a rapid rate compared to temporal changes in
the diffusion pattern that the jatter is affected primarily in a very
thin boundary layer of thickness § close to the surface as the calcula-
tions show, see Fig. 2. Hence, in order to describe the rate of the

diffusion of the ion through the interface, it is important to take



is made that the average heat flux varies so slowly with time so that
(7.3.38) can be applied to a quasi-steady state. Fig. (7.3.4) shows a
typical trend for this temperature difference 25 a function of time for a
given Q" (t) descriptive of a spent fuel. The temperature difference °
drops to 100°C in about 130 years. The calculation is based on the follow-

ing parameters values

A= 2.894 w/m°k - (1) . B=2.07x 107" /%
k=2.96 x 1071 & (1) L=47 m (2)
= 5.5 x 10t kg/m sec r=1.78x10" m (2)
bn = 10° ka/m® Q (o) = 5.5 x 10° w (2)
o = 2.184 x 103 J/kg °K 8'(0) = 2L

Before proceeding with the mass transfer analysis we estimate next
the magnitude of the vertical slip velocity component u for the above
data. From (7.3.32) and (7.3.34) the free convection velocity component

along the plate surface is given by

o (%)

= 089 (T,T.) ﬁ- (7.3.39)

For a temperature difference of 100°C one computes u = 0.34 m/yr. This is
competitive with commonly assumed groundwater flows of 0.1 to 1 m/yr which
are used in the far-field calculations. Fig. (7.3.4) gives the magnitude
of the {ree convection velocity as a function of time. '

The Tocal mass transfer rate from the plate is now computed from the

solution of {7.3.27) subject to the boundary conditions (7.3.29) and



account of the steep concentration gradient close to the boumdary. For

this reason one introduces the transformation
172 -
c{r,t) = exp(At)r ccy(r.t) ‘ (7.4.37)

into eq.(7.4.2), where now m=1. There results

2
ac _ 3 C C
8_% = D(;z.-p 472-) . » (7.4.38)

Now close to the boundary where the diffusion effects are most prominent
the two terms on the right hand side are of entirely different order of
magnitudes, 3%c/ar? = 0(1/6%) and c/ar? = 0(1/r%). Since & is very
small compared to r, the sécond term §s dropped in favor of the first
and there result the eqs. (7.4.6) to (7.4.10) with the initial distri-
bution g(r) = r]/2 c(r). Hence the approximate solution to the cylinder
problem can be obtained by simply replacing the term sc(s) by s”zc(s)
on the right hand side of eq. (7.4.19). It is worthwhile to point

out that if one merely drops the term (1/r)3c/5r in eq. (7.4.1) in
favor of aZE/arz, one obtains a less accurate approximation to the
solution than the one given above.

The exact analysis of the cylinder is planned for the future.



7.5. External Mass Loss Rate and Leach Time for a Glass Cylinder

7.5.1. Introduction

Two mathematical models for the rate of mass transport from a waste

" eylinder surrounded by groundwater in an infinite porous mediwn have been
developed in sections (7.1) and (7.2). In the first model, the cylinder is
approx1ma§e& by a prolate spheroid and the rate of mass transfer of a
species dissolved from the waste solid is assumed to be governed by the
rate of molecular diffusion of the dissolved species into stagnant ground-
water. This theory is 11lustrated by analyzing the steady-state maﬁs
transfer rate from the cylinder with the dissolved species having a
constant concentration on the cylinder surface. The maximum value of this
surface concentration is the solubility of the dissolved species in ground-
water, and this saturation concentration at the surface is assumed in the
illustration.

In the second model, the mass transfer of the dissolved species from
the waste surface is due to both molecular diffusion and forced convection
by the groundwater moving in D'Arcy's flow in the surrounding porous medium.
Again, the theory is applied to the steady-state mass transfer with a
constant saturation concentration of the diffusing specie on the cylinder
surface. The waste cylinder is idealized as a cylinder of infinite length,
and the groundwater is assumed to flow perpendicular to the cylinder axis.
This allows one to obtain the vate of mass transfer from a unit length of
the cylinder. Numerical calculations are made for a cylinder with the
same radius as that of a cylindrical waste form with end effects accounted
for.

Calculations are made for the rate of dissolution of silica, in

amorphous form, from a bovosilicate glass cylinder, and for the rate of



dissolution of low-solubility radioelements in the borosilicate glass,
using the two models described above.

In Section 7.5.2, the steady-state mass transfer rate, mass transfer
rate per unit length, and average surface mazc flux of a species from a
prolate spheroid and slender cylinder which is defined as a cylinder with
a ratio of height to radius of 10 or greater are given. In Section 7.5.3,
the leach times of the prolate spheroid and slender cylinder are derived,
subject to the assumptions that the waste form consists of a single species
ard that the ratio of height to radius of the cylindrical waste-form is

constant during the leaching process. In Section 7.5.4, the governing

equations for obtaining the dimensions of the prolate spheroid approximating

a cylindrical waste form are given. In Section 7.5.5 we present the
dimensions of the cylindrical waste-form, calculated dimensions of the
equivalent prolate spheroid, diffusivity of a species in a water-saturated
porous medium, solubility of amorphous silica in water, and borosilicate
glass density. In Section 7.5.6, a comparison between the dissolution rate
and the leach time of different waste forms consisting only of amorphous
silica are made. These sections deal primarily with the mass transport by
molecular diffusion.

In Section 7.5.7, the steady-state mass transfer rate by molecular
diffusion and convection are given. The mass transfer rate for a finite
cylinder is derived subject to the assumption that the surface mass flux
from the ends of the cylinder has the same value as the surface mass flux
of the infinitely long cylinder. In Section 7.5.8 the leach time for the
cylinder is derived. Section 7.5.9 contains data used for numerical
evaluation of mass loss rate and leach time. In Section 7.5.10 a compari-
son is made between surface mass flux for diffusion and for the diffusion-

convection model.



In Section 7.5.11, the diffusion and diffusion-convection models are
applied to a silica-base glass cylinder containing low-solubility radio-

elements. Section 7.5.12 is the conclusion of the abave analyses.

7.5.2. Dissolution Rate Due to Molecular Diffusion

At stea&y state the mass transfer rate per unit area (surface mass
flux) is nonuniform for the prolate spheroid and depends on the position
on the surface. The mass flux has a maximum at the poles and a minimum at
the equatorial plane (see Fig. 7.1.1 in Section 7.1). The total rate of
dissolution ﬁbs of a given species of effective surface concentration Ns is
obtained by integration of the surface mass flux over the surface area of

the prolate spheroid, and is given by (see Section 7.1)

. 4ne Df Ns f
M = o (7.5.1)
Iog[coth(-zs—)]
where:
ﬁps = the total mass loss rate of the prolate spheroid, g/sec

D¢ = molecular diffusivity of diffusing specie in water, cmZ/sec
€ = porosity _

Ns =Cg v C, T effective surface concentration, g/cm3

solubility 1imit in groundwater, g/cm3

(2]
u

concentration in groundwater far from waste surface, g/cm3

(g}
n

surface shape factor of the prolate spheroid defined in

Section 7.1 by Eq.(7.1.4)

2
u

f = focal distance of the prolate spheroid, cm
For a slender cylinder, i.e., L 3 10r, Eq.(7.5.1) simplifies to
2ne Df Ns L

I Tl 7.5.2
"¢ " T og(h) 782



where: ‘
i%c = dissolution raty for a slender cylinder, g/sec
L = cylinder length, cm '
r = cylinder radius, cm
From Eq.(7.5.1) the dissolution rate per unit length and the average
dissolution rate per unit surface area of the prolate spheroid are given

by Eqs.(7.5.3) and (7.5.4), respectively

. 2me Do N '
e = L (7.5.3)
cosh(us)Xog[coth(1§)]
2e Do N_
Tps = 1f 2 = (7.5.4)
) a s -
b{b+ g sin e)log[coth(jr)]
where:

ﬁﬁs = mass loss rate per unit length of the prolate spheroid,

g/cm sec
Eps = average surface mass flux of the prolate spheroid, g/cm2 sec
e=f/a

a = semi-major axis of the prolate spheroid, cm

o
n

semi-minor axis of the prolate spheroid, cm

7.5.3. Leach Time Derivation

The leach time T is defined as the time interval between the beginningA
of dissolution and the completion of dissolution of the waste form. Assum-
ing here a waste form consisting of a single species, the time-dependent

waste form volume V(t) is given by

1& (oV(E)) = - it) (7.5.5)



where:
p = vaste form density, g/cm3

V(t) = waste form volume at time t, cn’

f(t) = mass-loss rate at time t, g/sec given by Eqs.(7.5.1) and (7.5.2).
The initial condition is V(0) = Vo’ where V0 is the initial volume of the
waste form.

Here we assume that at any time t the dissolution rate can be approxi-
mated by the steady-state solutions, Egs.(7.5.1) and (7.5.2), so that
Eq.{7.5.5) can be solved for V(t).. From definition of the leach time T
we have that

V(iT) =0 (7.5.6)

and leach time is obtained by solving Eq.(7.5.6) for T.

We have for the slender cylinder
Ve (t) = mré(t) L(t) (7.5.7)

and from (7.5.2}
. 2ne D¢ N L(t)

with the initial condition (I.C.) that

(7.5.8)

r{0) = o initial radius, cm

L(0) = Ly initial height, cm

Substituting Eqs.(7.5.7) and (7.5.8) into (7.5.5) yields

2me Dg Ng L{t)

d 2 '
o5 [p 7 rS(t) L(£)] = - (7.5.9)
ot 1°9[I§=E



with 1.C.

r{0) = o

Lo) = L,
To solve Eq.(7.5.9), it is necessary to have another relation between L(t)
and ﬁ(t); We assume that the ratio of height to radius remains constant

during the leaching process, i.e.,
L(t) = L i) (7.5.10)
o Ty

Substituting Eq.(7.5.10) into Eq.(7.5. 3 ) and solving for r(t) results in

1/2
4eD. Nt
__fs_] (7.5.11)

r(t) = "o [1 - "

T
0
I," e 1og(a)

From the definition of leach time we have from (7.5.6-7) that r(T..) = 0,

so that
2 Lo
: 3p o Tog N
- 0
Tsc = —-—-;—Ejjf—ns—— (7.5.12)
where:
TSc = Jleach time for the slender cylinder, sec

In deriving the leach time of the prolate spheroid it is assumed that
the ratio of the minor axis to the major axis is constant during the leach-

ing process, resulting in the following equation (see Appendix A for details):

a,
_ pbo2 cosh(a;)leg [?oth(jg)]
ps 2 € Df Ns

(7.5.13)



where:
Tps = leach time for the prolate spheroid, sec
b0 = initial semi-minor axis of the prolate spherovid, cm

7.5.4. Approximating a Cylinder by a Prolate Spheroid

We assume that the prolate spheroid has the same volume and surface

area as the cylindrical waste form. Thus, equating their volumes,
4fab?anr? L (7.5.14)

and equating their surface areas
2 mb(b+d sin™ e) = 2 5 r(reL) (7.5.15)

Solution of Egs.(7.5.14) and (7.5.15) for a and b defines the desired
prolate spheroid. As is seen from the above equations, a closed-form
mathematical solution for a or b cannot be obtained, so a numerical analysis

is required.

7.5.5. Parameters of the Problem

The following table shows the physical characteristics of the waste form
used in the numerical calculations:

Table 7.5.1. Physical characteristics of waste forms (R1)

Commercial Defense

high level high level
Canister dimensions waste waste
Inner diameter, cm 30.5 59.1

a a

Length, em 2.4x102Y 2.4x102Y
Surface area, cm 2.446x10° 5.005x10"
Volume, cm? 1.75x108 6.58x105
Ratio L/r 15.7 8.1

&/ Assumed that 80% of waste canister is filled with waste glass.



The dimensions of the commercial high level waste form are used in numerical
evaluation of the slender cylinder mass loss rate and Teach time, listed in
Table 7.5.4.

Table 7.5.2 is obtained by approximating the waste forms by a prolate
spheroid using Eqs.(7.5.14) and (7.5.15}, with the aid of a (computer)
nrogram described in Appendix C.

Table 7.5.2. Physical dimensions of prolate spheroid approximating
cylindrical waste forms.

Waste Forms a, cm b, cm c, Cm e %
Defense high-
level waste 158 31.5 155 0.980 0.202
Commercial high- .
level waste 145 16.9 144 0.993 0.117

The molecular diffusion coefficient of most nuclides in water-saturated
porous media is usually lower than that in the unconfined water. The
diffusivity of most species in water is between 1 to 5x10'5 cm2/sec (W2).
The molecular diffusion coefficieﬁt of silicon dioxide and other species

5

in water is taken to be 1x10” cmz/sec.

Table 7.5.3 shows the solubility of two forms of silicon dioxide, i.e.,
a quartz and amorphous silica, in water at a pressure of 0.1013 MPa, pH of 7.0,
and at different temperatures. The solubility of silicon dioxide as a

function of pressure and temperature is given (W1) in Appendix B.

Table 7.5.3. Solubility 1imit of silicon dioxide in water
Temperature, °C
25°¢ 100°C

Alpha quartz, g/cm3 ax107° 5x107°
Amorphous silica, g/em®  1.2x107%  4.1x10"*

A surface concentration of 1.2x10'4 g/cm3 and a density of 2.8 g/cm3 are
chosen for a pure amorphous silica cylinder. This density corresponds to that

of typical borosilicate glass (T1),(M3).



7.5.6. Numerical Results for Dissolution Rate and Leach Time for a Pure
Amorphous Silica Cylinder

Table 7.5.4 shows the calculated dissolution rates » 4 leach times,
using Eqs.(7.5.1), (7.5.2), (7.5.12), and (7.5.13) with the aid of a computer
program {Appendix C). Aporosity of 0.01 and the solubility of amorphous
silica from Table 7.5.3 were used. The concentraf'ion of silicon dioxide in
the groundwater far from the waste form is assumed zero.

Table 7.5.4. Mass loss rate and le.ach time for a pure amorphous silica in
stagnant water at 25° C and porosity of 0.01.
Mass loss rate, g/dsy Leach time, yr

Slender cylinder 5.6x107 3.54x10°
Commercial high -4 6
level waste 6.6x10 3.03x10
Defense high -4 6
level waste 8.8x10 _ 8.58x10

A1l three waste forms yield similar results. There is reasonable
agreement of mass loss rate and leach time between a prolate spheroid
approximating the commercial high level waste form and the slender cylinder.
Thus, €gs.(7.5.2) and (7.5.12), derived for the mass loss rate and leach

time of the slender cylinder respectively, can be used.

7.5.7. Dissolution Rate Due to Molecular Diffusion and Groundwater Motion

The mass loss rate per unit length of an infinite cylinder with ground-

water flow normal to its axis is given by (see Section 7.2)

% _ 8 172 s
m = De e Ny (Pe) /“ , valid for Pe > 4 (7.5.16)

ﬁ& = mass loss rate per unit length of cylinder, g/cm sec
Pe = Ur/Df, Peclet number

U = groundwater pore velocity, cm/sec



From Eq.(7.5.1), the mass loss rate per unit surface area of the cylinder is

obtained

- g (UDs)\1/2
JC = —372-8 NS (T‘) , Pe 34 (7-5-17)
n

where:

-
jc = E%F = mass loss per unit surface area of the cylinder, g/cm2 sec
From this, one obtains the dissolution rate for a cylinder of length L,
subject to the assumption that the mass flux from the ends of the cylinder

has the same value as the surface mass flux from the cylindrical surface.

The result is

m, = /i_ Ds & Ng (ret) (Pe)!/2 , pe > 4 (7.5.18)
n

where ﬁc = dissolution rate from cylinier, g/sec

7.5.8. Leach Time for a Cylinder, Diffusion and Convection

As a result of dissolution, the radius decreases with time as does the
Peclet number. The leach time T is defined as the time interval from the
beginning of the steady-state dissolution of an infinitely long cylinder
until the cylinder has completely dissalved. For simplicity it is assumed
that Eq.(7.5.16) is also valid for Peclet numbers less than four. The

following expression for the leach time is obtained (see Appendix A for

derivation).
7r3 o l‘°2 Ur‘o
Tc S 7y , Peo = 5= (7.5.19)
6e Df NS Peo f
where:
Tc = leach time for the cylinder located in flowing groundwater, sec
r_= initial radfus of the cylinder, cm

10.



7.5.9. Parameters of the Problem

Groundwater pore velocities of 10, 5, and 1 m/yr are assumed. The radius
of the cylinder is 15.2 cm, which is the same as that of a commercial high
level waste glass cylinder. The cylinder consists of silicon dioxide. The
surface concentration of silicon dioxide is 1.2)('(0'4 g/cm3 and the concentration
of silican dioxide in the groundwater far from the cylinder is assumed to be
zero. The diffusivity of Si0; in groundwater is taken to be 1x10'5 cn?/sec.

The porosity of the medium is 0.01.

7.5.10. Numerical Results for Surface Mass Flux

In Table 7.5.5 are presented the calculated average surface mass fluxes
for diffusion and convection in flowing groundwater (Eq. 7.5.17) and for
diffusion in stagnant groundwater (Eq. 7.5.4), using the computer program
described in Appendix C. A porosity of 0.01 is chosen.

Table 7.5.6 Average surface mass flux of silicon dioxide g/cm2 day for

the diffusion and diffusion-convection models, porosity = 0.01,
N = 1.2x107 g/cm3, Dg = 11072 cn’/sec, r = 15.2 cm, and

L=2.4m .
Groundwater pore velocity, m/yr
10 5 ] o/
Surface mass flux, g/cn’ day 3.5x107  2.5x107 1.x077  2.7x1078

a/Molecular diffusion model, Eq.(7.5.4)

For the pure amorphous silica cylinder (r = 15.2 cm) emplaced in a medium with
porosity of 0.01 and groundwater pore velocity of 10 m/yr, from Eq.(7.5.19), we
obtain Tc = 2.3x105 yr. The proper value may be less, if an accurate solution
for Pe< 4 were available. Such an analysis is presently being completed.

For example, from Eq.(A.29), we find that after 1.7x105 years the cylinder
radius has decreased from the initial value of 15.2 cin to 1.2 cm when the

Peclet number becomes four.



12.

7.5.11. Solubility Limited Dissolution of Silica and Low-Solubility Radio-

elements in a Silica-Base Glass Cylinder

In the previous sections two mathematical models of dissolution from a
cylinder with only one diffusing component were consfdered. In this section,
a silica-base glass cylinder containing additional lcw so’lubﬂity components ,
such as various radioelements, is considered.

The time-dependent fractional dissolution rate of component j is defined

as
f:j (t) = m; (t)/ "_1 (t) (7.5.20)
where:
f’j (t) = fractional dissolution of component j at time t, 1/sec
fnj (t) = dissolution rate of component j at time t given by

Eq.(7.5.1) for molecular diffusion and Eq.(7.5.18) for the
molecular diffusion-convection models, g/sec

M. (t) = \Ij (t) n; (t) = mass of j at time t in glass, g

J
VJ- (t) = volume of undissolved waste at time t, o’
ng (t) = density of j in undissolved solid waste at time t, g/cm3

Substituting the ﬁlj (t) given by Egs.(7.5.1) and (7.5.18) into (7.5.20) yields

e e
—f ~ ____, molecular diffusion
" b? log[coth(%i)]
. ) s,

fiit) = —¢ .
i n;(t) 3o g2
8e D (Pe’) " (1+D)

."3/2 rz , molecular diffusion-convection

PeJE%ZtI
f



where:
N. ; = difference between the concentration of j in the groundwater
on the waste surface and concentration of J in groundwater far

from waste surface, g/cm3

<,
]

diffusion coefficient of specie j in groundwiter, cmzlsec

T leach time given by Eq.(7.5.13) and Eq.(7.5.19), sec
In the above equation it is assumed that the ratio of the major axis to the
minor axis of the prolate spheroid is constant during the leaching process.
In Eq.(7.5.21) r and b are functions of time, with functional forms given
by Eqs.(A.29) and (A.10), respectively.

To apply Eq.(7.5.21), it is assumed that the rate of bulk dissolution
of the solid waste is controlled by dissolution of the silica matrix, i.e.,
the preferential release of a waste-component by diffusion in solid is
neglected. As the silica matrix dissolves, all the components in the silica
matrix are released congruently from the solid but are not necessarily
dissolved. If the sulubility of an individual waste component is so low that
its fractional dissolution rate is less than that of the waste matrix, then
precipitates of the low-solubility component will form. It is assumed that
the precipitates remain on the waste surface and slowly dissolve at a rate
given by the rate of mass transfer of the low-solubility species into the
surrounding liquid, with the concentration of the low-solubility species in
the liquid adjacent to the waste surface given by the solubility of that
species in groundwater. The possibility of forming colloids or other non-
dissolved suspended particulates within the groundwater is neglected.

These assumptions can be written as

i’j(t) = Min (f (t), 1'=j (t)) §=1,2,...N (7.5.22)

silica
where:

3

Min (X,Y} = minimum value of X or Y

13.



For numerical demonstration we consider a borosilicate waste glass with
r=15.2 cmand L = 2.40 m emplaced in a porous medium with a porosity of
0.01 and groundwater pore velocity of 1 m/yr. The concentration of each of
the components in the groundwater far from waste cylinder is assumed zero.
The molecular diffusion coefficient in groundwater is assumed to be 'Ix'IO's
cmelsec for all the diffusing components.. The initial inventories and solu-
bilities of constituents in groundwater and the corresponding calculated
fractional release rates are given in Table 7.5.7. Table 7.5.8 shows the
calculated fractional release rate of the constituents from the above waste
‘glass in absence of groundwater flow. For this case the prolate spheroid
has the same volume and surface area as the waste cylinder.

Table 7.5.8 also shows the experimental results of fractional release
rate for some radionuclides{M1). The experimental results are adjusted for
the surface area of the waste cylinder on the assumption that the release
rate is proportional to surface area exposed. Comparison between these
calculated values indicate that in the repository conditions dissolution of
the low-solubility radionuclides is controlled by the concentration boundary

layer and not by the kinetics inside the glass matrix.

7.5.12. Conclusion

Two solubility-limited dissolution models were developed in Sections 7.1
and 7.2. The models permit one to calculate the steady-state dissolution
rate Sf a diffusing species from a cylinder which is embedded in a water
saturated porous medium. In one model the mass loss is due to molecular
diffusion only, while in the other it is governed by mclecular diffusion
and groundwater convection.

The models are applied to an amorphous silica cylinder embedded in a
medium with porosity of 0.01. The cylinder radius of 15.2 cm and height

of 2.4 m are used, which are dimensions of a commercial high level waste

14,
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glass cylinder. For the diffusion model an average surface mass flux of
2.7x1078 g/cm day and leach time of 3x108 yr are calculated.

The models are applied to a borosilicate high level waste glass. The
fractional release rates of some low-solubility components are calculated.

The numerical results indicate that if the solubjlity of these constituents is
low enough, and their 'In'lt'ial inventories high enough, they will not initially
dissolve congruently with the waste matrix. Comparison of fractional release
rates due to diffusion and those due to diffusion-’convection indicates that
the aroundwater pore velocity of 1 m/yr causes a four fold increase in
dissolution rate. This indicates a narrow range for dissolution rates
obtained by the two models.

Comparison between calculated fractional release rate and experimental
values indicates that for low-solubility glass components the dissolution
rate may be controlled by concentration boundary layer, porosity of the medium,
and groundwater pore velocity and not by kinetics inside tﬁe glass matrix
or solid-1iquid interactions. Therefore, interior cracks of the waste solid,
devitrification, and other mechanisms that could increase the rate of solid-
1iquid interaction would not be expected to affect the solubility-1imited
dissolution rate, unless they have some affect on the solubilities. If the
solubility is sufficiently large, then the kinetics of interaction between

the solid waste and water may be dominant.



Table 7.5.7 Calculated fractional release rates for borosilicate glass
waste in flowing groundwater.

Waste cylinder: r = 0.152 m, L = 2.40 m, fission-product and actinide oxides

from 460 kg of uranium fuel.

Groundwater pore velocity of

1 m/yr.

Initial species

concentration Fractional

in the waste, Solubility, Dis?olution rate,

Constituent  g/cmd g/cm3 yre

si0, 1.6 a/ ot ¢ 3.4x07®
Te 1.92x1073 b/ 3070 & 7x1078
v 1.22x10°2 &/ 2x107? &/ 8x10™9
Np 1.92x1073 2.40 Y 5750710
Pu 1.15x107% &/ 1070 ¢ ax1077
An 3.56x107 ¥/ 18107129 2330710

a/ Referance (M2).

b/ Assumed 0.5% U and Pu and all fission products and actinides (B1).

¢/ For amorphous 5i0, (S1).
d/ Reference (K1),

16.
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Table 7.5.8 Calculated fractional dissolution rates for borosilicate glass
waste in stagnant groundwater.

Waste cylinder: r = 0.152 m, L = 2.40 m, fission-product and actinide

oxides from 460 kg of uranium fuel,

Initial specie -1
concentration Fractional dissolution rate, yr
in the wgste. Solubil;ty. o/
Constituent g/cm g/cm Calculated Observed =~

si0, 1.6 b/ 120t Y g 1.6x1073

Te 1.92x10°3 ¢/ .0x09 ¢ .80 -

U 1.22x102 ¢/ 2.0x0% & q.9x07° 1.5x10°°

Np 1.92x1073 &/ 2400 1sa0® 6.6x10"%

Pu 1.15x107% &/ 1.0x10° ¢ q.oxi077 2.6x107°

An 3.56x107% &/ 1.8x10°12 ¢ 5.ex1071 2.7x1078

a/ Reference (M1).

b/ Reference (M2).

¢/ Assumed 0.5% U and Pu and al1 the fission products and actinides (B1).
d/ For amdrphous $10,.

e/ Reference (K1).



7.5.13 Nowenclature

a Semi-major axis of thg prolate spheroid cm

b | Semi-minor axis of the prolate spheroid cm

b, Initial seni-minor axis of the prolate spheroid cm

Cg So]ub111£y 1imit in groundwater g/cm3

Coe Concentration in groundwater far away from waste surface g/cm3
D¢ Molecular diffusivity in water cmZ/sec

D; Molecular diffusivity of component j in water cmzlsec

e Eccentricity of prolate spheroid‘

f Focal distance of the prolate spheroid

f&(t) Fractional dissolution rate of component j at time t sec™|

jc Average surfacemEass flux of infinitely long cylinder in flowing
groundwater g/cm‘sec

ips Average surface mass flux of the prolate spheroid g/cm2 sec

L Cylinder height cm

Initial cylinder height cm
L(t) Cylinder height at time t after dissolution begins cm
m(t}  Dissolution rate at time t g/sec

ﬁa(t) Dissolution rate of component j at time t g/sec

mps Total dissolution rate of the prolate spherocid g/sec

ﬁt Dissolution rate per unit length of the prolate spheroid g/cm sec
msc Dissolution rate for a slender cylinder g/sec

mc Dissolution rate from a cylinder in flowing groundwater

ﬁ% Dissolution rate per unit length of infinitely long cylinder in

flowing groundwater g/cm sec
Mj(t) Mass of j at time t In the waste glass g
ﬁj(t) Density of j in undissolved waste at time t g/cm3
N Difference between concentration in the 1iquid adjacent to waste

5 surface and goncentration in the groundwater far away from waste
surface g/cm



7.6 Calculations of Dissolution of a Glass Matrix by Internal Molecular
Diffusion and Surface Regression

P. L. Chambre and S. J. Zavoshy

1. Introduction

In this paper we consider the dissolution of a glass matrix containing
sodium oxide. It is experimentally observed that sodium molecular diffusion
and ion-exchange at the glass-water interface depletes the glass matrix of
sodium ion. Further, the glass matrix is dissolved by water. This matrix
dissolution is viewed as regression of dissolved glass-water interface.

The fractional release of sodium from the glass has a form of

c]t]/2+c2t. where 4 and ¢, are two constants (H1,M3). A dissolution model
that yields a fractional release which is initially parabolic (proportional
to t]/Z), and then becomes linear function of time (proportional to i},

is developed in section 7.4.

A mathematical dissolution model is developed based upon these two
observed phenomena, i.e., internal molecular diffusion and glass surface
regression, It is assumed that the loss of the diffusing ion from the
interior of the glass due to molecular diffusion will lessen the integrity
of the glass matrix, Furthermore, it is assumed that the glass-water
interface has a constant velocity during the dissolution process. The
regression speed is positive for the case of a regressive glass-water
interface, zero for stationary interface, and negative for the progressive
interface. The concentration inside the glass and fractional release of
the diffusant from the glass are obtained for a sphere and slab of finite
width.

for numerical evaluation a ternary sodium-borosilicate glass is con-

sidered. Sodium is the diffusing nuclide. The concentration of sodium



at the glass-water interface is chosen to be zero. The radius and half
width of the slab are equal to the radius of a spent fuel canister. A

range of regression speeds from -9.7x10713 to 3.9x1071" cm/sec is chosen.
The normalized concentration, surface mass flux, and fractional release

of sodium are evaluated.

2. Governing equations for the normalized concentration, surface mass

flux, and fractional release.

Case 1. Finite slab
The following equation defines the normalized concentration of the

diffusing specie in the slab of width 2a

ch {x,t) = N5 + N Egp(xst) (7.6.1)
where:

ch (x,t) = normalized concentration of diffusinag specie in the slab

EsL (x,t) = normalized concentration of the stahle diffusing specie in
the slab with zero concentration on the boundary

{see Eq. (7.4.30) in section 7.4 with A=0)
c

N2
o
0 _
N" = {cy-c) /e,
¢, = surface concentration of the diffusing specie, g/cm3
¢, = initial bulk density of diffusing specie in the glass, g/cm3

position from center of slab, cm
t = time, sec

The fractional release s obtained by the following equation:
1-87
£ (t) = 1 - N (1-vt/a) - N°f CL (vat) dy (7.6.2)
o



where:
st(t) = fractional release of diffusing specfe at time t from the finite slab
8= va/D
a = initial half width of finite slab, cm
D = molecular diffusion coefficient of diffusing specie in the glass
matrix, cmzlsec
T= Dt/a2
v = regression speed, cm/sec

An asymptotic form for 1"s|_(t) is obtained which is

2 o 2 /72 12 -
st(t) ol W (D/a%) t + vt/2d (7.6.3)
The surface mass flux is given by
3 (cq- <) oy (7.6.4)
=-D(c.~ ¢.) = tve 7.6.4
sL 0" st oBX iyt s

where st is the surface mass loss of diffusing specie from the finite slab,

g/cm2 sec.

Case 2. Sphere.

The normalized concentration of the diffusing specie in the sphere is given by

cgp (rot) = K + K2 (rot) (7.6.5)
where:
c';p (r,t) = normalized concentration of the diffusing specie in the sphere
esp (r,t) = normalized concentration of stable diffusing specie in the sphere
with zero concentration at the boundary
(see Eq. (7.4.20) in section 7.4 with A=o)

r = radial position from center of sphere, cm



From Eq. {7.6.5) we obtain the surface mass flux, i.e., .

Xsp

s) 3r tve (7.6.6)

R-vt s
where Jsp is the surface mass loss of diffusing specie from sphere, g/cm2 sec

J..=-D (co- c

sp

The fractional release is obtained by -
1-8t

_ S 3 0 A 2
fsp(t) =1 - N (I-vt/R)"- 3 N f csp(y,t) y-dy (7.6.7)

0
where:

fsp(t) = the fractional release of diffusing specie from sphere at time t
8 = vR/D
R = initial radius of sphere, cm

An asymptotic form of fsp(t) for early period of dissolution is

_ 6N 212 s
foplt) = = (/R°) "+ 3 (vt/2R) (14°) (7.6.8)

and as the total dissolution time is approached the following asymptotic

relation is obtained

Fplt) =1 - (- vi/m)® (7.6.9)

This is due to time dependency of surface area of the sphere.

3. Parameters of the problem

The values of a and R were chosen to be 17.8 cm, equal to the radius
of a spent fuel canister. The glass density is taken to be 2.8 g/cm3.
Table 7.6.1 gives the value of molecular diffusion coefficient of sodium in
a ternary sodium-borosilicate glass at 100° and 200°C. Table 7.6.1 was

obtained by applying the following equation {F1)

D(T) = D Exp(- Q/RT) (7.6.10)
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where:

D(T) = sodium diffusion coefficient at temperature T, cmz/sec

Do = frequency factor, cmZ/s

Q = activation energy, Kcal/mole

R = gas constant = 1.99x1073 Kcal/mole °K
T = temperature in degrees Kelvin, °K

Table 7.6.1. Na self-diffusion in ternary Na20-8203r5102 glasses (F1)

Na,0/B,0; molex D (cn’/s)  q(Keal/mote)?/

31.3/6.25 5.01x107° 1.5
30.9/9.10 6.31x10°° 1.7
28.6/14.3 3.98x107° 13.1
32.3/3.22 5.01x10”* 13.4
31.7/4.76 1.21x107 13.0

a/ For temperature range of 100° to 250°C.
b/ At 100°C.
c/ At 200°C.

9.36x10"13

9.00x10"13
8.61x10” 13
7.24x10

3.00x10712

-12

2.88x107 1!
2.52x10" 1!

3.59x1071!

3.29x10710

1.22x107 10

For numerical evaluation a ternary sodium-borosilicate glass at 100°C

with the composition 28.6 Na20/14.3 8203 mole % was considered. From

Table 7.6.1we obtain D=D]00 = 8.61x10']3 cmz/s. The surface concentration is

taken to be zero.

vValues of B = -20, -10, -5, 0, 5, 10, 50, and 800 were chosen. Value

of B = 800 corresponds to v = 3.3x1070 cm/day.

4. Numerical results and discussion

The numerical results are obtained with the aid of four computer
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programs (see Appendix A for the program details). The cut off time for

calculations is the leach time TL' This is defined as
To=lwv] ,v#o ‘ (7.6.11)

where:
TL = leach time, sec
L = initial characteristic length of the problem, cm
{half width of the finite slab or sphere radius).
The value of TL corresponds to total dissolution of the glass matrix if
v >.0, and doubling of L if v < 0. The surface mass flux was obtained by
numerical diffsrentiation of Eqs. (7.6.4) and (7.6.6).
Figs. 7.6.1 - 7.6.7 show the normalized
concentration vs. half width of the finite slab, for 8 = 0, 5, 10, 800, -5,
-10, and -20 respectively. For v > 0, increase in v, (8) will result in
steepening of the concentration profile at the glass-water interface.
This effect can be best seen in Fig.7.6.4,where B = 800. Also, the absolute
value of the concentration gradient at the interface is increased as v
increases. For negative values of v, the normalized concentration profile
becomes S-shaped, see Fig. 7.6.5.
Fig.7.6.8 shows the variation of the normalized surface mass flux of
the finite slab with time (t = Dt/a) for different values of B, (v). At
the early period of glass dissolution the normalized surface mass flux is

-1/2 and is independent of the regression velocity. This

proportiunal to t
indicates the diffusion-controlled mass loss. For B = 800, after approxi-
mately 100 years, a constant surface mass flux of 2.4x10'69 sodium/cm2 day
is obtained.

Fi9.7.6.9 shows the variation of the fractional release with time for
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different values of v. Fractional release has a behavior of the form
c]t]/2+ c,t, where ¢ and c, are two constants, see Eq. (7.6.6) for
values of 4 and ¢,

Figs. 7.6.10 - 7.6.13 apply to the sphere and show the
normalized concentration vs. radius of sphere for 8 = 0, 10, -5, and -10
respectively. Comparison with Figs. 7.6.1, 3, 5 and 6 indicates that sodium
depletion is faster for the sphere than for the slab. The plot obtained
¥for B = 800 is identical to Fig. 7.5.7, thus it is not reproduced..

Fig. 7.6.14 shows the variation of the normalized surface mass flux of
the sphere with time (1) for different values of B, (v). As leach time
is approached there is a drop in surface mass flux due to depletion of
sodium inside the sphere.

Fractional release for the sphere case is obtained by way of numer-
ical integration of the normalized concentration. Fig. 7.6.15 shows the

variation of fractional release with time (1) for different values of

g, {(v).

5. Conclusion

A glass dissolution model based upon two observed phenomena, i.e.,
internal molecular diffusion and glass surface regression,is developed.
An asymptotic equation is obtained for fractional dissolution of diffusant

from the glass. The asymptotic equation has a form of c1t1/2

tcat where
3 and €, are a function of molecular diffusion coefficient and regression
speed. The experimental results of fractional dissolution of component
'i' {s of the form C1t1/2+ Cot, where C; and C, are two constants which
depend on the diffusing component. Values of C-l and C2 are obtained

from glass dissolution experiment. By fitting Eq. (7.6.3) or (7.6.8) to the



experimentally observed f(t) we can obtain the internal molecular
diffusion coefficient of component 'i' and the glass-water regression

speed. This is presently under study.



Normalized concentration, C/Cq
o o g

o

o

102 yr

.6} =
4T- R=17Z8cm 7

D = 8.61x10"13 cm?/sec

v:=0 )
2 : Boundary ot time t -

i I
0 4 5 i0 5 20
Rodial distance, cm
XOLa28- &322

Fig. 7.6.10.

Varjation of Na normalized concentration in the sphere with radial position
at different times after glass dissolution begins.



S &5 S s

H

F—r%
| I I |

Normalized concentration, C/Cq

o
()
|

IOzyr

10%yr

R=17.8 ecm
D=8.61x10"3cm%/sec
v =4.84 10 Bem/sec
B =10

% Boundary of time t

108 yr
[

|
5 10 1S 178 20
Radiol distance, ¢m

XL 828-6323

Fig. 7.6.17. Variation of Na normalized concentration in the sphere with radial position
at different times after glass dissolution begins.



i0

10%yr

1o
@

o
a

R=I78cm

Normalized concentration, C/Co
[w)
»

o2l D= 86ixi0"em¥/sec _
B+-5
; Boundary at time t
0 1 | 1 .
4] 5 10 15 20 25 30

Radial distance, cm

XL 828 - €324 .

Fig. 7.6.12. Variation of Na normalized concentration in the sphere with..

radial position at different times after glass dissolution
begins.



Normalized concentration, C/Cg

o
[

3
4]

O
B

R=178cm

D = 8.61x1073¢m?/sec

o2} B=-10 3 -
% Boundary of time t | l
; !

0 | ] 1 I I -
0 S 10 IS 20 25 30 35
Radiol distance, ¢cm
X0L828-832S .

Fig. 7.6.13. Normalized Na concentration in the sphere as a function of radial

position at different times after glass dissolution begins.



7.7

B1.

B2.
F1.

H1.

H2.

K.

L.

M1.

M2.
M3.

M4,

R1.

st

.

Wl.

W2.

Literature References

M. Benedict, T. H. Pigford, H. Levi, "Nuclear Chemical Engineering",
2nd Ed., Chapter 8. pp 369, McGraw-Hill Book Co., 1981.

Blasius, 1908, Z. Math. Phys. 561.

G. H. Frischat, lonic Diffusion in Oxide Glasses, Trans. Tech.
Publications, Ohio, U.S.A., 1975.

Heimerl, et al, ‘Research on Glasses for Fission Product Fixation',
Hahn-Meitner Institut, HMI-B109, Sept. 1971.

L. Holland, "The Properties of Glass Surfaces", John Wiley and Sons,
Inc., New York, 1964.

Krauskopf, K. K., Private communication, March 1, 1982.

F. Kreith, “Principles of Heat Transfer”, 2nd Ed., pp 404,
International Textbook Co., 1966.

W. Lobrich, VDI-Forsch.-Heft No. 322, 1929.

Mcvay, G. L., Bradley, D. J., and Kricher, J. F., "Elemental Release
from Glass and Spent Fuel", in press in, "Advances in the Science and
Technology of Management of High-Level Nuclear Waste", 1982.

G. L. Mcvay, Private communication, 1982.

Mendel, et al, 'A State-of-the-Art Review of Materials Properties of
Nuclear Waste Forms', PNL-3802, April 1981.

W. F. Merrit, "High-Level Waste Glass: Field Leach Test", Nuclear
Technology, Vol. 32, 88, Jan. 1977.

G. E. Raines, L. D. Rickertsen, H. C. Caliborne, J. L. McElroy, and
R. W. Lynch, 'Development of Reference Condition for Geological
Repositories for Nuclear Waste in the U.S.A.', Proc. Mtg. Material
Research Societies, Boston, 1980.

Seidell, A., 'So]ubi]ities'lnorganic and Metai-Organic Compound®
4th Ed., Vol. 2, pp 1452, American Chemical Soc., Washington, DC, 1965.

Tymochowicz, S., 'A Collection of Results and Methods on the Leach-
ability of Solidified High Level Radioactive Waste', Hahn-Meitner
Institut, HMI-B241, April 1977.

Walther, J. V. and Helgson, H. C., 'Calculation of the Thermodynamic
Properties of Aqueous Silica and Solubility of Quartz and Its Polymorphs
at High Pressures and Temperatures', American J. of Science, V277 (1977).

Weast, R. C., Astle, M. J., Handbook of Chemistry and Physics, 61st Ed.,
pp F-62, CRC Press, 1980-1981.



Appendix A
Derivation of the leach time for sphere, prolate ellipsoid, slender

cylinder, and infinite cylinder.

Conservation of mass is the governing equation which for a quasi-

steady state is

7 (o¥(t)) = - m(t) (A1)

where:
%)

p = density (g/cm

V(t) = volume at time t (cm3)
m(t) = mass loss rate at time t (g/sec)
With the proper initial condition (V(0) = Voo initial volume}, Eq. (A1)
can be solved. The following geometries are considered and analyzed.
1. The sphere radius is r, the concentration on the surface is constant
and denoted by Ns' the concentration in the liquid tends to zero as

. r tends to infinity. For the sphere we have

V=4l | (A2)
|i1=47ereNs,DeEeDf (A3}

Initial condition r(0) = by (initial radius)
Substituting Eqs. (A2) and (A3) into Eq. (A1) and after some algebraic
manipulation yields

prdr = - D, N, dt (A4)
Initial condition r(0) = b;
Integrating with respect to time from t = 0 to t yields

(b))% - r® (£} = 2D, N t/o (AS)



For tota! dissolution of the sphere we require that r(Tsphere) =0,

hence \ 2
plby)
Tsphere 32 ﬁeﬁs (AG).
where:
T = leach time for sphere (sec)

sphere

2. The concentration on the surface of the prolate ellipsoid is constant
(Ns), and the concentration far away from the ellipsoid tends to zero.

For the prolate ellipsoid case we have

2

v=3, ab2=g--u 3 sinh? « cosh o (A7)

3

. 4D, N f
n=s —-&. 8 (A8)

a
log [cots (5]
Initial condition a (0) = ag initial surface shape factor
f(0) = f, initial focal distance
Substituting Eqs. (A7) and {A8) into Eq. (A1) ylelds

3 D, N, T

—_— s (A9}
p log E:oth (%)]

g% (f3 sinh? « cosh a) = -

Initial condition f (0) = fy
a (0) = ag
Eq. (AS) cannot be solved since there are two unknowns and one
eguation. It is necessary to have another relation between f and a.

To overcome this difficulty we assume that either f, a, or some function

of f and o is constant during leaching. Hen;e. we analyze the following

two cases.



Case 1. « is constant and is equal to oge
The above assumption can also be stated as: the ratio of major axis
to minor axis is constant throughout the leaching. Thus, Eq. (A9) is

simplified to
£9€ - _p N_[p sinh? (o) cosh (a_) Tog(coth (asﬂ ! (M10)
™" % E" Gs ag) 109 Z.

Initial condition f(0) = fy
By integrating Eq. (A10) from t = 0 to t, we obtain
o -1
2 - £2(t) = 200, [ sinh (agdcoshlagNiog (coth(-£))] ¢ (A1)

For total dissolution of the prolate ellipsoid we require that
f(Tp) = 0 and obtain

pbg as
Tp = m;— cosh (us) log (coth(—z—)) (A12)
where
Tp = leach time of prolate ellipsoid (sec)
bo = initial semi-minor axis (cm)

Case 2. The minor axis is constant.
From the above assumption implies that after sufficient time the
prolate ellipsoid has shrunk to a sphere with radius equal to the semi-

minor axis. The volume and mass loss rate are rewritten as

2

V=3aab? =% nbd coth o (A13)

. -
M= 4 1 0 N b, [s1nh o Tog (cotn())] (m14)



Initial condition a(0) = ag
Substituting Eqs. (A13) and (A14) into Eq. (A1) yields

p bg sinh a 1og(coth(%)) é%-(coth @) = - 30y N (m15)

Initial condition «(0) = ey

After some simplifications, we obtain

o
30 N Tog [eotn 3] e
2 sinh o
pb
0
Initial condition a{0) = o
Integrating the above equation between t = 0 to t yields
6D Nt a 2
- vah [rostcoth(z]- [togtcoth())] 7)
o
From Eq. (A17), we obtain T;. the time that will take the prolate
ellipsoid to reduce to a sphere with radius bo’ je.,q+®
2
s_ Ph as =2
TP = B—TNS [109(C0th(-2—))] (A]a)

The leach time for total dissolution of the prolate ellipsoid is viewed
as the sum of tyo time intervals. The first time interval corresponds
to reduction of the prolate ellipsoid to a sphere. The second time
interval is the leach time of the sphere. Thus, from equation (A18)

and (A6) we have

_ 1S
Tp - Tp + Tsphere (A19)



or 2
pb o 2
T, oW, (* [togteoth-$1)] /2) (A20)

Comparison of Eqs. (Al2) and (A20) shows that the leach
two different cases differ only by a multiplier. From table of the hyper-

bolic functions, we have

o 2 ag
as/Z 1+ Elog(coth(—z—)il /3 cosh(as)1og(coth(—2—))
0.05 4 3.01
0.07 3.36 2.68
0.13 2.40 2.1

Therefore, both cases yield similar results. This does not prove nor
disprove the validity of the assumptions used in their derivations.
The first case {a constant) is chosen as the criterion for establishing

leach time.

3. Slender cylinder (L»10r)
For the slinder cylinder, we have

Vel (A21)

m= 2w D, N, L/log(L/r) (A22)
Initial condition r{0) = rq initial radius
L(0) = L, initial height

We assume that the ratio of height to radius is constant during leaching.

This is written as

r=r, q(t) (A23)

L=, aft) (A24)



Inftial condition q(0) = 1
Substituting Eqs. (A21), (A22), (A23), and (A24) into Eq. (A1) and after

some transformations, we obtain

2D N
q(t) §3 = - e (A25)
3p Yo og(Lolro)
Initial condition q(0) = 1
Integrating with respect to time from t =0 to t yields
ap Nt 12
q(t) = (1 - (A26)

2 0
3rgSe 109(§)

From definition of the leach time we require that q(Tsc) = 0, and obtain
L
3 roz e Tog(2)
= 0
Te * T W, (h27)

e ’s

4. Infinitely long cylinder

The mass balance in a unit length results in

S (nrfe) = - .% D N (Pe)'/Z, pe > 4 (A28)

Initial condition r{0) = Yo

Integrating with respect to time fromt = 0 to t for r(t) yields

O e UL (AL (h29)

From definition of the leach time r(T ) = 0, we ohtain

232 pr 2 Ur,

T = Pe =
b0, N, P Dp (A30)



Fppendix B: The solubility 1imit of silica in water
as 2 function of temperature and pressure

(Ref. W1).
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Appendix C The Computer Programs
UCB NE 70, 71, 72, 73, 74

The following computer programs are written in Fortran IV and have been
executed on CDC-7600. ’
UCBNE-70 Calculates the surface mass flux and leach time due to diffusion
and diffusfon-convection for a given glass cylinder.
Description of Data Cards:
Ist Card: Free Format
’ Icont 0, stop the program execution; otherwise continue.
Ipara 0, same parameters as previous run; otherwise read
new input parameters.
Ivel 0, same groundwater pore velocity as previous run;
~ otherwise read the new value.
Igeo 0, same geometry as previous run; otherwise read the new
values.

2nd Card: Free Format. Consists of 4 pieces of information.

1st surface concentra‘tion g/cm3

2nd porosity

3rd diffusivity in groundwater cmzlsec
4th glass density

3rd Card: Free Format

Ist groundwater pore velocity m/yr
4th Card: Free Format

1 glass cylinder radius cm

2 glass cylinder height cm



UCBNE-71

UCBNE-72

UCBNE-73

UCBNE-74

Calculates the normalized concentration of a species in a
slab w1th regressive surface.

Calculatcs the fractional release of a species from a slab
with regressive surface.

Calcuiates the normalized concentration and surface mass flux
of species from sphere with regressive surface.

Calculates the fractional release of a diffusing species from

a sphere with regressive surface.



191

* UCBNE-7) *
AUTHOR SHAW Je ZAVOSHY
OATE OCT. 1981

THIS PRCGRAM CALCULATES THE SURFACE MASS FLUX FROM & GLAST CYLINDER.
THE INPLT PARAMETERS ARE

CSZ SURFACE CONCENTRATICN (G/CM3)

EPSE POROSITY

Onz CIFFUSIVITY IM WATEF (CM2/S€EC)

RO = DENSITY {6/7CH3)

UZ GROUNDMWATER VELOCITY (M/YR)

RS GLASS CYLINDER RADIUS (CH)

HTZ GLASS CYLINDER HEIGHT (CHM)

(R X XYL RS RN LN RY TIPS RIS TR Y YT [ Z XL X R I I LIRSS RY T Y YIS YR NTTY

OOOODDDONO0OO0ON0

PROGRAN KONNY (INFUT,QUTPUT,TAPES=INPUT,TAPEE=CUTPUT)

CIMENSION Y(10)4X(10),F(10),E€10)
1000 CONTINUE
READ(5+*)YICONTy IFARA, IVEL, IGED
IFCICOMT «EQe Q) GO T0 60908
IF(IPARR JEQe B) GJ TO 7468
READ(5,%)C5:EPS¢0He RO
700 IF(IVEL «tRe 3) GO TO A0O
READ (5 *)U
800 IF(IGEO +EQ¢ 0) GO TG 320
READ(S5+*) ReHT
960 CONTIMNUE
NNN=0
Vi=3.*K*R*HT /4.
DE=CHWSEFS
DH=1 4E=4
S1=R®*{R #HT7}
X{1)=H172,
Y(L)=SQRT Lvi/X (i D)
1 Y(1)=Y11)~0DH
00 13 I=1.3
L ISSEAIVASD S NALE 3]
E(I)=SCRT(X(I)*X(I} - Y(I
F(IiaSi~ YLID®LYLI) ¢ X(]
Y{I+1)=Y(L)eDH
NHN=NNNet
Fz (FU31=F (1)) /24704
ACC=F(21/FP
ACI=F (2}
IF(ABS(ACO) ,LE,.G,004) GD 1O 40&
y{1)=Y(2)~ACC
IFINNN.GE.503) GO 73 500
GO TO 2
101 CONT INVE
A=%X(2)
g=yv(2)?
IFIN.GE.AY GD TG San
C=SURT LF*A=p*3)
£CC=C/A

I
€
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SHAPE=ALOG( (A+B)/C)
PI=ACOS(-1,)
S=2 , ¥PIXR*( M- AYASIN(ECC)/ECC))
CTS==~ALOG( TANH(SHAPE/2.))
ARFA=2 . #PT*R¥(R+HT) /10000,
VOLUM=PI*R¥RART/1000000,
WRITF(6,2)
FORMAT(1H1 ,#————-—-DIMENSIONS OF GLASS CYLINDER===w==—=ct)

- WRITE(6,5)R,HT/100,,AREA,VOLUM

FORMAT(// ,* RADIUS (CM)=*,F10,2 ,6X,*HEIGHT (M)=*, F10.2 ,6X
1,*SURFACE ARFA (M2)=*, F10,2 ,6X,*VOLUME (M3)=*,F10,2)
WRITE(6,15)DN,EPS,DE

FORMAT(/ ,*DIFFUSIVITY' IN WATER (CHZ/SEC)-*,IPE15.7,6x,*POROSITY-*,
11PE15.7 ,6X,*FFFECTIVE, DIFFUSIVITY (CM2/SEC)=*,1PF15.7)
WRITE(6,6)CS

FORMAT(//,6X,* GS (G/CM3) =*,1PF15.7)

WRITE(6,7) )

FORMAT(/ ,*====DIMENSION OF APPROX. PROLATE FLLIPSOID=mm==k)
WRITE(6,10)A/100.,8,6/100, ‘

FORMAT(//,* A (M)=* 1PF15,7,6X,*B (CM)=*, 1PE15,7,6X,*C (M)=*, 1PEl
15.7)

WRITR(6,12)FCC,SHAPE,S/10000,

FORMAT(* FERC/A =*,F12.6,6X,*SIIRFACE SHAPE FACTOR=* F12.6,6X,%S (M
12)=* 1PE15.7)

DY=56400,

2TOTAL=(4 . *PIADFEXCS*C)/CTS

ZTOTAL=DY*2TOTAL .

ZLENGT=ZTOTAL/2./A ‘

ZSTIRF=2TOTAL/S

PELT=( RO*BARACOSH( SHAPR)*CTS) /(2 J *DE*(IS)

PFLT=PFLT/DY/365,.25

WRITE(6,30) ZTOTAL ,PELT

FORMAT(//,* P.F. MASS LOSS RATE (GR/D)=* 1PR15,7,9X,*P.F.LFACH T
1IME (YR)=* 1PF15.7)

WRITE(,32) ZLENGT,ZSURF

FOPMAT(* P.F. MASS 10SS PER UNIT LENGTR (GR/MAY)=*,1PF15.7,6X,

70/2'



70/3

1*SURFACE MASS FLUX (GR/CM2 DAY)=k 1PE15,7)
ZSCYL=(2 . XPT¥DERCSART) / (ALOG(RT/R))
ZSCYL=, SCYLXDY
SCLT=(3 , *RYREXRO®ALOG(HT/R) ) / (4 . ADFACS)
SCLT=SCLT/DY/365.25
WRITE(6,35)HT/R,2ZSCYL,SCLT
kL] FORMAT(//,* S,CYL.RATO=* F10,2,7X,*S,CYL,  MASS L08S RATE (GR/D)=
1%,F14.7 ,7X,*5,CYL, LEACH TIMF. (YR)=* 1PF10,2)
WRITE(6,75)
75 FORMAT(// ,#=======INFINITE CYL,INDER--==w~~k)
500 CONTINUE
Vs(U1%100.)/365.25/86400,
PE=V*R/DW
IF(PE.LT.4.) GO TO 5000
WRITE(6,40) VANY*3,6525,PE,NW
40 FORMAT(/// ,* U (M/YR)=* 1PE10,3,6X,* PECLET NO.=*,1PE10.3,6X,*DW
1(CM2/SEC)=* 1PE10.3)
Z0L=4 ,5135%NF*CS*SORT(PE)
ZIL=ZIL*NY
ZUS=2UL/ (2 ,*PI*R)
RI=4 AD0/Y
ZLT=0. 928 1%RO* (R*SORT(R)=RI*SORT(RI) )/ ( GSANE*SORT(V/PW))
ZLT=ZL1/DY/365,25
WRLTE(6,50)R,RI,%UL
50 FORMAT(//,* INITIAL RADIUS (CM)=* 1PE10.3,6X,*FINAL, RADIUS (CM)ak
1,1PF10.3,6X,*MASS LOSS PER TUNIT LENGTF (GR/CM DAY)=* 1PE15.7)
WRITE(,55) 2S,ZLT
55 FORMAT(* SIIRFACE MASS FLUX (GR/CMZ DAY)w* 1PR15.7,6X,%LEACH TIMR
1(YR)=*,1PE15,7)
S000  CONTINIIE
GN TO 1000
1000  CONTINUR
STOP
END
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Ny

S48 38020800 UCENE.7: [EZE XTI IR ERLYY Y
AUTHOR * SHAN J. ZAVUSHY
DATE JuL. 1981
THIS PRCGRAM CALCULATES THE NCRMALIZEGC COMCENTRATION AND SURFACE
MASS FLUX OF AR DIFFUSING SPECIES FROM A SLA2 WITH INITIAL HALF
WIDTH OF 2A. THE JINPUT PARAMETERS AaRE
Az INITILL HRLF WICTH (CH)
D= DIFFUSION.CCEFFICIENT (CM2/SEC)
BETHA=V*28/D=D IMENSICNLESS GLAS:-WATER REGRESSICN SPEED

BUGQVBII BB 4B2 338 B33083 3380533303488 880488838385 58333839080888080,

PRDGRAM MNOME (INPUT yCUTPUTTARPES=INPUT s TAPER=CUTPUTY
CIMENSICN X(22),C(20)
DIMENSION DO(1C)«BETHV(1D)
H=$4E=6
RO=.672
ROS=0.
CEFF=RO0-RDS
A=17.8
DDCL)=BeEz®*(i0a**(-13))
DD(2)=34552(10 %% (=11))

BETRV(2)=0.
BETHV(Z)=5,
BETHV(3)=10.
BETHV (4 )=50.
BETHV(5)=800,
BETHV(6)=1600.
BETRVI7)==5,
BETHV(8)3-10,
BETHV(9)==20.
N3i=9
NDI=2
03 6000 ND=1yNGI
D=0D (ND)
DO S0Ud NE=1,NB1
BETH=BETHY (N3)

-1
u

ol
T=T*36L00.*365.25

F01={(RO-ROS)I*N* 8644 C.

V=BETk*Lr A

WRITE (6921R39VeDaBETH

FORMAT (242 y *HALF HICTH{(CHM)="sFlCetyBXs*VICH/SEC )= 42iPEL5,746X,
1%D (CHXCFM/SEC) =% ,10E1547 46X *BETHAS(VXAZ L) =% 1PELSTY

HRITE {6413)R0

FORMAT {/+® DENSITY (GR/CHI)I=*,1iPELS.T7)

IF(V.EQ.0.) GO TC 7



OO NWw

Q00

i%3

101
202

20

1;/;

TLYZA/V¥/786400, 7385425
WRITE (64 3)TLY

FORMAT(/,*LEACH TIME{YR)s*,1PE15.7)
CONT INUE

BEGINNING OF TIME DQ LUDP . MULTIPLIER=10

DO 100 K=0,25
IF{VEQeie) GO TO 15
TFIT.GRE.ASS(A/V)) GO TO E00
TuzDsTr/AVA

SQ=2.*50RT(TA)
PX=1.~3ETH*TA
pX=PX/30,

HRITE (6, 10)PY. %2 DX *A¢7/86400./365425
FORMATU(//7¢ *HITICCHI =®3FL ol oOXo*DX {CH)=¥ yF10. 54 EXo*TIME (YR )z*,1PE
114,6)

BEGINNING OF NODAL LOOP.

00 S0 I=1s23
IF(I.6E.12) GO TO 150
X{I)=(I=1}*DX
GO TC 200
X(I1=XC1-1)¢.2%DX
IF(I1.GEs2t} GO TO 141
GO 10 200

H=I=20
X{I)=PX-N*H/A
CULI=(ERF{(Ls #X{III/SQIERF((2a=X(I})/S2))/ 2,
Z=1e=X{1}
Y=1.¢X(I)
BEGINNING OF SUMMATION CF INFINITE SERIES. MAX. OF &0 TERMS.
00 20 N=1.40

AR=N*PX
S1=FXP(=N®*BETHY(AR=X (L))} *(ERF ((2,%AR+4Z)/5Q) =ERF ((2,*AR-Y}/SC))
$1=51/2.
S2=EXF(=N*BETH® (BRe¢X(I)) I* (CRF ((2.*AR¢Y) /SQ) ~ERF ({2, *AR ~2)/50) /2.
S=(S1452)4 ((=1)**N)

C{N+1)=CINY4S
IF(CIN*1}.EQ.0.) GG TO 35

EP3=S/C(he1)
IF(ABS(EFS V.LE.ABSICIN+1))/71008.) G0 TO 35
CONTINUE


http://IFCI.GE.ll

35 IFtIGEa21)

GO T0 77

CIN+1)=(ROS+CEFF*ABSIC(N+L }))I/RO
C(11=C(1)*CEFF/RO
WRITE (6o 360X (IV%A JABS{CIN®1)) NS IN$1) -2 (1)
36 FORMAT (/4 ®*POSITION (CMY=*yFldad 12Xe*CONCENTRATION=*¢F 15et,6Xy
LEN=® 4 J24EX o *SUMINI=¥4F L2 .6

60 TG Sp

177 DERIV==CUIN#1)/H/N
HWRITE (6945 )M*H yCERIV =RO {*DERIV,N
«5 FORMAT /s *HICMI=% 4 2PELS o7 9EXy *DERIVATIVE=®,IPELE. 746X, #*MASS FLLX
1(GR/CM2 CAY)=®,IFEL1S.7yb6X,12)
TOTJ=~RCL*DERIV *V*RO5*86 400.
HRITE(ELSS) TOTUY

55 FORMAT (7/4*
5Q CONTINLE
160 T=T*iC,
SGD CONTINVE
5000 SONTINUE
62C0 CONTINUE
STNP

ENy

TOTAL MBSS LOSS RATE (G/CH2 DAY)Y=*,1PE15.7)



OO0 NWw

000

153

101

208

20

m/:

TLY=A/V/86400,736525
HRITE (64 3)TLY

FORMAT(/,*LEACH TIME(YR)=*,41PE15.7)
CONT INVE

BEGINNING OF TIME DQ LODP « MULTIPLIER=L0

D0 1080 K=Q425
IF(V.EQeus) GO TO 15
TFIT.GE.ABS[A/V)) GO TO %00
Tu=0¥T/7A7A

SQ=2.*SART(TA)
PX=1e=3ETH*TA
DX=PX/.0.

HRITE (6910 )PY%A (DX A4 7/7086400.7/365425
FOGRMAT /7y ®*HIT) (CHI=®9FLe 4s6Xe®DX (CMI=* 4FL0,546X9*TIME (YR )=%,1PE
114,6)

BEGINNING OF NODAL LOOP,

0O 50 I=1+23
IF{I.GE.12) GO TO 150
X(I)=(I=-1)"DX
G0 TC 200
X(I)=X(I-2)¢,2%0)
IF (1.GEs21) GO TO 201
60 TO 200

M=T=20
X(I)=PX~-M*H/A
ClL)=(ERF{(1. ¢X(I)I/SQA)¢ERF((1.-X(I)3/52))r2,
Zzle=X( 1)
Y=i.¢X(])
BEGINNING OF SUMMATION CF INFINITE SERIESe MAXe OF &0 TERMS,
00 20 H=1440

AR=N*PX
S1=EXP(~N*BETHY(PR=X (L))} * (ERF ((2."AR¢Z)/50) =ERF ((2,*AR-Y)/S5Q))
$1=51/2.
S2=EXF(=N*BETH™ (AR+XCI 1) I* (LRF ((2.*AR¢Y) /S0) =ERF ({2, *AR~2}/S0) /2.
S=(51452)4 (L=1)**N)

CIN®1)I=CINI+S
IFLCIN®1).EQeDe) 56 TO 35

EP3=S/C(pe1)
IF(ABS(EPS ).LE.ABS(CIN#1))/1000.) GO TO 35
CONTINUE



35 IF(I.GE.21) GO TG 77
CIN¢1)=(ROS¢CEFF*ABS(C(N+L)))I/RO
Cl1)=C(L)*CEFF/RO
WRITE (6¢ 360X (I1%A )ABSICINC1) ) 4N, IN#1) -2 (1)
36 FORMAT (/¢ *POSITION (CMI=*9FiDed 12X e * ONCENTRATION=%4F 15eky6X e
L¥N=#4i24EXy*SUMINY=*F12,.6)
G0 T¢ S¢

77 DERIV=«C(N+1) /H/H
WRITE (6445 )M*H 4CERIV¢=~RO 1*DERIV N
LS5 FORMAT (/« *H(CMI=*¢2PE1547 +6Xy *DERIVATIVE=*,2PELEL7,6X, *MASS FLLX
1{GR/CM2 CAY)=*,1iFE15.,7,6X,12) -
TO0TJ=~RCL*DERIV +V*RO5*86400.
HRITE(E455) TOTJ
58 FORMAT(//4.* TOTAL MBSS LOSS RATE (G/CM2 OAY)=*,1PE15.7)

50 CONT INLE
163 T=T*il.
560 CONT INVE

5000 SONTINUE

6020 CONTINUE
STNP
Ny

145
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AR [JCANE=72 Wi

AUTHOR SHAW J, ZAVOSHY

DATE  ANG, 1981
THIS PROGRAM CALCULATES THE FRACTIONAL RELEASE.OF A DIFFUSING
RADIO~NUCLIDE FROM A SLAB WITH INITIAL WIDTH Or 2A. THE INPUT
PARAMETFRS ARE '
AT INITIAL HALF WIDTH (CM)
DC= DECAY CONSTANT (1/YR)
D= DIFFUSION COEFFICIENT (CM2/SEC)
R=V*A/D @ THE DIMPNSIONLESS GLASS =WATER REGRESSION SPEFD

THE FRACTIONAL RELFASE IS CALCULATED BY DIRECT FVALUATION

OF THE EOUATION FOR B .LFE. 90, AND ASYMPTOTIC AND UPPFR AND 10WER BOUND
OF THE EOUATION FOR B .LE. 90, AND ASYMPTOTIC AND WPPER

ROUND LOWFR BOUND ARE USED FOR B .GT. 90.

DPIMENSION SU(50),SL(50)
PIMENSION S(50),AR(5),AR(5) ,ASFC(S)
PIMENSION DD(10) ,RV(10)

RO= 672

ROS=0,

CEFFm=RO~ROS

nem0,

NCYY=NCRR6400,%365,25

A=17.8

nn(1)=R.61%(10,%%(~13))
DD(2)=3.59%(10,*%(~11))
RY(1)=.000001

RV(2)=5,

RV(3)=10.

RV(4)=50,

RV(5)=800,

RV(A)=1600,

M(7)=-5,
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13

17

789

DO o

21

TIN=.001
NNI=2

NRI=7

PO 600D ND=1,NDI

=DD(ND)

DO 5000 NBe1,NBI

BaBV(NR)

V=I*R/A

WRITR(6,2)A,V,D,B

FORMAT(1HL *HALF WIDTH(CM)=*,F12.6,6X,¥V((M/SEC)=* ,1PE15 .7 ,6X,
1*n (mxm/qpr)-* 1PR15.7 6, *RETHA# , 1PE15.7)

WRITE(& 11) m
FORHAT(// . nmrrv (t‘/ma) =k 1PFE15.7)
IF(DC,E0,0.) GO TO 17

WRITE(6 s)nm,.ﬁew/nm

FORHAT(/ 2%, *DECAY CONSTANT(1/YR) ww 191::15 7 ,6X,%HALF LIFE(YR)=*,
11PF10.4)

CONTINUFE,

IF(V,F0.0,) GO TO 7

TI.Y=A/V/R6400, /365,25

WRITE(6,3)TLY

FORMAT(/ ,%*LFACH TIME(YR)=* 1PF15.7)

TaTIN

T=T*R6400,%365,25

IF(R.GF.90,) G0 TO 234

WRITE(6,789)
FORMAT(//// j*==w===swem== DIRECT CALCULATION =————eeweacaaak)

BEGINNING OF TIME PO LOOP MULTIPLIER IS 10.

PO 30 K=0,20
IF(V.F0.0,) GO T 21

IF(ARS(T) LOFLARR(A/V)) £i0 TO 5000
TA=DRT/A/A



TETH=1,~TA%R
O=2,%SORT(TA)
Fl=(1,+TETH)/C
F2=(1.-TETH)/C

TIn(1.+TETH)*ERF(F1)=(1,~TETH)*ERF(F2)
S(1)=TI+CA(FXP(=~F1*F1)=FXP(=-F2%F2))/1,772454
0=1,~8(1)/2.

S(1)=0

DD

REGINNING OF INFINITE SUM DO LOOP. MAX, OF 40 TERMS,

nO 10 Ne1,40
IP(N.E0.40) GO TO 30
El=FXP(=N*B*TETHX(N-1))
F2=EXP(-NABRTETHA (N+1))
F=2,%N-1,

F=2,%N+],

Al=FATETH

A2=FRTETH

P1=F1*{ FRF((Al+1.)/C)-ERF((Al-1.)/C))
P2=F2%(FRF((A2~1.)/C)=FRF((A2+1,)/C))
P3=EXP(NAR*(N-1))*(BRF({E=TETH)/C)=ERF((F+TETH)/C))
P4=EXP(N*B&(N+1))*( ERF((F+TETH) /C)=FRF({F-TETR)/C))
PS=((=1.)**(N+1) IR (P1+P2+P3+P4 )/ (2 . AN*R)
S(NF1)=PSHS(N)
IF(S(N+1),F0.0.) GO TO 100
FPS=(S(N1)=8(N))/S(N+1)
IF(ABS(FEPS).LE.ABS{S(N+1))/1000,) GO TO 100

10 CONTINUE

100 S(N+1)=1,+(S(NH1)=1,)NCEFF/RO =ROSW(1 ~VRT/A) /RO
WRITE(6,205)T/R6400, /365,25 ,S(N+1) ,S(B+1)REXEC~NCAT) ,N

105  PORNAT{/,% TINE(YR)=*,1PE10.4,6X,*FRACTINAL RELEASE=#,1PE1S.7,6X
1,*FRAC. RFL. WITH TA7AYs®,1PE15.7 ,4X, %Nk, 12)



22

iy

Er]

T=T*10.
G0 T0 5000
CONTINUE

WRITE(6,456)
FORMAT(//// yk=wmemcmaae ASYMPTOTIC METHOD USED =~w==emeeocwe—k)

BEGINNING OF TIME PO LOOP.MULTIPLIER IS 10,

N0 31 R=0,20
IP(V.E0.0.) €0 TO 22
IF(ABS(T).GE.ARS(A/V)) GO TO 235
TA=DAT/A/A

TETH=1 ,~TA*R

C=2 . *SORT(TA)

Fl=(1.+TETH)/C

F2=(1.-TETH)/C
TI»(1.+TETH)*ERF(F1)~(1,~TETH)*ERF(F2)
S(1)=TI+C*(EXP(-F1*F1)=EXP(-F2%F2))/1,772454
O=],-5(1)/2.

S(1)=0

REGINNING OF INFINITE SUM D0 LOOP, MAX, OF 40 TERMS,

PO 11 Nal,40
IF(N.F0,.40) GO TO 31
F1=EXP(~N*R*TETH*(N=1))
E2=FXP(~NNB*TETH*(N+1))
Fw=2.%N-1,

Fa2.*N+1,

Al=E*TETH

A2=F*TETH
AR(1)=(F+TETH)/C
AR(2)=(P~TETH)/C
AR(3)=(F=TETH)/C
AR(4)=(P+TETHY/C ‘
AE(1)=NAR*(N~1)=AR(1)*AR(1)



AR(2)=N#BR(N=1)=-AR(2)*AR(2)
AR(3)=N*B*(N+1)-AR(3)*AR(3)
AE(4)=NAB*(N+1)~AR(4)*AR(4)

NO 400 J=1,4
ASYMe1,
DO 300 NN=1,4
APT=2,%J+1,
AFB=J+1,
FI»CAMFN(AFT , IERR)
FB=GAMPN(AFR, IERR)
SS=FT/(FB*( (4 ,*AR(J)*AR(J))**NN))
30D ASYMwASYMH(—1)*ANN*SS
400  ASFC(J)=EXP(AE(J) )*ASYM/AR(.J)/SORT(3,1415)
P1=E1*(ERF((Al+1.)/C)=ERF((Al-1.)/C))
P2=E2* (ERF((A2-1.)/C)=FRF((A2+1,)/C))
IF(N.GE.2) 6O TO 250
P3=ERF(AR(2) )~ERF(AR(1))
P4=ASFC(3)-ASFC(4)
GO T0 75
250  P3=ASFC(1)=-ASFC(2)
P4=ASPC(3)=ASFC(4)
75 PSw( (=1 )**(N1))*(P1+P24+P3+P4 )/ (2 JANXR)
K(NE1)=PSES(N)
IF(S(M1).F0,0,) Gh TO 101
FPSw(S(M+1)=S(N))/S(N+1)
IF(ARR(FPS).LF,ARS(S(N+1))/1000,) G0 TO 101
11 CONTINIE
101 S(N1D)=1.4+(S(N+1)=~1,)*CEFF/RO ~ROSK(1,-VAT/A)/RO
WRITR(6,106)T/R6400,/365,25,5(31) ,S(M-1)*EXP(=DCAT) N
106 PORMAT(/,* TIMP(YR)=*,1PE10.4,6X,*FRACTINAL RELEASE=* 1PE15,7,6X
1,%XFRAC, RFL, WITH DECAY=* 1PE15,7,4X,*Na¥ 12)

k)| TaTh10,
235  CONTINUE
[

URITF(6,576)



576 FORMAT(/,* ROUND METHOD IS USED, U,B.® UPPER BOUND FRACTIONAL RFL
1FASE. DELTA®Y,.B, = L.B, %) .
T=TINKARLOO ¥365,25
D0 32 K=0,20
IF(V.E0.0.) GO T0 23
IF(ABS(T) .GE.ARS(A/V)) GO TO 5000

23 TA=D*T/A/A
TETH=1,~TA*B
C=2 J*SORT(TA)
F1=(1.+TETR)/C
F2=(1,-TETH)/C
TI=(1,+TETH)*ERF(F1)~(1.~TETH)*ERF(F2)
S(1)=TI+C*(EXP(~F1*F1)-EXP(~F2*¥2))/1,772454
0=].~8(1)/2,
SL(1)=0
SUC1)=0

REGINNING OF INFINITE SITM DO LOOP, MAX. OF 40 TFRMS.

DS a0

DO 12 Ne1,40
F1=FXP(=NWVBATETHA(N-1))
TR(N.RO.40) GO TO 32
F2=EXP(-NWBATETR*(N+1))
Fu2,*N-1,

F=2,%N+1,

Al=FATETH

A2wFATETH

AR{1)=(F+TETH)/C
AR{2)=(F~-TETH)/C
AR(3)=(F~-TETH)/C
AR(4)=(F+TETH)/C
AR(1)=N&R®(N=1)~AR(1)*AR(1)
AR{2)=NARR(N=1)~AR(2)*AR(2)
AF(3)=mNAR*{(}1)~AR(A) *AR(])
AR(4)mNWAR( N1 ) ~ARCAY*AR(4)
CL31=AR(1)+SORT(AR(1)*AR(1)+2,)



50

410
12
550

107

32

C1,32=AR(2)+SORT(AR(2) *AR(2)+1,2732)
C31=AR(1)+SORT(AR(1)*AR(1)+1,2732)
CU32=AR(2)+SORT(AR(2)*AR(2)+2,)
CL41=AR(3)+S0RT(AR(3)*AR(3)+2.)
CL42=AR(4)+SQRT(AR(4)*AR(4)+1,2732)
CT41=AR(3)+SORT(AR(3)*AR(3)+1.2732)
CU42=AR(4)+SORT(AR(4)*AR(4)+2.)
BLP3=SORT(1.2732)*(EXP(AE(1))/CL31~EXP(AE(2))/CL32)
RUP3=SORT(1.2732)*(EXP(AR(1))/CN31~FXP(AR(2))/CU32)
RLP4=SORT(1.2732)*(EXP(AR(3))/CL41=-EXP(AR(4))/CL42)
BUP4=SORT(1.2732)*(EXP(AE(3))/CU41~EXP(AR(4))/CD42)
P1=E1*(ERF((Al+1,)/C)-FRF((Al-1.)/C))
P2=F2*(ERF((A2-1.)/C)=FERF((A2+1.)/C})

IF(N.GE.2) GO TO 50

RLP3=FERF(AR(2)) ~FRF(AR(1))

BUP3=RLP3

PSU=(=1)** (1) * (P1+P2+BUP3+RUPS )
PSL=(=1)**(N+1)*(P1+P2+BLP3+BLP4 )

PSLwPSL/(2.*N*B)

PSU=PSU/(2.*N*B)

SIT(N+1)=SUCN)4PST

SL(MN+1)=SL(N)+PSL

EPSU=( SU(N+1)=SU(N) )/ SU(N+1)
FPSL=(SL{N+1)=SL(N))/SL(M¥1)
IF(ABS(EPSU),LE,SU(N+1)/1000,) GO TO 410

Gn 0 12

IP{ARS(EPSL),LF,SL(N+1)/1000.) GO TO 550

CONTINUE

SU(N+F1) =1 A(SU{N1)~1,)NCEFF/RO ~ROS*(1.,=VAT/A)/RO
SL(N+1)=1 4+ (SL(N+1)=1.)*CEFF/RO ~ROS*(1,~VAT/A) /RO
WRITE(6,107)T/86400./365.25,50(N+1) , ABS(SU(N+1)=SLENF1) ), SH(NEL)*
1EXP(-NC*T) N

FORMAT(/ ,* TIMF(YR)=*,1PE10.4,4X, %1, B.m® 1PE15,7 ,6X ,#DELTA=* , 1PF1
15,7 ,6X,*11.B. WITH DECAY=% 1PE15.7 ,4X,*Ne%,[2)
T=THiO,

5000 CONTINUE



1000 QONTINUE
STOP
END



7271

THIS PROSRAMM CALCU.ATIS CONCEINTRATIN AND 1A3S FLUX-
ClSE SFLERE.
UCBNE-73
Author Shaw J. Zavoshy
Date August 1381

CILILICIC2I IR

DIMENSICN CUS50)+X(35)sERC(L0),ERICC(LDD XX 120)
DIMENSION FRAC(3G) .QAVI3D) ,SOIR(S)

DIMENSION TIME(30)

DIMENSICN DD{10).3ZTHV(10}

Az17.8
RO=,.8672
R33=0.

CEF=RO-RI3

00(1)=B84€1%(104%%(=13))

DD(2)x5 5% (20 o ** (<22 ))

BETHY (3110,
BIirTHv{w)=50.
BITHY(5)=800,
BITHV (601600,
BETHV(71z~5,
BITHV(B)=-10,
BITHV(9)==20.
H=. 00001
03 6000 NI=1,NDI
0=3D (ND)
00 5600 NB=14NBI
BETH=EE TPV (NB)
POL= (RO=ROS)*D*8A600.
¥=BETH®L/A
T=.1
T=T*86600.%365.25
WRLTE(Be2) AyVoDsBETH
¢ FCRYAT(LFL ¢ RADIUS  (CH)=*,F12,645K¢ *V(ZH/SEL) =% o1PE 154 746Xy
140 (CHYXCF/SECI=2 412525, T¢6Xs*3THAZ (VXA /D) 2% PL15,7)
WRITE(5 ¢133RC
13 EQRMATI/¢* DENSITY (5R/CM3)=%,1PI15.7)
IF(VLZQe34) GO TO 7

TLY¥sA/7V735400.7365.25
TIRANS=O0/Y/Y
WRITECEsIITLY»TTRANS/86G004/365,.25
H FOIMAT (/9 LIACH TIMI(YRIZ(A/V)=*,422215,7,58,*TRAN N TIME{YR):Z
L 1DrUZ) S 8y IPE15. 73 ] 03K, SITIO IME tYR) =
CONT INUE

JZGINNING OF TIH: D0 LCIP o MU.TI?LIZR=1]

LrPLs

14c=28

79 100 K=],.JuK

S2IRLLI =0,

IF(V.£04Ce) GO TO 47
IF{T«GE«AIS(AZVY) 50 TO 500

GO 10 301



17 IJK=93
3601 CONTINUVE
TA=D*T/A/A

50%2.*SQRT(TAY

2X=1¢=BITH*TA

IF(PXeLEs «001/A') GO TO 500
DX=Px /10,

WRITEL(6 01D )IT/86L0047/365425+PX%A,0K%
10 FORHMAT (//y¥=rmmocee TIME IYR)x®o1PE1)a246Ks® RUT) (CHIZ®* FL24 496X,
1% JR(CHMI=*,F1245)

BEGINNING OF NODAL .00%,
00 50 I=1,23
IF{I«GE+21) GO TO 150
XA(I)=([-11*DX
K{1)=,00i/4

[y B ¥4

GO TO 200
150 X(I)=X (I=1)¢,1%DK
IF(I.GE.21) GO TO 101
GO YO 207

101 4=I-20
X(I)=PX=4*H/A
200 I=1e=X{T)

Y=1etX(I)
S[=2.%X(I)
XX(1)=Z/5Q
XX (2)=Y/35Q

0) &0 II=i,2
CERSUAIII=IRFCAXN (II0)
40 ERIFC{II) = 45661 9%EXP («XX(III*XXC(IL) ) -XX(IIV*ERC(II}
ClL)=14=(ZRC(LI-ERCI2) +SA*(ERIFC(LY=IRIF2(2)))/ST

(PR3

BEGINNING DF SUMMATION CF INFINITE SERIES. MAX. OF 40 TERNS,

(¥

DY 20 N=1,40
IF(N.GE. 40) GO TO 100
AR=N*PX
AREL=N*BZ TH*(N*FX-X(I)}
ARE2=N*AZ TH*(N*PX¢X(I))

Z1=EXP(-AREQ)
£2=EXP(-ARE2)
KC(3)=(24, *AR+Z) /SO
KX (2)=(24%AR=Y) /SO
XX (3)=(2,*AR#Y}I/SQ
XX (h)=(2.*AR=2Z) /50

D) 88 II=1.¢&
ERT(IIN=ZRFCIXY (LI V)
58 ERIFCUIN 54560619520 (wXX(IIV*XX(IZ)) ~XX(IIV®LRC(II}

SU4L==EL"(ERC{LI+ERZ (211 /5T

SU42= C2¥(ZRCIIV4ERTLLIN /ST
5JM32=SOCEL1*(ERIFCULI-ERIFC(201}/S51
SJM4= SA"EZ*(ERIFC(3)=ERIFC (&) )/SI



[ RN
wm o

36

rr

+5

55

SzSUML $SUM2+SUNI+5IM4

CUN+L)=CIN) ¢S
IF(CIN¢L1)sEQe0.) 52 TO 35

EPS:S/C(2¢l) . )
IF(ABS(EF3) «LECABS(CIN#L1)) /1,206 ) 52 FO 33
CINTINUE
IZ(1.6E428) 50 YO 77
C(N#1)=(ROS+CEFF*ABS(C(N+1)))I/RO
C(11=C(21)*CEFF/RO
ARITE (v 3BIK(T)*A«ABS{CIN®LY) oNeS{N2L)=3(1)
FORMAT (/4 *POSITION (CMIz®oF104Ly12(, *CONCENTRATION=%,F1044 46X,
18N=%,T24£4y *SUMIN) 3% 4F 32.5)

GJ) JO 50
DiRIV==C(N#L) 7H/Y

HRITE(Gy45IH*H yDERIVe ~ROL*DERIVeN

FORMAT (/¢ *HICM)=® 4 1PE 15,7 46X+ *DIRIVATIVE=® ¢ 1PE 15,7+,6X+ *MASS FLUX
1{GR/CM2 DAY)I=%,1PEL5,7,6X,12)

T)TJ==RCL*DERIV &¢V*R0O5*85uL02,
WRITE(B+53) TOTJ
FORMAT(//,® TOTAL 4Y2S5 LISS RATE (37012 IAY)I=*,1PE1S. T)
SOIR(M+21)=50IR(MI®IERTIV

SONTINUZ

[=7
DIRAV=SDIR(I+1)/3.
FLIJXAV==RO1*DIRAYV
FLIXT=12,56637%FLUXAVRATATPXPX

HELTE(6+330)0IRAVFLUXIVFLUXT
FORMAT (/) *AVERAGE JTRe=*e1PELS.7+6( «*AVERGE FLUX(GR/CM2 DAY) =¥,
11P 15 7+EXs*MASS LOSS(3R/DAY)=%,1P15,7)

fz=T*10.
SONTINUE
SONTINUZ
SONTINUZ
5107

IND

7373



OO0

13

w
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LYY ER ) uc!"E-T“ (XL XTI Y YY)
AUTHOR ~ SHAW J,. ZAVOSHY
DATE SEP. 1334
THIS PRCGRAM CALCULATES THE FRACY ICNAL RELEASE CF A DIFFUSING
SFECJES FROM SFHERE, THE INPUT PSRAMETERS ARE’
A= RADIUS CM
RO= DENSFTY OF DIFFUSANT G/CM3
ROS= COACENTRATION ON THE SURFACE G/CM3
Dz DIFFUSION COEFFICIENT (CM2/SEC)
BETHA=V®A/D = DIMENSIONLESS RECRESION SPEED
XYY RN TR YL LR EE T Y Y Y Y L e Py P Y Y T Y T Y Y Y Y Y YT P Y RN Prry
DIMENSIGM X (999),C4999),YP (299),YPP (999) 4,YZ(999) yN(979, 3),ANS(S)
DIMENSIGM ERC(1G)oXX(10) 4ERIFC(I)
DIMENSICN DDILC)4BETHV(10)
A=17.8
RO=,672
ROT=0.
CEFF=RO-RDS
00(1)=8.€1%(10+4%(=13))
0D0(2)=3.59*{10.**(~11))
NDI=1
NBI=9
BETHV{1)=0.
BETHV(2)=5,
BETEV{3)=10,.
BETHV(4)=50.
BETHVI5)=800,.
BETHV(6)=16G0.
BETHV(7)=-5,
BETHV(8)=~10,
BETHV(9)==20,
H=. 00001
0) €300 MD=1,NDI
D=DD (ND?
DO 5000 N3=1,NBJ
BETH=BETHV (NB)
V=SBETh*CraA
=1
T=T*8E5(0 +*365.25
HRITE (E+Z2)A 4V 2D BETH
FORMAT(1F1+® RAGIUS (CMI=*,Fi2.6,6X: YVICM/SECI=®,4PE15,7.6Y,
1%0 (CMXCM/SEC)=*,1PE15,7 46Xy *BETHAZ (VXA/D) =%, 1PELG.7)
HRITE (6+13)R0
FORMAT (/% DENSITY {(GR/CN3I)=*yiPE15.7)
IF(V,EQ.L.) GO TO 7

TLY=A/V/5640047365.25
TTRANS=D/V/V
HRITE(6e3)TLY, TTRANS/86405./365.25
FORMAT (/9 *LEACH TIMF (YR)S(A/V)=®41PELS¢7 465Xy *TRANSITION TIME(YR)Z
1(D/V2)= *91PE15.T7)
CONT INUE

SEGINNING OF TIMD GO LCOP » MULTIPLIER=10

I1JK=25

DD 100 K=3,IJK
iF{V.EQe0.) GO TO 27
IF{T.GC.ABS(A/V}Y) GC TO 500
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150

101
200

L0

(s NeNel

Go TOo 301
1JK=9
CONT INUE
TA=D®T/A/A

5Q=2.*5QRT(TA)

PX=1«~BETH*TA

IF(PXeLEs o00178 ) GO 7O 500
0X=PX/100a

WRITE(6+10)T/786040047 365425 4PX*A,0%X"A
FORMAT {474 #om=m—=== TIME (YR)=*+1PE10.2+6Xs* R(T)
4% DR(CH)=*,F12.5)

BEGINNING OF NOGAL LCO°.
NNN=992
00 50 I=1,NNN
IF(T GE. NNN) GO TC 10%
IF(I.GE.G2) GO TO 150
X(I)=(I=1)*DX
X(1)=.001/4

GO0 TO 200
X(I)=X(91)+PX*{I-94)/9000.
G0 70 230

X(I)=Px-HsA
Z=1a=XC1)

Yzi.®X{I)
SI=2.*X(I)
Xx(1)y=2/5Q
Xx(2¥=Y/5Q

00 &0 1I=1,2
ERC(IIY=ERFC(XX{II))

¥ 2

(CHVY=® ,F12, Uy €EX,y

ERIFCUII}=a5642G%EXPI-XX(IZ)*XX(TIN) =XX(IID*ERCIII)
Cl1)=1,-(ERCI1) =ERC(2) +SQA*(ERIFCILI-ERIFC(2) )V /ST

BEGINNING OF SUMMATION CF INFINITE SERIES. MAXe. CF 40 TERMS.

C0 20 N=jel0

IF(N.GE. 483) GO TC 102
AR=N*FX

AREL=N"3ETH® (N*PX-X(I)}
ARE2=N*3ETH* (N*CX X {I D)

L1=£XP (~AREL)
E2=EXP(-RRE2)
XX (3)=(2 4 *AR+7) /50
XX (2)=(2.*AR~Y)/SQ
XX (3)=(2.*AR+Y) /S0
XX (4)=(Z,*AR=Z)/SQ

00 38 II=1.4&
ERC(IIV=ERFC(XX(II))

ERIFCIIIN=o56H 16 EXP(~XX{II)I*XX(II)) ~XX(II)#ERC{II)

SUHL==ELPLERC{L)¢ERC (211 /5T

SUH2= E2Y(ERC(3)+ERCI4)) /ST
SUH3I=-SG"EL* (ERIFC (2 }~ERIFC(2) /ST
StM4= SC*"E2* (ERIFC{IV-ERIFCIL)) /ST

i




300
100
500
5000
6000

743

SxSUNL#SUMN2+SUNI+SUNME
CINeL)=C(N) ¢S
IF(CIN®1).EQ.04) GO TO 35

EPS=S/CIMe1)

IF(ABS (EPS ) oLEABS(CUIN+1})/71.E4 } GC TO 35
CONTINUL

YZOII=3 X (DI "X (LI BBS(C(N+I))

CONTINUE
YPN==YZ (NNN}/H
YPN=YPRYP X *PX
Al= =5
AN=»e5

NNN=NNN-2
N=NNN
YPi=0.

B1=3¢2 ((YZ(2)=YZ (1)) /7IX(2)=X{2))=YP LI/ (X (2)=X (1))

BN==3+ P ({YZINI=YZ(N~1)})/7{X IN}=X(N=2)) =YPN) Z(X (N)-XIN-1))
CALL SFLIFTUXsYZyYPoYPPy NNy Wy TERRy GoR1,4BLly ANyBN)

NUP=1

XL0=X (1)
XUP=X tKNN)
CALL SFLIQUIXsYZ2YFyYPPo NN sXLO»XUP)NUPy ANS IERR2)

FRAC=14~ROS*(1<~V¥T/A)* %3, /R0 ~CEFF*A3S (ANS(1)})/R0O
HRITE(6,300)IERRyIERRZy FRAC
;0RH§T(/I.' IE=%41246X9*IE2="1I2 96X+ * FRACe=*91PELS47)
=T*10. )

CONTINUVE

COATINLE

CONT INVE

sToP

END




| T Difference between concentration of component j in liquid adjacent
Sad to the waste surface ang concentration in the groundwater far away
from waste surface g/cm
r Cylinder radius cm

r(t) Cylinder radius at time t after dissolution begins cm

o Initial cylinder radius cm
T Leach time (sec)
Tps Leach time for prolate sphgroid sec
Tsc Leach time for slender cylinder sec
Tc Leach time for the infinitely Tong cylinder in flowing groundwater sec
u Groundwavzr pore velocity cm/sec
Vj(t) volume of undissolved waste at time t cm3
Pe = %? Peclet number
PeD = g;ﬂ
P

Pej = Ur

07

Greek Tetters
P = waste form density g/cm3
€ = porosity

= cosh

f
i

-](l Surface shape factor of prolate apheroid

Defined by Eq.(7.1.4)
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