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Equilibrium and nonequi'librium transport of radionuclides discussed 
in our previous report (HI, PI) has dealt with transport in porous media, 
wherein radionuclides are retarded entirely by sorption. The purpose of 
this chapter is to develop the mathematical analysis for transport of 
radionuclides in fractured media, wherein radionuclides are convected by 
groundwater flovnng through planar fissures. Here molecular diffusion into 
and out of micropores penetrating the rock surfaces of the fissures plays 
an important role in retarding the migration of radionuclides through the 
fissures, as has been pointed out by Neretnieks (Nl). 

We first formulate the equations governing fissure-flow transport of 
radionuclides with micropore diffusion, and we present analytical solutions 
to the transport of a radionuclide with no precursor, with no dispersion 
within the fissure, considering equilibrium sorption within the micropores. 
Solutions are present for an impulse release, stop release, band release, 
and solubility-limited dissolution. 

5.1 Mathematical Modeling and Formulation 
5.1.1. Transport Equations in a Finite Diffusion Field With One-Dimensional 

Fissure Flow 
Consider a rock matrix containing planar parallel fissures extending 

in the direction and micropores penetrating the rock surfaces of the fissures. 
Within each fissure water is flowing at a constant velocity v in the z-
direction, but the water in the micropores is assumed to be at rest. The 
spacing b between rock surfaces of each fissure and the distance d between 
adjacent fissures are assumed to be constants, as shown in Fig. 5.1.1. Three 
phases to be considered are the flowing water phase, the stationary water 
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phase, and the solid phase. Dispersion in the flowing water phase is 
neglected. Let N-(z.t), M.(z,y,t) and S.(z,y,t) be the concentrations 
of the nuclide i in the flowing water phase, in the stationary water phase, 
and in the solid phase, respectively. Since the water in the micropores is 
at rest, the transport of nuclides there is governed by molecular diffusion. 
Sorption on the planar surfaces of the fissure is assumed to be small 
compared to sorption on micropore surfaces and is neglected. The concen­
trations of the nuclide i in these three phases are then governed by the 
following transport equations: 

_ i + v _ L + , . N . = X . ^ N . ^ . | j . 

M. * \ 
E - 3 f - E D 1 - ^ f * e X 1 H 1 = £ Xi-l Mi-l " ^ 

t > 0, z > 0, 0 < y < d/2, i = 1,2,3, ... 

where D. is the diffusivity of the nuclide i in the micropore fissures which 
includes any goemetric factors of the micropores; c is the volume fraction of 
micropores in rock, excluding the fissure; x. is the radioactive decay constant 
of the nuclide i; J. is the diffusive rate of the nuclide i at surfaces of 
the fissure per unit area of fissure surface, and q. is the rate of 
sorption per unit surface area within the micropores. The diffusive current 
and sorption rate are given by, respectively 

(5.1.1) 

(5.1.2) 

(5.1.3) 
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Fig. 5.1.1 Rock matrix, fissure and micropores in a 
fractured medium of finite spacing of fissures. 
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3H. 
, t > 0, z > 0, i = 1,2, . . (5.1.4) 

y=0 

q,(z,y, t ) = L a (H, - rA- ), t > 0, z > 0, 0 < y < d/2, i = 1 , 2 , .. (5.1.5) l m l K D . 

where km is the mass transfer coeff icient, a_ is the interfacial area between 

stationary water and solid per unit volume of water, and Kn . is the d i s t r i -
u,i 

bution coefficient. 
In this model it is noted that there are two independent transport 

processes which can retard the migration velocity of the nuclides. One is 
the removal by molecular diffusion of the nuclides into and out of micropores 
penetrating the surfaces oi the fissures and the other is mass-transfer by 
sorption on the micropore surfaces. The effect of diffusion into and out 
of micropores will be called the "surface retardation effect" and sorption 
within micropores will be called "the bulk retardation effect". The 
surface retardation effect has not been considered in the analysis for 
porous-flow transport. 

5.1.2 Initial and Boundary Conditions 
If we assume that there are initially no nuclides in the water flow 

field and in the rock matrices prior to the beginning of dissolution of 
the nuclides, we can set the initial concentrations of nuclides in each 
phase as 

N ^ z , 0) = 0, z > 0 (5.1.6) 

M^z.y.O) = 0, z > 0, d/2 > y > 0 (5.1.7) 

S^z.y.0) = 0, z > 0, d/2 > y > 0 (5.1.8) 
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The boundary condition for N^Cz.t) for an infinite plane source of 
dissolving waste at z = 0 is: 

^-(0. t) = ^.(t), t > 0 (5.1.9) 

where the funct ion ^ ( t ) i s the general time dependent concentrat ion of 

the nucl ide i at z = 0. He f u r t he r assume ir.jt the concentrat ion o f 

nucl ide i i n the micropores should equal tha t o f nucl ide i n the f i ssu res . 

Then we can w r i t e the boundary condi t ion f o r M- (z ,y , t ) at y = 0 as 

M ^ z , 0, t ) = ^ ( z , t ) , t > 0 , z > 0 (5.1.10) 

Another boundary condi t ion f o r M . ( z , y , t ) to be spec i f ied at the center o f 

spacing of the medium i s , from symmetry: 

3M. (z ,y , t ) 

ay 
0 z > 0 , t > 0 (5.1.11) 

y=d/2 

Equations (5.1.1) through (5.1.11) give a complete set of equations for 
the transport problem to be solved. 

i) Step release 
When the radionuclides are released stepwise from the waste repository, 

the function ei-(t) is given by 

^(t) = 8 i(t) h(t), t > 0 (5.1.12) 

where the function B^(t) is the Bateman equation given by (HI): 

B.(t) = L b., e J (5.1.13) 
1 j=l 1 J 

with the coefficient: 



,± m Jl=m 
b ^ = L (5.1.14) 

m = 1 x i (x -\ ) Ai 7T u a \j' 
(VJ) 

Nffl is the initial concentration of the nuclide m at the waste repository. 

ii) Band release 
For a band release, the function «S-(t) is given by 

^(t) = B.(t) [ h(t) - h(t-T) ] (5.1.15) 

where T is the duration time of release, -i.e., the leach time. If we 
assume that the waste and its contained radionuclides dissolve at a constant 
total rate over the time period T, the initial concentration of the nuclide 
i can be related to the initial total amount Wy of waste per unit cross 
sectional area of water flow: 

«?= V 1 - (5-1J6) 

where n? is the initial (t = 0) amount of nuclide i per unit amount of 
waste. 

Hi) impulse release 
The impulse release is given by: 

0,(1) = TN? «(t) (5.1.17) 

5.1.3 Transport Equations for Shallow Penetration in Micropores 
If the depth of penetration of nuclides from a fissure surface into 

the rock medium is much less than the fissure space d, the micropores 
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can be treated as being of in f in i te length. The transport equations presented , 

in the foregoing section are s t i l l valid over the time and f ie ld space, so 

the equations to be solved are 

3N i iH. 

"aT + v IT ' A i " i " A i - l " i - l " b u i - r f + v - J - + X . N i - x , ,N,_, - | J, (5.1.18) 

3H. 3

2 M . 

' I T " E D i ^ T + e X i M i = e N - l M i - l " q i ( 5 - 1 J 9 ) 

3S. 
(1-0 -£+ (1 - O x i S i = (1 - e )X i _ 1 S i_ 1 + q. (5.1.20) 

t > 0, z > 0, y > 0, i = 1,2,3, . . . 

The diffusive flux J^ and the rate of sorption q. in these equa'-'ons are 

given by 

3H. 
, t > 0 , z > 0 (5 .1 .21 ) 

y=0 

q,(z,y, t ) = k_a(M. - u - 1 - ) . t > 0, z > 0, y > 0 (5.1.22) I m i * D j 1 

The i n i t i a l and boundary conditions are 

N^z, 0) = 0, z > 0 (5.1.23) 

M.(z,y,0) = 0 , z > 0, y > 0 (5.1.24) 

S^z.y.O) = 0. z > 0, y > 0 (5.1,25) 

The boundary condition for N-(z,t) is 

H^O.t) = ^ ( t ) , t > 0 (5.1.25) 

The surface and infinite boundary conditions for H.(z,y,t) are, 
respectively 
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M^z .O . t ) = N ^ z . t ) , t > 0 , z > 0 (5.1.27) 

M ^ z . - . t ) = 0 , t > 0 , z > 0 (5.1.28) 

The d i f fe rence of the set of governing equations in t h i s sect ion from tha t 

of Sect. 5.1.2 f o r t ranspor t i n an f i n i t e d i f f u s i o n f i e l d i s the replacement 

of the symmetry boundary cond i t i on , Eq. (5.1.11) by the in f in i te-medium 

boundary c o n d i t i o n , Eq. (5 .1 .28) . 

5.2 D i f fus ion Governing Transport i n an I n f i n i t e D i f fus ion F ie ld 

In t h i s sect ion we present the ana ly t i ca l so lu t ion to f i ssu re - f l ow 

t ranspor t i n an i n f i n i t e d i f f us i on f i e l d wi th local sorpt ion equ i l ib r ium 

and we explore the re tardat ion due to the molecular d i f f us i on i n t o micro­

pores in the rock mat r ix . 

5.2.1 Transport Equation With Local Sorpt ion Equ i l ib r ium 

Here we consider the t ransport of a mother nucl ide ( i = 1 ) , w i th no 

precursor. When the ra te o f mass t rans fe r of nucl ide between water and 

so l i d phases ip micropore f issures i s so rapid tha t trie concentrat ion of 

the nucl ide in the so l i d phase is local equ i l ib r ium wi th that of the 

nucl ide in the micropore water, we can wr i te 

S, = K n > 1 M , (5.2.1) 

where K n , i s the d i s t r i b u t i o n c o e f f i c i e n t . Adding Eq. (5.1.19) to Eq. 

(5.1.20) and using the above re la t i on we ob ta in : 

8M, D, 3 2M. 
T T - K 7 ^ 7 + X1M1 = ° t > 0 , y > 0 (5.2.2) 



where K., is the sorption coefficient defined by 

K. = 1 + ( 1' E ) KD,i (5.2.3) 

In Eq. (5.2.3), e is the porosity of rock medium excluding the 

fissures. Equation (5.2.2) shows that diffusion of a nuclide in micropores 

in the y-direction should be characterized by the ratio of d i f fus iv i ty to 

the sorption equilibrium coeff icient, rather than by the molecular 

d i f fus iv i ty i t se l f . This implies that a weakly sorbed species can 

penetrate more deep into the rock medium than a strongly sorbed species. 

The transport equation for the f i r s t nuclide in the flowing water 

phase is 

_ L + V _ U X ] N ] . . 2 ^ , t , 0 z > 0 { 5 . 2 . 4 ) 

where J1 is the diffusive flux at top surface of the fissures, given 
by Eq. (5.1.4) 

The initial conditions are 
N ^ z , 0) = 0 (5.2.5) 

M^z.y.O) = 0 (5.2.6) 

The boundary conditions are 

11,(0, t) = ^ ( t ) (5.2.7) 

M^z.O.t) = N^z.t ) (5.2.8) 

M^z.-.t) = 0 (5.2.9) 
5.2.2 Analytical Solution 

The set of equations (5.2.2) through (5.2.9) can be solved by the 
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method of Laplace transform with the aid of i n i t i a l and boundary 

conditions. Taking the Laplace transform of Eqs. (5.2.2) and (5.2.4), 

we have 

3 M^z.y.s) s n 1 * 

ay 2 

y J -K 1 M 1 (z ,y ,s ) = 0 (5.2.10) 

3 N 1 ( z , s } S+X, <\, - <\-
— 3 T — ^ ^ N ^ z . s ) = - ^ J ^ z . s ) (5.2.11) 

where s is the transformed variable with respect to time t and the functions 
Mi(z,y,s) and N-,(z,s) are the transformed subordinate functions of H-,(z,y,t) 
and N.(z,t), respectively. J,(z,s) is the transformed diffusive flux at 
the fissure surface 

aM^z.y.s) 
J^z.s) = - E D 1 ay z > 0 (5.2.12) 

y=0 

Solving Eq. (5.2.10) with the initial and boundary conditions, Eqs. (5.2.6), 
(5.2.8) and (5.2.9), we have the transformed solution for M,(z,y,s) 

* " yViT< s + xi> 
M^z.y.s) = N^z.s) e , U 1 ' (5.2.13) 

and the transformed diffusive flux in the form: 

O^z.s) = C D ^ ^ Z . S ^ Q H S + X ^ (5.2.14) 

Solving Eq. (5.2.10) after substitution of Eq. (5.2.14) subject to 
the boundary condition given by Eq. (5.2.7), we have the transformed solution 
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(x,+s) , 

* ^ — a, z /s+x, 
N l( 2,3) = ^ ( s ) e 1 1 ( 5 2 1 5 ) 

where «51 {s) is the transformed concentration at the repository and a-| is 
the constant defined by 

' ' D l 
2eD, 

Also from Eq. (5.2.13), 
(s+X.) 

z - (a,z+b,y) /s+x7 •v, ^ v
 i a i ' u r ' * "1 

M^z.y.s) = ^(s)e (5.2.17) 
where b, is the constant: 

b i - V B J - ,. < 5 - 2 - l 8 > 
The inverse of Eqs.(5.2.15) and (5.2.17) with respect to s can be found 
by using the formula: 

-11 -d /s+x, 
L e ' 

. 2 ^ t 
- -4re 4 t 1 = P,(t;a) (5.2.19) 

I'T 3 
The solution for aqueous concentration of the nuclide in the fissure 

and micropores are given by, respectively 
A, ¥ z 

N^z.t) = e v J ^ ( t ™ -xJP^T^zJdT, z<vt (5.2.20) 
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h t - 2-- —z f v 
M1(z,y,t) = e v J ^(t-^-TjP^Tja^+b^JdT, (5.2.21) 

z<vt 

5.2.3 Transport With an Impulse Release 
When the function f),(t) is characterized by the impulse release 

function given by Eq.(5.1.18), the solutions for the concentration of 
the nuclide in the fissure and micropores become 

N1(z.t)=(TN^)e v P^t-f-, a,z) , z<vt (5.2.22) 

M1{z.y.t)-(TN?)e V P^t-f, a,z + b ^ ) , z<vt (5.2.23) 

The concentration profiles of 237Np with no precursor nuclide for transport 
with impulse release at various n'igration times are shown in Fig. (5.2,1). 

5.2.4 Solution For a Step Release 
For a step release, the time dependent function si^t) is given by 

Eq. (5.1:12). For the first nuclide, 

^(t) = N° h(t) e ] (5.2.24) 

Substituting Eq. (5.2.24) into Eqs. (5.2.20) and (5.2.21), we have 

the solutions for the space-time dependent aqueous concentrations of the 

nuclide in the fissure and in the micropores 

N,(z,t) = N? e 1 er fc( -— ! 1, z < vt (5.2.25) 

„ - \ t a,z+b,y 
f U z . y . t ) = N? e ' e r f c ( - - ! — M , z < vt (5.2.26) 

1 ' 2/t-z/v 
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Fig. 5.2.1 Concentration profiles of Np, fissure flow 

transport with impulse release. 
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5.2.5 Penetration Thickness of Nuclide in Fractured Medium 
In Equation (5.2.2) for the diffusion of a nuclide through micropores 

the coefficient of the second-order space derivative of the concentration 
is inversely proportional to the sorption equilibrium constant K, of the 
rock medium. Hereafter this coefficient will be called an apparent 
diffusivity designated as D^/K^. In Fig. 5.2.2, the aqueous concentration 

7X1 profiles of Np in the micropores at a given time t = 10,000 yr 
for a step release are shown for various values of the sorption 
retardation constant. For times of the order of one year, a weakly 
sorbed nuclide, with an assumed retardation constant K-. = 1, ;an penetrate 
about 40m into the rock at a migration distance z=100 m, whereas a 
strongly sorbed nuclide, with K-, = 10,000 can penetrate only about 0.2 m. 
Because of long railing edge of the concentration profile, the concept of 
penetration depth remains ambiguous. The penetration depth or "thickness", 
is usually defined as a fictitious distance that corresponds to an 
arbitrarily specified amount of the nuclide penetrating into the medium 
per unit cross sectional area of the medium, normalized to the concentration 
at the surface of the medium. Here we define the penetration thickness 
n(z,t) at a given distance z and time t as 

/ tyz.y.tjdy 
^' l > = ° H^z.O.t) ( 5' 2- 2 7> 

Substituting Eq. (5.2.26) into Eq.(5.2.27), we have the local penetration 
thickness 

n M ) = 1 1 c, (5.2.28) 
2 l v 7 e C l erfc(C 1) J 
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Fig. 5.2.2 Concentration profiles of Np in micropores, step release f 
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where 
EZ/EUCT 

Cn = — - L - L - ( 5 . 2 . 2 9 ) 
1 bv/FzTv" 

/or 
C, = ' ' ( 5 . 2 . 3 0 ) 

In Tables 5.2.1 (a) <\. 5.2.1 (c) , variation of the penetration 

thickness with distance z at a given time which are calculated from Eq. 

(5.2.28) are shown for var'ius values of the retardation constant. The 

assumed parameters used in calculations are l isted in these tables. As 

seen from these tables, the penetration thickness depends strongly on 

the rtcardation constant. For t = 10,000 yr and at z = 100 m for K. = 1 , 

the penetration thickness is 11 m, whereas for K, = 10,000 the penetration 

thickness is only 0.01 m. Because of the smaller penetration thickness of 

the strongly sorbed species, the concentration gradient of the nuclide at 

the fissure surface of the medium is greater, which results in a greater 

diffusive flux into the micropores. Also the greater diffusive flux of 

the nuclide into the medium results in greater retardation of the nuclide 

in i t s migration within the fissure. 

5.2.6 Retardation Que to Molecular Diffusion 
237 Profiles of the aqueous concentration of Np in the fissure of 

a step release, calculated for three different values of the sorption 

retardation constant of the rock medium, are shown as the solid lines in 

Tig. 5.2.3. The d i f fus iv i ty of the nuclide in micropore water, including 

the effect of geometric factors,\ is assumed to be D, = 0.01 m /yr. The 
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237 Fig. 5.2.3 Concentration p r o f i l e s of Np in f i s s u r e , step release. 
U4 
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Table 5.2.1 Penetrat ion thickness f o r various sorpt ion c o e f f i c i e n t s , assumed 

D ^ l . O x l O ' V / y r , v= 10 m/yr, b=l . 0x l0 " 2 m, e = 1 . 0 x l 0 " 2 . 

Time Distance Penetrat ion th ickness, n (m) 
t ( y r ) z (m) ^ = 1 K ^ l x l O 2 K ^ l x l O 4 

l x l O H 

1.0x10" 
0x10 
0 
0 
0x10 
0x10, 
Oxl Oi 
0x10^ 
0x10, 
Oxl Of 
Oxl 07 
Oxl 0^ 
0x10 s 

1.128x10 
1.128x10 
1.128x10 
1.128x10 
1.128x10 
1.124x10 
1.121x10 
1.090x10 
1.053x10 
8.056 
5.906 
1.00 
1.0 xlO" 

1.128 
1.128 
1.128 
1.125 
1.121 
1.093 
1.058 
8.300x10" 
6.345x10" 
1.899x10" 

10 

9.00 xlO" 1 , 
1.00 xlO" 
1.0 xlO 12 

1.128x10" 
1.125x10" 
1.121x10" 
1.093x10" 
1.059x10" 
8.324x10" 
6.388x10" 
1.989x10" 
9.900x10" 
1.90 xlO" 
9.00 xlO 
1.00 xlO 
1.0 xlO 

-4 
•K 

1x10 

1.0x10" 
5.0x10" 
1.0 
5.0 
1.0x10 
5,0x10, 
1.0x10? 
5.0x10, 
1.0x10, 
5.0x10^ 
l .Ox lO 4 

3.568 
3.568 
3.567 
3.564 
3.559 
3.523 
3.479 
3.139 
2.753 
8.110x10 
1.0 xlO 

1 
-10 

3.568x10" 
3.565x10 
3.561xl0_ 
3.531x10 
3.495x10 
3.219x10" 
2.913x10" 
1.479x10" 
5.007x10" 
1.00 xlO" 
1.0 xlO" 

-1 

12 

3.561x10 
3.532x10" 
3.496x10" 

-2 

227x10 
930x10" 
539x10" 
162x10" 
900x10" 
00 xlO" 
00 xlO 

3 
2 
1 
6 
1 
9 
1 
1.0 xlO -14 

I x l O ' 

1.0x10 
5.0x10 

0 
0 
0x10 
0x10, 
Oxl 0« 
0x10, 

1.0x10" 

1.128 
1.128 
1.127 
1.122 
1.115 
1.064 
1.001 
5.252x10 
1.0 xlO 

-1 
-10 

1.128x10" 
1.125x10 
1.121x10" 
1.090x10" 
1.053x10 
8.056x10" 
5.906x10" 
9.999x10" 
1.0 xlO" 12 

1.121x10" 
1.093x10" 
1.058x10" 
8.300x10" 
6.345x10" 
1.899x10 
9.00 xlO 
1.00 xlO' 
1.0 xlO" 

-4 

14 
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other assumed parameters are included in the figure. For the assumed time 
of 10,000 yr and an assumed water velocity of 10 m/yr, the water travel 

5 distance is 10 m. A nuclide with K, = 10,000 is found to be much retarded 
by molecular diffusion into the micropores. Even a nonsorbed nuclide with 
K, = 1 is retarded by molecular diffusion into the micropores. The dashed 
lines show the concentration profiles of the same nuclide assumed to be 
convected by porous flow at the same water velocity with local sorption 
equilibrium with the porous solid. For a strongly surbed nuclide, the 
migration distance of that nuclide convected by fissure flew is greater 
than that of the nuclide convected by porous flow, defining "migration 
distance" as the distance reached by the half maximum of the leading 
edge of the concentration profile. For a weakly sorbed nuclide, however, the 
migration distance in fissure flow is less than that in the porous flow. 
This implies that the porous flow model with local sorption equilibrium, 
if it is applied to the transport of nuclides in fractured media, may 
overestimate the retardation capacity for a strongly sorbed nuclide and may 
underestimate the retardation capacity for a weakly sorbed nuclide. 

5.2.7 Transport With a Band Release 
The solutions for space-time-dependent aqueous concentrations of the 

nuclide in the fissure and in the micropores for a band release can be 
obtained by direct application of the theorem of superposition (HI). They 
are given by, respectively 
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N^z.t) = N,e ,o-X\l 

h( t - f ) erfc 

- h(t-T-^) erfc 

\2/t^z7v/ 

[_K_y 
\2/ t -T-z/v/ 

(5.2.31) 

-X,t 
M 1(z,y,t)= N°e 1 h(t-z/v)erfc 

2/i>z7v' 

/a.z + b,y 
- h(t-T-|) erfc ^ ] 

v \2/t-T-z/v 
(5.2.32) 

where the constants a, and b, are given by Eqs. (5.2.16) and (5.2.18). 
237 Figure 5.2.4 shows the concentration profiles of Np in the 

fissuresfor the band release. The leach time is assumed to be T = 30,000 yr, 
and the other parameters used in the calculations are the same as those used 
for the step release. Because of the removal at the front of the band 
by diffusion into micropores and the release of the penetrated nuclide at 
the rear of the band, the concentration profiles for fissure flow, for various 
K, values, show the long smoothed curves with long trailing edges, and wit!. 
highly curved leading edges. All of the fissure-flow curves converge at 

5 N.= 0 and at the water-transport distance of 5x10 m, because no sorption 
retardation occurs within the fissures. The dashed lines show the 
concentration bands of the nuclide calculated from the porous-flow model. 
The effect of diffusion into and out of the micropores is to greatly spread 
the concentration band, qualitatively similar to the effect of a large 
dispersion coefficient for dispersion in the direction of convective flow. 

Because of the spreading of the concentration profile in fissure 
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Axial distance along fissure, m 
XBL827-6I98 

237 Fig. 5.2.4 Concentration profiles of Np in the fissure, band release. 
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flow, the maximum concentration, even for a weakly sorbed nuclide, is 
much lower than that predicted from the porous-flow model. The maximum 
concentration is relatively unaffected by the magnitude of the sorption 
retardation constant. 

237 The concentration profiles of Np in micropores in the y-direction 
at a given distance z = ID in are shown for some different migration times 
in Fig. 5.2.5. In this calculation, the leach time is assumed to be 
10,000 yr. At t = 10,000 yr, when the band-release solution is identical 
to the step-release solution, the nuclide still continues to penetrate 
into the rock medium and the concentration gradient of the nuclide is 
negative throughout, i.e. the concentration decreases monotonically with 
distance at a time less than the leach time. At t = 10 yr, when the 
trailing edge of the seed concentration band has already passed the 
distance of z = 10 m, the concentration of the nuclide in the fissure is 
lower than that in the micropores, ;?nd the nuclide diffuses back out into 
the flowing water. Consequently, the concentration in the micropore now 
increases with distance at a smaller y, reaches a maximum, and decreases 
again with distance at a greater penetration distance. The diffusion of 
the nuclide at the fissure surface into the flowing water fissure causes 
the long trailing edges of concentration in the fissure as shown in 
Fig. 5.2.4. The locus of the maximum concentration of the nuclide in the 
micropore moves more deeply into the medium with increasing time. 

In evaluating the biological hazard due to radioactive wastes, the 
maximum concentration of the contained nuclide is an important index. 
As described above the maximum concentration of tlie nuclide predicted for 
fissure ilow transport shows an appreciably lower value than that 
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Fig. 5.2.5 Concentration profiles of Np in micropores, 
band release. 
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predicted from the porous-flow transport model. Because the broadening 

of the concentration profiles in fracture flow is qualitatively l ike the 

effect of axial dispersion in porous flow, we can calculate the 

magnitude of an axial dispersion coefficient that would result in a 

porous-flow concentration maximum as low as that calculated for fissure 
237 flow. Fig. 5.2.6 shows a comparison of the maximum concentration of Np 

predicted in porous-flow transport with dispersion with that predicted in 

fissure-flow transport without dispersion. This figure demonstrates that 

even with a dispersion coefficient orders of magnitude greater than 

commonly used, the attenuation of the concentration equivalent to that 

predicted in fissure flow transport cannot be expected in porous-flow 

transport. Tn this assumed case, an axial dispersion coefficient greater 
4 2 than about 4x10 m /yr w i l l be needed to obtain the same attenuation 

as that predicted in fissure-flow transport. 

5.3 Transport With a Finite Plane Source 

In a real waste repository the waste sources wi l l be arranged in 

a f i n i te array. Although the analytical solutions for fissure-flow transport 

with an in f in i te plane source, which neglect transverse flow and dispersion 

in the fissures, give important insights into radionuclide transport in 

fissure flow, application of these solutions w i l l lead to an over­

estimate of the concentrations at the point of discharge to the environment. 

Here we consider the transport of radionuclides released from a f in i te plane 

source into in f in i te plane fissures surrounded by an in f in i te rock medium, 

with one-dimensional water flow in the fissures. 
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5.3.1 Formulation and Analysis 

Consider a coordinate system wi th z i n the f low d i r e c t i o n , y in the 

d i r ec t i on of pore d i f f us i on i n t o the rock and x i n the transverse d i r ec t i on 

pa ra l l e l to the surface o f the f i ssu re as shown i n F ig. 5 . 3 . 1 . In the 

case of dispersion p ree , the convective t ransport of the nucl ide i n the 

z d i r ec t i on i s usual ly much more e f f ec t i ve than dispersive t ranspor t i n 

the z d i r e c t i o n , so the l a t t e r w i l l be neglected. In the transverse 

x d i r e c t i o n , however, because o f no water f low in tha t d i r e c t i o n , 

d ispers ion and even molecular d i f f u s i o n play an important ro le in nucl ide 

t ranspor t . Here wfe w i l l solve the problem l i t e r a l l y f o r i n f i n i t e planar 

f i s s u r e s , so the appropr iate c o e f f i c i e n t D f o r Fickian t ranspor t in the 

transverse planar d i r e c t i o n x i s the molecular d i f f u s i v i t y D , o f the 

nucl ide i n the l i q u i d . When sorpt ion in the micropores i s l o c a l l y 

e q u i l i b r a t e d , the t ranspor t equations f o r the aqueous concentrations of 

the nucl ide i n the f i ssu re and in the micropores are given by 

3N, 3N, 3 2 N, , 
T T + v 7 r - D m l 7 7 - + M l = - b J l (5.3.1) 

3M, D, 3 2 H , 
1 L ! + X,M, = 0 (5 .3 .2) 8t K, 3 y 2 V ' l 

t - 0 , z > 0 , - °> < x < + »>, y > 0 

where N-,(z,x,t) and M,(z,y,x,t) are the aqueous concentrations of the 
mother nuclide in the fissure and micropores, respectively, v is the water 
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Fig. 5.3.1 Coordinate system for release from a f in i te source into 
planar fissures. 
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velocity, D-j is the pore molecular diffusivity, D , is the pure molecular 
diffusivity, A. is the radioactive decay constant, K, is the retardation 
constant, b is the spacing of the interstice fissure walls, and J, is the 
diffusive flux of the nuclide due to transport into the micropores. 

Jl " -Dl W . t. > 0 , z > 0 , - » < x < + » (5.3.3) y=0 

where E is the porosity of the fractured medium excluding the fissures. 
The initial conditions are 

N 1 (z, x, 0) = 0, z > 0, - » < x < + «. (5.3.4) 

M1 (z.y.x.O) = 0, z > 0 , - «. < x < + », y > 0 (5.3.5) 

The boundary conditions are 

1^(0, x, t) = |>|(t), t > °' | x | < a/2 (5.3.6) 
I x I > a/2 

for 
M1 (z.O.x.t) = N^z.x.t) , 

t > 0 , z > 0 , - <*> < x < + °° 

H^z.+o-.x.t) = 0, t > 0 , z > 0 , - °° < x < + °> (5.3.8) 

Taking the Laplace transform oV Eq. (5.3.2) with respect to t and 
solving with the aid of the initial and boundary conditions, we obtain the 
concentration of the nuclide in the micropores and diffusive flux at the 
surfaces of the fissure in the transformed form: 
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,/F <v, % - y ' n - ( s + A , ) 
M^z.y.x.s) = N^z.x.s) e u l (5.3.9) 

(5.3.10) J^Z.X.s) = eDjN^Z.X.S)/ | p (s+Aj) 

where M,(z,y,x,s) is 

. M 1(z,y,x,s) » I e " s t H^z.y.x. t ) dt (5.3.11) 

Define ° 

N^z.ol.s) = I J e " 1 x o ) " s t N^z.x. t ) dt dx (5.3.12) 
-a> O 

Taking Laplace and Fourier transfonns of Eq.(5.3.1) with respect to t and 

x, and solving the resultant equation with the appropriate i n i t i a l and 

boundary conditions, we have 
s+A, , D_, 

Vz,o>,s) = * l ( s ) HM e " -T- z " a^v^A-Td,,)2 - l l z (5.3.13) 

where a, is the same constant as given by Eq. (5.2.15) and the function 
H(w) is given by 

2 sin (f) 
«(">) = rr*— (5.3.14) 

Inversion of Eq. (5.3.13) can be found by using the Fourier inversion 

formulae: 

F - l l e ^ U - L £ J ! _ (5.3.15) 
I > zfT / T 

F"1 JH(co)J= h ( x + f ) - h(x - f ) (5.3.16) 
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thus, from the convolution rule 

r' JHWe^)2e}= ^ / + " ^ - [h<«* |)- h(,-5- |,] d5 

= E, ( §+ x,8) ' (5.3.17) 

where r. is a dummy integral variable and the function E,(a/2+x,e) is given 
b y a a 

— + x — - x 
E , ( | ± x.e) = i f e r f (2-—:) + erf &-=•)] (5.3.18) 

and the Laplace inversion formula: 

2 
- x,t 

(5.3.19) 
2*irt' 

There results the solution for the concentration of the nuclide in the 

•i f - ai/s+A.l - 7 T - ^it 

• 1 = ± f ' '•'''" 

fissure ^ 
N^z.x.t) = E,(|+ x, -f-z) e v | P^T^^J^ft-x- f) dx (5.3.20) 

1 ,t-£ 
- z f v 

J P^t^zH^t-t- f) dx (5.3.2 

The concentration of the nuclide in the micropores is then, from 
Eqs. (5.3.9), (5.3.13), and (5.3.19) 

M^z.y.x.t) - E,(f + x, -f-z) e- T z 

•J P^tja^+^y) +,(t-T. f) dx (5.3.21) 
° \ 
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where the constant b, is given by Eq.(5.2.18). 

5.3.2 Solution for an impulse Release 

When the function <Mt) is specified by the impulse release function: 

^ ( t ) = TN° <5(t) (5.3.22) 

the solutions can be written as 

N^z.x. t ) = T N°e v Z h ( t - i ) E^ f + x, -f- z) P^t- f ; a ^ ) (5.3.23) 

M^z.y.x.t) = TN° e _ T z h(t - | ) E ^ f i x, - ^ - z ) 

•P , ( t - \\ a ] z + b, y) (5.3.24) 

where N? is the initial concentration of the nuclide at the waste repository. 
Because of infinite characteristic of the boundary data, the concentration 
N, shows an infinite value at the leading edge at z = vt when D, •* 0. 

5.3.3 Solution For a Step Release 
The step release function is characterized by Eq. (5.1.12), especially 

for the first nuclide ,« 

^ ( t ) = B,(t) h(t) (5.3.25) 
\ 

where the function B1 ( t ) is given by ' 

B,(t) = b n e ' , b 1 } = N̂  (5.3.26) 
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Substitution of Eq. (5.3.25) into Eqs. (5.3.20) and (5.3.21) gives the 
solutions for the aqueous concentrations of the nuclide in the main and 
micropore fissures. They are respectively, 

M z . x . t ) = N? e ] E,(j- + x.-SiL-) erfc( ] ) h(t-z/v) (5.3.27) 

M1(z,y,x,t) = N?e ' E,(| + x.-Sj-) e r f c H '—) h(t-z/v) (5.3.28) 

where a, and b, are the constants given by Eqs. (5.2.16) and (5.2.18), 
respectively, 

5.3.4 Solution For a Band Release 
For a band release, the function <Mt) is given by 

^(t) = B^t) [h(t) - h(t - T)] (5.3.29) 

where T is the leach time. 
The solutions for a band release can be obtained directly by applying 

the theorem of superposition (H-1). The concentrations of the nuclide in 
the fissure and in the micropores are given by, respectively 

-A,T 
N^z.y.t) = ̂ (z.y.t; b ^ ) - N1(z,y,x,t-T; b,, e ' ) (5.3.30) 

-X.J 
H^z.y.x.t) = M^z.y.x.t; b,,) - M-, (z,y,x,t-T; b,, e ' ) (5.3.31) 

5.3.5 Effect of Transverse Molecular Diffusion on Fissure-Flow Transport 

The concentration profiles of Np released stepwise from a f in i te 
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Fig. 5.3.2 Concentration profiles in transverse 
direction in fissure, step release 
(z=distance from waste source). 
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plane source, with the ratio of fissure width b to fissure spacing d of 

30, along the transverse direction x at various values of the migration 

distance z are shown in Fig. 5.3.2. "he molecular d i f fus iv i ty in the 
2 water in the main fissure D . is assumed to be 0.05 m /y r , f ive times mi 

higher than the assumed micropore di f fusiv i ty 0,. The micropore d i f fus iv i ty 
o is usually related to the pure molecular d i f fusiv i ty D . as D, = D ./a , r ' mi I mr ^ 2 where q is a geometric factor, the tortuosity coefficient. The assumed 

parameters are l is ted in the figure. For a relat ively small axial distance 

z the concentration prof i le in the transverse direction shows a smaller 

diffusion path length and a greater gradient in concentration, which would 

cause a greater diffusive flux in that direction. The concentration 

gradient becomes smaller and the diffusion path length becomes greater 

with increasing migration distance z. This behavior is quite different 

from that noticed in the concentration profi le in the y-direction in the 

rock medium. The profiles along y-direction shows a smaller diffusion path 

length but a greater concentration gradient at a greater distance z. 

This behavior in concentration in the transverse x-direction is well 

understood by introducing the concept of an effective diffusion time t . 

Since the diffusion f ie ld in the transverse x-direction moves with the 

water at the same velocity, the effective time for the molecular diffusion 

in this f ie ld can be determined by t = z/v. At z = 10 m, for instance, 

t e = 1 yr , whereas at a greater distance z = 1000 ,u, t = 100 yr. Therefore, 

at a greater distance z there is a greater effective time for diffusion in 

the x-direction. 

The diffusion f ie ld in tne y-direction in the rock medium, on tha 

other hand, is a stationary f i e l d , since the water in the micropores is 
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at rest. Therefore, the effective time for diffusion in the micropores is 
given by t = t - z/v. At a given time, t. at a smaller z gives a greater 
effective time for the diffusion in the micropore fissures. The case is 
just contrary to the case for the transverse diffusion in the flowing water 
in the main fissure. Because of the longer effective time, a nuclide at a 
greater z can diffuse to reach a greater distance in the transverse x 
direction, thereby resulting in a considerably lower concentration along 
z at x = 0. 

The concentration gradient in micropores becomes very steep near the 
leading edge of the band moving through the fissures, whereas the 
concentration gradient in the transverse direction becomes quite low in 
that region far from the source but becomes infinite in the medium adjacent 
to the source, at the edges of the source. Therefore, attenuation of 
concentration at x = 0 due to transverse diffusion is very small at the 
leading convection edge of the band, and consequently transverse diffusion 
has no significant effect in retarding nuclide migration velocity, even 
though it does appreciably attenuate the maximum concentration of the 
nuclide. 

In fact, taking a limit of the solution given by Eq. (5.3.27) of 
D 1 - 0 yields 

N^z.x.t) - N° e" X l h(t-f) E, (f + x, -is£) (5.3.32) 

This equation shows that the nuclide convected from the waste repository 
is only attenuated in concentration by a ratio of the function 
E,(a/2 + x, D , z/v). Although the E, function decreases with distance 
z at a given x, it is still finite at the water-travel edge. This means 
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Fig. 5.3.3 Effect of transverse molecular diffusion on fissure flow 
transport, concentration profiles of 237f)p at x=0 and y=0 
with different molecular d i f fus iv i t ies. 
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that E, function contributions has nothing characteristic of a retardation 

effect on the nuclide migration velocity. When the molecular d i f fus iv i ty 

D . becomes zero, on the other hand, the solution approaches the solution 

for transport without transverse dif fusion, namely, 

l U z . x . t ) = N,(z,t) = N? e 1 h(t-f) erfc ( 1 ) (5.3.33) 
1 i i v 2 / t ^ / v 

This equation gives zero concentration at the leading edge z = vt. 
237 In Figure 5.3.3 the concentration profiles of Np at the center of 

the repository source (x = 0) and along the z-direction, for a step release, 
are compared with the concentration of that nuclide in transport without 
transverse molecular diffusion. As seen from this figure, the concentra­
tion at a given z is reduced appreciably by transverse diffusion in the 
x-direction, even with a relatively smaller diffusion coefficient. 
Figure 5.3.4 also shows a comparison of the concentration profile along 
z-direction at x = 0 in transport with transverse diffusion with that in 
transport without transverse diffusion, but for band release. The size 
of the repository source is assumed to be same as that assumed in transport 
with step release. The figure shows that the maximum concentration is much 
reduced by transverse diffusion, even with a small value of the diffusivity. 
The maximum concentration with D . = 0.05 m /yr for instance, gives a 
value almost a hundredfold less than the maximum concentration without 
transverse diffusion. However, transverse diffusion has negligible effect 
on the locus of the maximum concentration, nor does it appreciably shift 
the leading edge of the concentration band. 
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5.3.6 Transport of a Nuclide Released From Arrayed Finite plane sources 
When many plane sources are arrayed at a plane at z = 0 as shown in 

Fig. 5.3.5, nuclides released from one source will affect the concentration 
from another source. Let h-j, h z, ... h^, ... be the positions at x axis 
of the each plane source, then the concentrations of the nuclide in the 
fissure and micropores are given by the superposition of the solutions 

n 
-\,t N.(z,x,t) = N? e 1 h(t-z/v) erfc( ] -) Y E, 

1 ' 2/t-z/v £*, ' 
° m i z 

n r -X,t a,z+b,y & 
M,(z,y,x,t)= N? e ' h(t-z/v) e r f c H —) / E, 

Z/i^zN 

n

m i Z St«x-h J.JOL 

(5.3.34) 

(5.3.35) 

when n is the number of f i n i t e plane sources. 

The step-release concentration profiles in the transverse x-direction 
237 of Np assumed to be released from array of f in i te waste sources with 

an assumed scale b = 0.01 m, d = 0.3 m, and Ah = 3 m, and at a given time 

t = 10,000 yr are shown in Fig. 5.3.6, with the migration distance z as a 

parameter. As seen from the f igure, the dist inct ly separated concentration 

steps travel along z-direction at a smaller z, but because of the effect 

of transverse dif fusion, the separated concentration steps superpose with 

each other and make a new wavelike concentration step at a greater distance 

z. In this assumed case, the concentration prof i le becomes almost f la t 

at z = 100 m. The dashed lines show the concentration profiles resulting 

from transport without transverse diffusion. The figure shows that neglect­

ing transverse diffusion can lead to significantly overestimates not only 

of the maximum concentration but also of the local concentration of a 

nuclide. 
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5.4 Transport of a Nuclide in a Plane Fissure With Flow in the Surrounding 
Permeable Rock 
In the previous analysis we have neglected water flow through micro­

pores. However, it is possible that a transverse pressure gradient may 
induce very slow water flow through micropores. The purpose of this section 
is to derive the analytical solution to the transport of a mother nuclide 
through a fissure with some crossflow of water through the micropores. 

5.4.1 Formulation and Analysis 
Consider a single infinite-plane fissure of average interstice b, 

both sides of which are bounded by rock surfaces permeable to water. If 
there exists a pressure gradient in the direction as shown in Fig. 5.4.1, 
water should flow in the y+ direction in the micropores in the upper medium 
A, and in the negative of the y~ direction in the micropores 1n the lower 
medium B. Although water flow through micropores is usually very small, 
due to the considerably lower permeability of the rock, it can affect the 
concentration profile of the nuclide in the fissure, especially at small 
z distances where the concentration gradient of the nuclide in micropores 
near the surface of the fissure 1s so small that convective transport by 
permeating water in micropores becomes comparable to diffusive transport. 
Let NWz.t) be the aqueous concentration of the nuclide in the fissure 
and H | (z,y+,t) amd Mj (z.y'.t) be the concentrations of the nuclide in 
the medium A and in the medium B, respectively. The transport equations 
which govern these concentrations are given by 

3N, 3N. , . 
8 T + V l i l + A 1 N 1 = - b - < J l + V > f 5 - 4 - 1 * 
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3M. 
St K1 3 y + ^ 

D, 3 2MJ + 

3y+ 
(5.4.2) 

3H1 

W 
3M^ 

1 3y~ 

D1 32M^ 
K 9 + A1H1 
K l 3y- ' ' 

(5.4.3) 

t > 0 , z > 0 , y + > o, y > 0 

where v is the water velocity in the f issure, u and u" are the velocities 

of the permeating water in the micropores in media A and B, respectively, 

D, is the pore molecular d i f fus iv i ty of the nuclide, K, is the sorption 

retardation constant, X, is the radioactive decay constant, and b is the 

width of the fissure. The functions J, and J7 are the sums of the 

convective and diffusive fluxes of the nuclide at the surface of the 

fissure given by 

+n 3 M 1 
- E D I 7 T 

ay 
+ e + u + N, (5.4.4) 

J 1 = - e D, 
3M^ 

3 y " 
e u N, (5.4.5) 

where e and e" are porosities of media A and B, respectively. I f we 

assume that the water velocity v in the fissure is independent of space 

and time, and there 1s no accumulation of the water in the fissure, we 

can write from the equation of continuity 

+ + - -e u = e u (5.4.6) 
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Especially, when e = E" , 

u = u" = u (5.4.7) 

The i n i t i a l conditions are 

N^z, 0) = 0, z > 0 (5.4.8) 

My(z,y,0) = 0, z > 0, y -> 0 (5.4.9) 

The boundary conditions are 

1^(0, t) = ̂  (t), t > 0 (5.4.10) 

Hf(z,y,0) = N ^ z , t), z > 0, t > 0 (5.4.11) 

My(z,<»,t) = 0, z > 0, t > 0 (5.4.12) 

Equations (5.4.1) (5.4.3) with the appropriate initial and 
boundary conditions of Eqs. (5.4.7) (5.4.11) can be solved by the method 
of Laplace transforms. Taking the Laplace transform of Eqs. (5.4.2) and 
(5.4.3) with respect to time t and introducing new transformed functions 
ij- (z,y- ,s) defined as 

fty- (z,y,s) = mf (z,y,s) e^~z (5.4.13) 

m-

where 
wf U.yi.s) = J e " s t M±- (z.yi.t)dt (5.4.14) 

T - x u (5.4.15) 

H, we have the differential equations which govern the functions iMz.y.s) 
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0 Br &i „ c I^L. 

*y i ' ' 

m^(z,0,s) = N^z.s) (5.4.17) 

nS- (z,°°,s) = 0 (5.4.18) 

The transformed solutions of Eq. (5.4.16) subject to the boundary 
conditions are C £ 

n£ (z.y.s) = N, (z.s) e * 1 ' 1 

From Eqs. (5.4.13) and (5.4.19), we can obtain the convective and 
diffusive transport rate of the nuclide at surface of the main fissure 
in the transformed form: 

/K 2 
i (z,s) = [ ± f + d ^ l S ^ + V jgpj-jj^z.s) (5.4.20) 

Taking the Laplace transform of Eq. (5.4.1) with respect to t , and 

solving the resultant, equation after substitution of Eq. (5.4.20) 

subject to the boundary condition, we have 

N. " v " " ' " a l z J s " V 4DT^ 
S + A l / u 2 

— ~ z - a,z ls+X,+ J L -, (z,s) = B^s) e " ' V ' ™11 (5.4.21) 

where a. is the same constant as before, defined by 

2eD, / I T 
a l = - b T - > / D 7 < 5- 4- 2 2> 
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Using the Laplace inversion formula: 

-a 
e 

^ s + x 1 + u 2 /4D 1 K 1 

a,z . J i , + u % t 

_ - L _ e 4t u l 4D, K, ' x 

2 ^ 

2 2 

5 P., (t-.a^) (5.4.23) 

we have the space-time-dependent aqueous concentration of the nuclide in 

the main fissure 

*1 z ^ " 7 
N ^ z . t J ' e v I ^ ( t - x - f jP^TSa^ ) dt (5.4.24) 

*o 

From Eq. (5.4.13) with Eqs. (5.4.19) and (5.4.21), the concentration 
of the nuclide in the micropores in media A and B becomes 

-ziry1 • T z I v h^-TvWT'^ b i y ± ) -<T < 5- 4- 2 5) 
Mf (z.At) - e ' I 

where the constant b. is 

"l = Js [ (5-«-2 6) 

5.4.2 Solutions For an Impulse Release 
When the aqueous concentration of the nuclide at repository is 

given by an impulse release function, 

*., (t) = (T N^) 6 (t) (5.4.27) 
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the solutions become 

N^z.t) = (t N°) e v "P,(t - |; a ^ ) h(t - f) (5.4.28) 
J-z 

. u + Xl 
My (z.yi.t) = (T N°) e ' P^t- f; a l Z+ b,yt) h(t-f) (5.4.29) 

where N, is the initial concentration of the nuclide at the repository, 
the function P, (t,a) is given by Eq. (5.4.22), and the constants a, and 
B. are given by Eqs. (5.4.21) and (5.4.25). 

5.4.3 Solutions for a step release 
When the boundary value of the concentration of the nuclide is 

given by a step release, the function <K(t) is given by 

^ (t) = B 1 (t) h(t) (5.4.30) 

where the function B,(t) is given by Eq. (5.1.13) 
Substituting Eq. (5.4.30) into Eqs. (5.4.23) and (5.4.24), we have the 
solutions for a step release, 
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M z . t ) = b,, e ' h(t-z/v) J / exp -I n̂  + —' ?\ dn 

2/t-z/v 

, -X.t [ a,uz r a ẑ/IC-D, + u(t - z/vH 
ib n h( t -T /v ) e' n J e _ l — - e r f c ' ' ] — 
' " ' ' " ^ ^ L 2/K1D] (t - z/v) J 2 /¥T 

d-,1 

• e" ^ c r f T a 1 z / ^"- U ( t -J^ ) 11 
L 2/K]D1 (t - z/v) JJ 

(5.4.31) 

<(z,yi, t)= b n e n 2 D 1 h(t-z/v) -?- exp - r, - U V 1 * i 

i z t y - - n 

.x i t ± 2 .«_ v ± 
2 b n e 1 h(t-z/v) -\e z / R l ° l 

2>a - z/v 

(a^+yV^/D^u 

•erfc 

+ e 

r a ^ / ^ D , + K,y-+ u (t - ^)-j 

L 2/K1D1 (t - z/v) J 

. (a.z+yi/VD^T 

r V ^ + V i • „ ( t - z / v n l s ^ ^ 

L 2 / K ^ t - z/v) -IJ 

2 /K^ -
erfc 
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5.4.4 Solutions for a Band Release 

For a band release, the time-dependent concentration at the reposi­

tory is given by 

^ (t) = B1 ( t ) [ h ( t ) - h(t - T)] (5.4.33) 

where T is the duration time of release. 

The solutions for a band release are obtained by applying the 

theorem of superposition (H- l ) . They are 

N1 (z, t ) = N1 ( z , t ; b n ) - N, (z,t-T; b^e ' ) (5.4.34) 

H^z .A t ) = M y U . A t ^ ) - M̂  (z,y+-,t-T; b,, e ] ) (5.4.35) 

where the functions N^(z,t; b..) and My- (z,y; b..) stand for the space 

and time dependent concentrations of the nuclide for the step release 

with Bateman coefficient b . . , respectively. 

5.4.5 Effect of Micropore Flow on Fissure-Flow Transport 
237 

Figure 5.4.2 shows the concentration profiles of Np in the 

micropore fissures in the rock media A and B at fixed distance z = 1 m, 

at time = 10,000 yr and at t = 100,000 yr , with a permeating water 

velocity u = 0.05 m/yr in the positive y+ direction. The release mode 

is assumed to be a band release with a leach time T = 10,000 yr. Note 

that the concentrations at t = 10,000 yr are equivalent to those for the 

step release. The concentrations of the nuclide in transport without 

permeable water, i . e . , with u = 0, at corresponding times are shown as 
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dashed lines. The concentrations with u = 0 in medium B are not given 
in this figure; their profiles are completely symmetrical to the profiles 
in medium A. 

The permeating water in medium B acts on the nuclide to migrate 
in the negative y- direction against molecular diffusion, whereas the 
water in the medium A convects the nuclide in the positive y+ direction 
in the same direction as that of molecular diffusion. Many of the 
nuclides that have diffused into medium B are convected to the medium 
across the flowing water in the main fissure, resulting in a nonsymmetric 
concentration profile with a greater diffusive path length in medium A 
but with a smaller path length 1n medium B. The penetration thickness 
of the nuclide at t = 10,000 yr reaches almost y+ = 10 m in medium A, 
but the thickness in medium B is only 1 m deep. 

The effect of penetrating water on the concentration along the y-
direction becomes more significant as the migration time increases. At 
t = 100,000 yr, the concentration band of the nuclide in medium A travels 
a greater distance in that medium. The concentration of the nuclide in 
the medium B, on the other hand, is extremely small and the concentration 
band does not appear in this figure. Also, because of convective transport 
from medium A to B, nuclide transport with permeating water shows a 
greater maximum concentration within the micropore, and the maximum 
occurs at a greater distance from the fissure surface. 

237 Fig. 5.4.3 shows the aqueous concentration profiles of NP in the 
fissure with permeating water velocities of u = 0.005 and 0.01 m/yr, as 
well as for u = 0. This figure shows that convective transport in the 
medium across the flowing water decreases the concentration of the nuclide 
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over the entire migration distance. This means that the convective 
increase in the amount of nuclides entering the upper micropores is more 
important than the convective decrease in the amount of nuclides diffus­
ing into the lower micropores. The permeating water in micropores has 
no effect on the retardation capacity, I.e., the maximum concentration, 
as well as the concentration band, occur at almost the same position, at 
all values of the micropore velocity shown in Figure 5.4.3. 

5.5 Solubility Limited Migration of a Radionuclide in Fractured Media 
In the foregoing analysis for transport of nuclides in fractured 

media, the effect of a solubility limit of the nuclide has not been 
taken into consideration. However, many' of actinide elements, such as 
Plutonium, uranium, and neptunium, may exist in chemical forms of very 
low solubility. Such a species of the nuclide released directly from 
the dissolving waste matrix can precipitate at the waste surface, and 
the aqueous concentration of that nuclide will remain constant at the 
waste location while the precipitate is present, thereby changing the 
boundary condition for transport of that nuclide. Neglecting the limited 
solubility will lead to an overestimate of the maximum concentration of 
the nuclide. 

It 1s important to develop the analysis presented in this chapter 
to include the effect of limited solubility of the nuclide. For porous 
flow the solution for transport of a parent nuclide with a limited 
solubility has been presented in our previous report (PI). This section 
presents the solutions for transport of a parent nuclide in a fractured 
medium with a solubility-11mit boundary condition. It demonstrates the 
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importance of limited solubility on the transport behavior. For this 
purpose, we first consider the material balance of the nuclide at the 
waste location in order to know the time-dependent aqueous concentration 
at the source boundary. We then derive the solutions for the concentra­
tions of the nuclide in the fissure and in the micropores. 

5.5.1 Transport Equations 
The transport equations which govern the aqueous concentrations of 

the nuclide in the fissure and micropores are, assuming local sorption 
equilibrium, 

3N, 3N, , 
i r + v i r + ¥ r - ! J i ( 5 - 5 J ) 

3M, D, 32M, 
1T-KJ- -^ - + ¥ I = 0 < 5 - 5 - 2 > 

t > 0 , 0 < z < ° ° , y > 0 

where N,(z,t) and M,(z,y,t) are the concentrations of the nuclide in the 
fissure and micropores respectively, v is the water velocity, D, is the 
pore molecular diffusivity, K. is the sorption retardation constant, A, 
is the decay constant of the nuclide, b is the interstice of the main 
fissure, and J, is the diffusive flux of the nuclide at surface of the 
main fissure 

3M, I 
J, = - E D, -57J- t > 0, z > 0 (5.5.3) 

y I y = 0 
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Fig. 5.5,1 Geometry of waste adjacent to a fissure. 
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The initial and boundary conditions are 

N^z, 0) - 0, z > 0 (5.5.4) 

M^z.y.O) = 0, z > 0, y > 0 (5.5.5) 

1^(0, t) = ^ (t) , t > 0 (5.5.6) 

M^z.O.t) = N^z.t), z > 0, t > 0 (5.5.7) 

M^z.^.t) = 0 

The function <j). (t) is determined from a material balance of the nuclide 
at the waste surface, as shown in the next section. 

5.5.2 Material Balance at the Waste Surface 
Consider a waste form of length L in the axial direction z and of 

infinite width in the x direction of the fissure plane, as shown in 
Fig. 5.5.1. Suppose that the waste matrix is dissolving continuously 
from that surface into the water flowing in the fissure of width b. For 
a mother nuclide with no precursors, if its precipitate forms it will appear 
at the beginning of waste-form dissolution. While the precipitate is 
present the liquid at the waste location will be at a constant concentra­
tion N,* of the nuclide, where N* denotes the solubility. Assuming 
complete mixing of the nuclide in the water immediately above the waste 
surface, we can write the total material balance for the precipitate of 
that nuclide in the form: 

i f + x i p i = &w*i < t > - 7 N r - v r <5-5-8 ) 
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where P, is the amount of precipitate per unit volume of water at z = 0, 
£ (t) is the release rate of the nuclide into the water from the waste 
per unit width of waste, and T is the residence time determined by 

= L_ 
T v (5.5.9) 

The initial condition for P, is 

P1 (0) = 0 (5.5.10) 

The solution of Eq. (5.5.8) subject to Eq. (5.5.10) is 

P,(t) = e ' f e ^ [ j ^ - V (e) - (A, + 1 ) N,*l de (5.5.11) 
o 

The release rate $,' (t) of the nuclide from the waste, per unit 
width of waste is 

n,(t)w?b 
*; (t) = ]

 T
 T (5.5.12) 

where \fc is the total i n i t i a l amount of waste per unit cross-sectional 

area of water flow in a f issure, b is the spacing of the fissure walls, 

T is the leach time, and n 1 ( t ) 1s the time-dependent atom fraction of 

the nuclide in the waste. For the mother nuclide 

n,(t) = n.| e (5.5.13) 

where n,° is the initial atom fraction of nuclide i in the waste form 
by an initial total amount of nuclides in the waste form and n^(t) 
is the time-dependent atom fraction in the waste. 
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Substituting Eq. (5.5.12) into Eq. (5.5.11), we have 

N,° -A,t * , -X,t 
P 1 ( t ) = - ^ - t e • - N, (1 + j ^ M l - e ' ) (5.5.14) 

where N,° is the i n i t i a l aqueous concentration of the nuclide that would 

occur i f there were no precipitate, 

o n l V *i° N,0 = - L f - = - 1 - (5.5.15) 

where m °̂ = niCM°/bT is the i n i t i a l release rate of nuclide 1 per unit 

cross-sectional area of water flow. We now introduce the amount P, s ( t ) 

of precipitate per unit surface area of waste at z = 0 

P^ (t) = j P, (t) dz 
o 

( t ) = I P1 ( t ) dz = L P1 ( t ) (5.5.16) 

Multiplying Eq. (5.5.14) by L and taking the l imi t of L •* 0, we have 

P,5 ( t l = v N, 0 t e * - N1 f- (1 - e ' ) (5.5.17) 

This is equivalent to the solution presented for porous-flow transport 
in our previous report (PI). 

We can now evaluate the aqueous concentration of the nuclide at the 
waste. Since time is measured from the time at the beginning of 
precipitation, the aqueous concentration remains at the saturated 
concentration until the accumulated precipitate all dissolves. Then, 

tf, (t) = N,* , t <_ t* (5.5.18) 

where t* is determined from Eq. (5.5.14) or from Eq. (5.5.17) by setting 
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P,(t) equal to zero. Note that Eq. (5.5.17) gives t * at the l im i t of 

T + 0. 

At t > t * , the following material balance holds for the aqueous 

concentration of the nuclide at the waste surface 

l f + V l + T * l = b ^ * i ' ' 4 > t * < 5- 5- 1 9> 

The i n i t i a l condition is 

^ ( t * ) = 1^* (5.5.20) 

The solution of Eq. (5.5.19) subject to Eq. (5.5.20) gives the time-
dependent aqueous concentration of the nuclide at the waste surface. 

0 -A,t* -*.f -U,+ i)t' n * -(A,+ i)t' 
^ ( f ) = N, 0 e ' [e ' - e ] T J + N, e ' T , 

f > 0 (5.5.C1) 

where 

t" = t - t* (5.5.22) 

When T •* 0, this equation reduces to 

0 -A,t* -\,t' 
^(t) = N, e ' e ' , t > t* (5.5.23) 

This equation is equivalent to that derived in our previous report (PI) 

for the plane boundary condition for porous-flow transport. In this case 

when the residence time approaches zero, the aqueous conce"*:ration of the 
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nuclide at the waste surface has a discontinuous jump at t = t * . The 

residence time usually is much smaller than the half l i f e of the nuclide, 

e.g. , for L = 10 m and v = 10 m/yr, x = L/v = 1 yr . This means that 

Eq. (5.5.23) gives a suff ic ient ly good approximation to the time-dependent 

boundary concentration of a nuclide of long half l i f e . For a nuclide of 

very short half l i f e , l ,is approximation becomes less val id. When 

T -»• "», Eq. (5.5.19) reduces to a simple decay equation for the mother 

nuclide in a stationary system. Also, from Eq. (5.5.8) and the i n i t i a l 

condition given by Eq. (5.5.10), we find that there no longer exists a 

precipitate at the repository at t > 0. I f we consider the case wherein 

a f in i te concentration P,° of the precipitate designated exists 

i n i t i a l l y , the solutions give a nonzero value for the concentration of 

the precipitate 

P, ( t ) = P, e ' - N, (1 - e ' ) *. < t * 

t > t* (5.5.24) 

The aqueous concentration of the nuclide is 

(t) = | N, t < t* 

* -A,(t-t*) 
N^ e ' , t > t* (5.5.25) 
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where by solving for P,( t ' ) = 0 in Eq. (5.5.24) we get: 

P ° 
t* = rL in (1 + i ) (5.5.26) 

*1 M l 

The boundary condition for the transport equations is, from 
Eqs. (5.5.18) and (5.5.21) 

t < t* 

-An(t-t*) -(A,+ ;r)(t-t*) 
+ c 1 2 e T , t > t* (5.5.27) 

-\ t* -\ t* 
o 1 * o 1 

c ^ = N ^ e ' , c 1 2 = N, - N, e ' (5.5.28) 

5.5.3 Solubi l i ty- lu. i ted Transport with a Step Release 

The space-time-dependent concentrations of the nuclide can be 

obtained by solving the basic transport equations subject to the in i t ia l 

conditions given by Eqs. (5.5.4) and (5.5.5) and the boundary conditions 

given by Eqs. (5.5.6) and (5.5.7) with the function given by Eq. (5.5.27). 

The solutions are 

N^z.t) = N,* e v h(t-z/v) E^z.t.a^) -

-z\} ' 

N1 e v h(t-t*-z/v) E}(z,t-t*,a^z) + 

t I -A,(t-t*) / a.z 
+ h(t-t* - i) < C n e ' erfcj ' 

v2/t-t*-z/v 

+ C,2 e x p j ^ - - (A,+ l)(t-t*)J . E, + (z,t-t*.a,z) \ (5.5.29) 
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lyz.y.t) = N,* e v h(t - f ) E1 ( z . t . a ^ + b ] V ) -

- h ( t - t * - z/v) E, ( z , t - t * , a-,z t ^ y ) 1 + 

- ^ ( t - t * ) a ^ + b ^ 
+ h ( t - t * - z / v K C n e erfc ( ' - -) + 

2 / t - t * - z /v 

C 1 2 e x p f ^ p - (A+^)(t-t*) 1 . E / ( z . t - ^ . a ^ y ) I (5.5. 30) 

where 

1 bv VD, 

Ji b l = 

(5.5.31) 

(5.5.32) 

The functions P-|(t;a), E,(z,t \a), and E, (z,t ;a) are given by 

1 2/C7 
f t ' V 

E,(z, t 
/if /__o_ 

2 Y l _ 
e " n " 4 n

2 d * 

2/t-z/v 

E,(z,t;c<) 
JS J a 4 n 

2 dn 

(5.5.33) 

(5.5.34) 

(5.5.35) 

Zfcz/v 
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The function E, (z,t ;a) can be reduced in terms of the complementary error 

function with the aid of the formula: 

f -a 2 x 2 - ^ J e ? dx « <g |> ° e p f ( a x + t) + e-2"b e p f ( a x . | , J ( 5 . 5 . 3 6 ) 

, f a/>^ f a + 2(t - z/v)A7T 
s,t;a) = £-4e ' erfc • '-] 

Ta - 2(t - z/vJATn 1 
M } (5.5.37) 

E , ( z , 

-ctAT Ta - 2(t - z/v},' 
+ e erfc 

When T -* 0, the solutions can be simplified as 

N^z.t) = N1 e v h(t - z/v) E1 ( z . t ^ z ) 

- h ( t - t * - z/v) E1 ( z . t - t * ^ ) 

- A, ( t - t * ) a 
C n e ' h( t- t*-z/v) erfc ( -) (5.5.38) 

V 

2/(t-t*-z/v 

M^z.y.t) = H}* e v |h ( t -z /v ) E, (z.t.a^+b^y) -

h ( t - t * -z/v) E ^ z . t - f . a ^ + b j y ) I + 

- A, ( t - t * ) aiZ+b,y 
"11 2/t-t*-z/v 

:) (5.5.39) 
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5.5.4 Solubil i ty-l imited Transport With a Band Release 

Let T be the time of duration of the release. The function * , ( t ) 

for the band release can then be written as 

* , ( t ) = 1^* [h ( t ) - h ( t - t * j ] + N,* e 1 T h( t - t * ) + 

+ N, h( T-t*) e ' (e ' - e ' T ) . 

[ h ( t - t * ) - h(t-T)] (5.5.40) 

The solutions are 

N^z.t) = N / e v [h{ t -z /v) E^z . t . a ^ ) - h { t - t * -z/v)x E] ( z . t - t * ^ ^ ) ] 

t ' I T ' VT 
H , e h ( t - t * - z/v) x E ^ z . t - t ^ z ) 

o " ^ i t r- , a,z 
+ N. e ' h(T-t*). h ( t - t * - i-) x erfc ( . ] ) 

2|ft-t*-z/v 

a l z -l 
- h(t-T-z/v). erfc ( - — ) 1 + 

2/t-T-z/v J 

+ N,°h(T- t* ) . exp [ - ^ t - \ ( t - t * - z /v) ] . [h(t-T-z/v)x 

x E/ fz. t -T.a.z) - h ( t - t * - z/v) E^ ( z , t - t * . a,zf] 

(5.5.41) 
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v M^z.y.t) = 1^* e v [h( t -z /v) E ^ z . t . ^ z + l y ) - h{t- t*-z/v)x 

_ * - A, t - 1 (t-z/v) 
x E 1(z,t-t*,a 1z+b 1y)J + N, e T h( t - t * -z /v)x 

x t ^ z . t - t ^ z + b j y ) + N^ e ' h (T - t * ) fh ( t - t * - z /v ) x 

a,z+b,y a,z+b,y -] 
* erfc ( ' ' ) - h(t-T-z/v). erfc ( ) + 

2vt-t*-z/v 2/t-T-z/v J 

+ N^hfT-t*) e x p j - A1 - \ ( t - t * -z /v) . | h(t-T-z/v)x 

x E,+ ( z . t -T .a^+^y) - h ( t - t * -z /v ) . E, + ( z . t - t * ^ z+b, y)J 

(5.5.42) 

when T -» 0 the solutions becore 

A,z 

N^z.t) = N,* e v j h ( t - z / v ) E^z.t .a.z) - h(t-t*-z/v)x 

> E1 ( z , t - t * , a i z ) | + N,0 e } h (T - t * ) |h ( t - t * - z / v )x 

x erfc ( ' ^ ) - h(t-T-z/v). erfc ( " ^ ) | (5.5.43) 
" t-T-z/v J 

a,z a, 
1 ) - h(t-T-z/v). erfc (—— 

2/ t - t * -z /v 2/t-

V 
MjU.y. t ) = N,* e v |h ( t -z /v) E, (z.t ,a,z+b,y) - h(t- t*-z/v)x 

xE,(z, t - t* ,a 1 z+b 1 y) + N,0 e ] h(T-t*) |h ( t - t * -z /v )x 

x e r f c ( a 1 z + V ) - h(t-T-z/v).erfc( ."?'--)-?. ) ] (5.5.44) 
2/ t - t * -z /v 2/t-T-z/v J 
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where t* is the solution to the following equation 

N? - x.t* r 1 * 1 - M * 
-^-e 1 It*-{t*-T)h(t*-T)J = N, (1+ -jL) (1-e ] ) (5.5.45) 

5.5.5 Aqueous and Precipitate Concentrations of a Nuclide at Repository 
Figure 5.5.2 shows a variation of relative concentration of precipitate 

at repository with the time measured from .the beginning of precipitating. 
237 These curves show the concentrations of Np which are calculated for 

various assumed values of saturated concentration from Eq. (5.5.14) with 
a parameter assumed to be unity. As is expected, the precipitate first 
increases from zero with the time, reaches a maximum, and then decreases 
to redissolve into the water with Increase of the time. All of these 
curves intercept zero concentration, the time axis. Each of these inter­
ceptions is corresponding to the time t* defined in Eq. (5.5.18). After 
that the precipitate no longer exists. The figure shows that a lower 
saturated concentration causes a higher concentration of the precipitate 
and a greater time of t*. 

237 The variation of aqueous concentration of Np with the time for 
various assumed normalized values of saturated concentration are given in 
Fig. 5.5.3. The time t* when the precipitate has all dissolved is 
determined from Eq. (5.5.14) by setting the precipitate Pj(t) equal to 
zero. The concentration of the nuclide at the waste surface remains 

* constant at N, until the time t* decreases almost discontinuously at 
t = t*, and then decreases smoothly subject to the exponential function 
as given by Eq. (5.5.23). The concentration jump at t = t* is attributed 
to the resident time, t assumed here to be extremely small compared with 
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the inverse of the radioactive decay constant of the nuclide. For 
T « 1/X.,Eq. (5.5.23) is a good approximation for the time-dependent 
concentration of the nuclide with precipitation. For a short-lived 
nuclide, Eq. (5.5.23) becomes less exact, and the exact solution 
Eq. (5.5.27), which gives a continuous concentration profile at t = t*, 
should be used. 

5.5.6 Effect of Limited Solubility on fissure-flow Transport 
237 Relative concentrations of NP for step release calculated from 

Eq. (5.5.29), with different normalized values of the solubility concen­
tration, are shown in Fig. (5.5.4). The solid lines show the concentra­
tion profiles for transport with solubility limit and broken lines show 
those without solubility limit. Two typical cases, with the retardation 
constant assumed to be K, = 10000 and with K. = 100, are considered. The 
pore dlffusivity and the other relevant parameters are listed in the 
figure. For this case with no precursor, precipitation occurs only at 
the waste surface, causing a decrease in the aqueous concentration of the 
nuclide over the whole range of migration space. The concentrations 
shown by the broken lines for K, = 10000 and for K, = 100 are reduced to 

o * a lower concentration by a factor almost equal to the ratio N, /N. of 
the maximum possible initial concentration to the solubility concentration. 
However, because of the accumulated precipitate, the aqueous concentration 
at the saturated level can persist at a greater time than expected when 
neglecting the limited solubility. The space-time concentration surface 
is shown in Fig. 5.5.5. 
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Fig. 5.5.5 Space-time-dependent aqueous concentration in fissure-
flow transport with step release and solubility limit. 
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transport by porous flow, assuming the same porosity as the fractured 
medium excluding the main fissure. As is already discussed in section 5.2 
for transport without solubility limit, the porous-flow model gives an 
overestimate of the retardation capacity for transport with a larger 
retardation coefficient and an underestimate of the retardation capacity 
for transport with a smaller retardation coefficient. In concluding, 
precipitation of the nuclide at the repository has two important effects, 
one is to reduce the maximum concentration as well as the local concentra­
tion of the nuclide and the other is to shift the concentration band at 
a given distance to a greater time. 

5.6 Transport of a Radionuclide in Multi-Layered Fractured Media 
Fissures and micropores in fractured media usually form a geometrically 

complicated matrix with layered solid phases of different geophysical 
properties, and it is important to analyze radionuclide transport in 
layered fractured media. We here consider the transport of a mother nuclide 
through a series of many planar fissures, each bounded by surfaces of 
rock of different physiochemical properties. 

5.6.1 Formulation and Analysis 
Consider the transport of a mother nuclide through series of fissures 
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of different interstices, as shown in Fig. 5.6.1. Let us designate the 
fissure of interstice % and the surrounding rock medium, located between 
distances z =z_ n and z=z as, the mth fissure and mth medium, respectively. 
We take a distance z from the waste in the flow direction and the distance 
my from surface of the mth fissure in the mth rock medium. If we assume 
that the concentration of the nuclide 1n the solid phase is equilibrated 
locally with that in the water phase in the micropores, the transport 
equations which govern the concentrations of the nuclide in the mth fissure 
and micropores are given by, respectively 

3mN 8mN, 
at + v 3z *1 H S7 dl (5.6.1) 

3^. 
3t m. 

2 \ 
'"K, 3"y 

t > 0, z > 0, 

Ft + Al Ml (5.6.2) 

y > 0, m = 1,2,3, ... 

where N,(z,t) and M,(z,y,t) are aqueous concentrations of the nuclide 
in the mth fissure and micropores, respectively, mD,, is the pore molecular 
diffuslvity, mKj is the sorption retardation constant, m v 1s the water 
velocity, and J, 1s the diffusive flux of the nuclide at surface of the 
mth fissure. 

\ D, 
% 

(5.6.3) 
'"y = 0 

m = 1,2,3 
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In i t ia l conditions are 

" ^ ( z , 0) = 0, z > 0, m = 1 , 2 , . . . (5.6.4) 

nVl1 (z, y, 0) = 0, z > 0, my > 0 m = l , 2 , . . . (5.6.5) 

From the equation of continuity, assuming a constant density of 
water, 

m-1 m-1. _ in m, _ , , / E c e\ 
v b = v b , m = 2,3, ... (5.6.6) 

Also from the mass conservation of the nuclide, assuming transport without 
longitudinal diffusion 

m-1., tn-1 m-1. _ m., m.. m. „ _ 0 ^ , c c -,\ 
N, v D = : N v D , ^ m = 2,3, ... (5.6.7) 

The boundary condition for mN,(z,t) at z = z , is given by 

V^-l*} = B N ( z ^ , t) , m = 2,3, ... (5.6.8) 

The boundary conditions for ""M-itz.y.t) are 

"^(z.O.t) = mN.,(z,t) , m = l , 2 , ... (5.6.9) 

"Vl^z. - . t ) = 0 , m = 1,2, . . . (5.6.10) 

Let us introduce a new variable: 

m z = z " V T z m - z m - l > z > 0 ' f 5 ' 6 ' 1 1 ' 
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Then the transport equations can be rewritten as 

__L + » v _ L + x ^ . --L\ (5.6.12) 
at -in ' ' h 

t > 0, my > 0, Z|]) - zm_-, > m z > 0 , m = l , 2 , ... 

The initial and boundary conditions become 

\ (mz,0) = 0 , zm - zm_ 1 > mz > 0 (5.6.14) 

\ ( mz. my.0) - 0, z m - z ^ > z > 0, m y > 0 (5.6.15) 

\ (0, t) = n H , x 1 ( t ) . t > 0 (5.6.16) 

^ ( m z , 0 , t ) - " ^ ( m z , t ) , t > 0, zm-zm^ > m z > 0 (5.6.17) 

"fy ( m z,», t ) = 0 , zm- zm_, > mz > 0, t > 0 (5.6.18) 

where the function "x(t) is defined as 
m-1 

x(t) =| ^ ( t ) , t * 0, m = 1 

m " 1 N 1 ( z m _ 1 . t ) , t > O, in- 2,3, ... (5.6.19) 
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The system of Eqs. (5.6.12) (5.6.19) is the same as the equations for the 
transport of a nuclide in a single fissure as presented in section 5.2. 
Therefore the solutions in that section can be directly applied to this 
problem. The solutions are given in the recursive form by 

- — z . m 
" V m z , t ) = e V . j m- 1x 7(t-T-ji)P 7(Ti n la ]

, , ,z)dT (5.6.20) 
^o 

— z , m, 
nv. *m, m,, 4.x _ „ v I m-1 /«. Z\ n / .m„ rn.m. m„\ . 
Njt z, y,t) = e .1 X^t-x- jjj-)pi(T; a-j z+ b 1 y)dt 

'o (5.6.21) 
where 

, m m n m„ 
ai = m m ^ (5.6.22) 
1 m bm v m ^ 

/ m K 
\ =/ —L (5.6.23) 

The function P,(t;a) is given by Eq. (5.2.19), i.e. 

. « x t 
P,(t;a) = — — e 4 t } (5.6.24) 

2/Tif3 

5.6.2 Transport In a Two-layered Fractured Medium 

Equations (5.6.20) and (5.6.21) are s t i l l in recursive form. We now 
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apply these solutions to the transport of a nuclide in a two-layered 
fractured medium for three different release modes 
i) Impulse release 

When the function $.(t) in Eq. (5.6.19) 1s given by the Impulse 
release function, the solutions become 

->> 
^ ( z . t ) = (TN-,0) e v P^t - f - S ^ z ) h(t - ^-) z,>z>0 (5.6.25) 

1 1 
2 N,(z, t ) = (TN^) e" *• ~ * 7 + \ P,{t - ^ - - ^ - s ^ t z - z , ) + 

v v 

i . . , u ,* . i " ! i . ! i a^) h(t - - g — - y-), z2>z>z1 (5.6.26) 

^ ( z . t ) = (TH,°) e V P̂ t - f ; 'a^b^y) h(t - f ) 

V n , z ^ O (5.6.27) 

z-z, z, - ^(-g-L+f) z . 2 z 

^ ( z . t ) = (TN,0) e v v P,(t . -j-L . ^ j ^ ( z - z , ) + 

^ z + V y ) h(t - -2-L - yl). 2y 0 ( 5 6 2 8 ) 
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i i ) Step release 

For a step release, the solution for the concentration of the nuclide 

in the fissure is given by 

^ ( z . t ) = l ^ 0 e M t - ^ - ) e r f c l — * — j , Z l > z > o (5.6.29) 

, „ - X,t z-z, z, / a-.(z-z,)+ a,z, \ 
2 N,(z , t ) = N ° e ] h(t - -K± - M erfc M- i }-1\ , 

v v \ ± 7-zl z l / 
a z—^ — 

V V 

z2>z>z ] (5.6.. 30) 

The concentration of the nuclide 1n the micropores is given by 

, (z , t ) = N, 0 e ] h(t - f.) erfcH L ' " c ' ' . 'y>0,z,>z>0 
v \ Z/UI/v j 

(5.6.31) 

, n - >,t z-z, z, l\{z-z,Wa^+\2y' 

-v w ^ " l . ' l 2K- - * - - r 

v v 

2y>0, z2>z>z1 (5.6.32) 

111) Band release 

The band-release solutions can be obtained by employing the super­

position theorem (H-l) . 



_ £ ^ 

jN / I t ' Z j 'N ' UOIJOJ)U90UOD 9A|J0|9a 



59. 

5.6.3 Migration Behavior in a Two-Layered Fractured Medium 
237 

The aqueous concentration profiles of Np in a two-layered frac­
tured medium with a contact surface at z = z, (= 500 m) for a step release 
are compared in Fig. 5.6.2 with the concentration profiles of the nuclide 
in transport in a single layered fractured medium. The solid lines show 
the concentrations of the nuclide in the two-layer medium and the broken 
lines show the concentrations in the single-layer medium. (The dashed 
line which connects the solid line in each phase shows an expected 
asymptote. Numerical integration of Eq. (5.6.30) gives a less exact "; 

value for a smaller value of z - z,.) The assumed parameters are included 
in the figure. Because of the assumption of transport without dispersion 
in the fissure, the nuclide at a distance less than z = z, is not affected^ 
by the existence of the second layer. Here we assume a greater water 
velocity and a smaller pore diffusivlty in the second layer, so the 
nuclide can migrate a greater distance than would be predicted for in a 
single layered medium, even though there is a greater assumed value of 
the sorption retardation constant for the second layer. 

5.7 Transport in an Infinite Diffusion Field With Nonequilibrium Sorption 
Analytical solutions for transport 1n a porous medium without local 

chemical equilibrium of radionuclides in the liquid and solid have been 
presented in our previous report. In fissure-flow transport, as described 
in section 5.2, the retardation effect originates not only from the 
sorption process but also from the molecular diffusion into and out of 
micropores within the rock medium. Here the effect of nonequilibrium 
sorption becomes more important than expected in porous flow transport, even 
for the transport of long-lived radionuclides. In this section, we consider 
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the more general case of fissure-flow transport with nonequilibrium 
sorption in micropores. 

5.7.1 Analysis 
The governing transport equations to be solved are from Eqs. (5.1.18) 

through (5.1.20) 

3N, 3N, -

i r + v i r + * i V - ! J i t5-7-1* 

as 

3M, 3 Hi 

- 3 T - D 1 - ^ T + A 1 M 1 ' K l S i = ° ( 5 - 7 ' 2 ) 

g f + A ^ S , - K^H, » 0 (5.7.3) 

t > 0 , z > 0 , y > 0 

where 

m 
c A,™ = A, + - E - ( 5 . 7 . 5 ) 

m 
*« • v r r a V r ( 5'7-5) 

k

m a 5! 
K01 

K,ro - g f - (5.7.6) 

K,s - ^ (5.7.7) 



and Jj is given by 

J,(z,t) = - eD. 
3Ht 

'1 W y=0 
t > 0, z > 0 (5.7.8) 

The initial and boundary conditions are, from Eqs. (5.1.23) through 
(5.1.28) 

N, (z,0) = 0 , z > 0, (5.7.9) 

H^z.y.O) = 0 , z > 0, y > 0 (5.7.10) 

S-|(z,y,0) = 0 , z > 0, y > 0 (5.7.11) 

NjtO.t) = ^ ( t ) , t > 0 (5.7.12) 

MjU.O.t) = N^z.t), t > 0, z > 0 (5.7.13) 

H,(z,<»,t) = 0, t > 0, z > 0 (5.7.14) 

The solutions of these equations can be obtained by the method of Laplace 
transform. Taking the Laplace transform of Eqs. (5.7.1), (5.7.2), and 
(5.7.3), we have 

HT + "7" "l + Ev Jl (5.7.15) 

61. 
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* ° "1 m ̂  m ̂  
s H, - D., — ^ - + A,"1 M, - K ^ S,= 0 (5.7.16) 

s S 1 + A, 5 S r K ^ M,» 0 (5.7,17) 

Eliminating the transformed concentration of the nuclide In the solid 
phase from Eqs. (5.7.16) and (5.7.17) and solving the diffusion equation 
subject to the boundary conditions given by Eqs. (5.7.13) and (5.7.14), 
we can find the transformed solution for the concentration of the nuclide 
in the micropores 

:/^V u m„ s 

% n, /57» ' (s+A,*) 
M^z.y.s) = N^z.s) e ' ' (5.7.18) 

and the transformed diffusive flux: 

GfN^z.s) ^ S + A / - 1 ^ 
K A , 5 

J, (z,s) = e vOTN.Cz.s) V s+A," — j - (5.7.19) 
1 i i i i (s+A^) 

Also from Eq. (5.7.17) I „ m„ s 

^ ' ' D^s+A^) 

S, (Z.y.s) = K,S N,(z,s) 5 (5.7.20) 
1 ' ' s+A,s 

Substituting Eq. (5.7.19) Into Eq. (5.7.15) and solving the 

resultant equation with the boundary condition given by Eq. (5.7.12), we 

have 

-v, / X,+s I 7~^V~\ 
N, (z,s) = t , ( s ) e x p l - - Y z -d , z /s+A,"- -J—L- j (5.7.21) 
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where d. is the constant defined by 

2e>^D7 
a, • -w1 < 5 - 7 - 2 2 > 

The transformed function of the form similar to Eq. (5.7.21) has been 

studied by Lapidus and Amundson in their analysis in adsorption of species 

in bed (L-1). In order to find the inverse of Eq. (5.7.21), we use the 

following general formula for the Laplace transform: 

1 | / ^ °2v N a u t " a " 2 ] f < u > d u } - I2I+T 9< s + ?> < 5 - 7 ' 2 3 > 
I o ' 

where g(s) is the transformed function of f ( t ) with respect to t , 

I [ f ( t ) ] = g(s) (5.7.24) 

Especially, when v = 0, we can write 

I (5.7.25) < { i J 0 [2i/aut- au2] f(u)du ]-! ,( . 
the di splacement rule, 

*{•- 0 *{•- 0 

\?Uu (t-u)J f(u) du 

= 1 
S+A,S 

gfs+A,5 + a 

s+A, 
(5.7.26) 
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L 6 t / m Kl V 
- d 1zVs+A 1

l , ,--!-4- (5.7.27) 
• ' ' ' S+A, 

H(s) - e 

For a direct application of Eq. (5.7.26), we split the function g(s) 
into two parts, thus 

H(s) = A, S h(s) + s h(s) (5.7.28) 

where the function h(s) is defined by 

/ • s 2 + (A 1

m +V)s»A |

l l h 1

s -K 1

l \ s 

." V ' s+A. s 

h(s) = r — J (5.7..»9) 
s+A-, 

Now consider the function g(s) which takes the form: 

- d,zJs+c" 
g(s) = e ' (5.7.30) 

of which the inversion is 
H 2,2 
dl z 

d,Z jr- - Ct 
f(t;d,z) - - J z : e 4 t (5.7.31) 

2 ^ 
Then 

/s 2+(2y\, s+c)s+(A 1

s) l i+cA 1

s+a 
9<s*A.s + - S - j ) - d,z \[ ]- - J 1 — 

1 s+A,5 e ' s+A,s 

1 - = - J (5.7.32) 
S+A, S+A, 
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Equating Eq. (5.7.32) with Eq. (5.7.29), we f ind 

* m « s 

c = A, - A, 

a-K j 'Y 
(b.7.33) 

Noting that the relation among Eqs. (5.7.30)^(5.7.32), we can write the 

inverse of function h(s) directly from Eq. (5.7.26) 

,-1 {h(s ) } 
d, z 

- V 1 I d i z_ / - i r - - ( A r - A i s ' u 

o 2( /TT U 

FU^z) (5.7.34) 

where I 0(x) is the modified Bessel function of zero order. Also since 
F(0;d1z) = 0, 

{s h(s)j SFft-.d^) 
at 

- A l S t s 
e ' f f t ^ z ) - A ^ F f t ^ z ) + G(t;d-|Z) (5.7.35) 

where the function f(t;d,z) 1s given by Eq. (5.7.31) and the function 
G(t;d,z) is given by 
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G(t;d l Z ) = e 
Stf t f i /Yu d i : 

/nr 2VS7 
z

 e " T ^ " ^• - * l ' )« 1 Ja^K^K^uft-uH du 

(5.7.36) 

where I.(x) is the modified Bessel function of first order. From 
Eqs. (5.7.34) and (5.7.35), we have the inversion of the function H(s), 

- A n
St 

I {H(s)j = e ] ffti^z) + G(t;d l Z) (5.7.37) 

Applying the equation directly to Eq. (5.7.21) and using the shift 
rule, we can finally obtain the solution for the aqueous concentration 
of the nuclide in the fissure 

N,(z,t) = e 
0 

(t-T- f) r - A * T -\ 
e ' fttjd^) + G(x;d l Z) dx 

(5.7.38) 

The concentration of the nuclide in the micropores is, from Eq. (5.7.18) 
s 

tyz.y.t) = / N ^ . t - r j U 1 T f(x; e iy) + G ^ ^ y ) ! 
'0 

di 

(5.7.39) 

where 

V̂T 
'5.7.40) 

Also, the concentration of the nuclide in the solid phase 1s given by 
* - A , S T 

S,(z,y.t) = K,* / e M,(z,y,t-T;dT 
/ 

(5.7.41) 
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Fig. 5.7.1 Effect of nonequilibrium sorption on fissure-flow 
transport, concentration profi les of Z 3 7 Np in the 
f issure, impulse release. 
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5.7.? Transport With an Impulse Release 
The solution for the concentration of the nuclide in the fissure, 

Eq. (5.7.38), involves a double integral term and is not suitable for direct 
numerical calculations. However, 1f the boundary value of the concentra­
tion at the repository is given by the impulse function given by 
Eq. (5.1.18), the solution can be simplified, and is given by 

N,(z,t) = (TN,0) h(t - I) [ Y Al " v f(t- £;dlZ)+ G(t- f^z)] (5.7.42) 

where the functions f(t;d-|Z) and G f t ^ z ) are given by Eqs. (5.7.31) jnd 
(5.7.42). The solutions for the concentrations of the nuclide in the 
micropores and in the solid phase are given by Eqs. (5.7.39) and (5.7.41), 
with substitution of Eq. (5.7.42). 

The concentration profiles of Np at t = 10,000 yr for transport 
with nonequilibrium sorption, which are calculated from Eq. (5.7.42) are 
shown as the solid lines in Fig. 5.7.1 for different assumed values of the 
mass-transfer coefficient k m and the interfacial area a_ per unit volume. 
Each nonequilibrium curve shows a higher concentration at greater 
distances than the concentration given by the equilibrium curve, whereas 
the nonequilibrium concentration 1s lower at the smaller distances. For 
the migration times considered here, the "seed pulse" has moved with the 
water velocity to a distance of 10 m. Therefore the long concentration 
tail results from nuclides emerging from the micropores by molecular 
diffusion. The penetration thickness within the micropores is greater 
for nonequilibrium sorption, resulting in a smaller concentration gradient 
and a smaller diffusive flux of nuclides returning to the fissure in the 
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region of the concentration tail. The effect at the greater distances in 
the region of the leading edge of the concentration band, non-equilibrium 
sorption promotes faster penetration into the micropores, thereby lowering 
the concentration in that region. As seen from the figure, nonequilibrium 
sorption spreads the concentration profile over a greater distance than 
for equilibrium sorption, resulting in a lower maximum concentration. 
As the mass-transfer coefficient increases, the nonequilibrium concentration 
curve approaches the equilibrium curve. 

Shown in Fig. 5.7.2 is the variation of the concentration profile of 
237 

Np with migration time. The pore diffusivity and the mass-transfer 
2 -4 

coefficient are assumed to be D, = 0.01 m /yr and k a = 10 1/yr. The 
time required to teach equilibrium depends mainly on these two parameters. 
For a greater diffusivity, the nonequilibrium characteristic is governed 
predominantly by sorption, whereas for a smaller diffusivity, the transport 
is governed by diffusion process. In this assumed case, the nonequilibrium 
effect persists until a time of almost 50,000 yr. 

5.8 Transport of a Multi-Member Nuclide Chain, Convective Transport in 
Micropores 
In the foregoing sections the fissure-flow transport of a single 

mother nuclide has been discussed. In evaluating the biological hazard 
due to long-lived actinide elements which are possibly released into a 
migration field from high-level waste repositories, 11 1s desired to provide 
the analytical solutions for the transport of a multi-member nuclide chain, 
in order to estimate the chromatographic behavior of daughter nuclides. 
Among the nuclide chains contained in radioactive wastes, the following 
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nuclide chains are considered to be important, because of the relat ively 

high blolftgical hazard of the radium daughters. 

246 c m + 2 4 2 p u + 238, + 234, + 2 3 0 T h + 226R a 

2 4 2 % - 2 4 2 C m ^ r 

2 3 7 Np * 2 3 3 Pa H. " 3 , , + Z27 T h + 225^ 

In succeeding sections the transport of a multi-member nuclide chc.in in 

fractured media is considered. Numerical demonstration of the solutions 

applied to three-member nuclide chains are also given. 

As one of the simplest cases, we f i r s t consider the fissure flow 

transport of a nuclide chain with convective transport of the nuclides 

in the micropores. 

5.8.1 Formulation and Transport Equations 

Consider water flow in the z-direction in an in f in i te plane fissure 

of interstice b. The fissure is bounded by surfaces of rock of porosity 

e, through which the water can penetrate outwards in the transverse 

y-direction at a constant velocity w, as shown in Fig. 5.8.1. Because 

of the water flow through the medium, the water velocity v in the fissure 

is space-dependent and is specified by the conservation equation: 

1Y. = 2ew. u m i 

Thus the water velocity is given by 

V<Z) = VQ - i f * (5.8.2) 

where v is the water velocity in the z-direction at the repository site. 
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The transport equations which govern the concentrations of the nuclide 
i in the main and micropore fissures are given by, with assuming local 
sorption equilibrium 1n the micropore fissures 

3N. 3N,. 2 

r + v i r + ¥ i " - e F " N i + V i N i - i < 5 - 8 - 3 > 3t 

8 M i + w 3 M i + . M . *1-1 K i - 1 M , , „ 4 , 
"3T' K7 I T + A i M i K\ M T - 1 ( 5 - 8 - 4 5 

t > 0, z > 0, y > 0, i = 1,2,3, . . . 

where N.(z,t) is the concentration of the nuclide i in the main fissure, 
'\-(z>y>t) is the concentration of the nuclide i in the micropore fissures, 
X.. is the radioactive decay constant, and K. is the sorption equilibrium 
coefficient. 

The initial conditions are given by 

N,. (z,0) = 0 , z > 0 (5.8.5) 

M,- (z.y.O) = 0, z > 0, y > 0 (5.8.6) 

The boundary conditions are 

N 1 (0,t) = ^.(t), t > 0, (5.8.7) 

M,- (z.O.t) = N i (z.t), t > 0, z > 0 (5.8.8) 

where the function ijî (t) is the time-dependent concentration of the nuclide i 
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at the repository, given in section 5.1.2. The M.>(z,y,t) tends to zero 
as y •+ <". 

5.8.2 Solutions to Pore Convection Transport 
Since Eqs. (5.8.3) and (5.8.4) are related to each other only by the 

boundary condition given by Eq. (5.8.8) and are not coupled; they can be 
solved independently. 

Now we introduce a new variable z' defined as 

z' = / v77J- d z> z' > 0, z > 0 (5.8.9) 
o 

then Eq. (5.8.3) becomes 

3N • 3N• 
1 T + 3 F + X i N i = - £ ¥ w N i + X i - l N i - l • t > 0 . Z ' > 0 (5.8.10) 

The initial and boundary conditions for N..(z',t) are, from Eqs. (5.8.5) 
and (5.8.7) 

N.(z',0) = 0 , z' > 0 (5.8.11) 

N^O.t) = ̂ ( t ) , t > 0 (5.8.12) 

The solution for the space-time-dependent concentration of nuclide 
i 1n the fissure can be obtained by Laplace transform, and is given in 
the general form: 
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-.(V^fV 
N.(z' , t ) = e h( t -z ' ) ^ ( t - Z 1 ) 

i-1 

j= l 

i-1 
7T 

q=j i°5 

e 
i 
TT (X -X.) 
r=j r * 

<tw(t-z ')h(t-z ') (5.8.13) 

rjfjl 

In the original coordinate system, the solution becomes 

- (X i + ^ ) q ( z ) 
N.jfz.t) = e h( t -q(z)) 4,.(t-q(z)) 

i J i-1 i " <V ^ <•<*> 

j=l q J «-=j J, 
h(t-q(z)) * j ( t -q(z) ) 

-rr ( y x ) 
r=j r * 
rfl (5.8.14) 

where 

q(z) = - £ . l n ( 1 - ^ i ) (5.8.15) 

The system of Eqs. (5.8.4), (5.8.6), and (5.8.8) is just the same 

form as that employed in analysis for the porous flow transport, with the 

exception of a sl ight difference in the expression of the boundary condition. 

Therefore, we can directly apply our previous solution for porous flow 

transport (H-1) to this problem. The solution for the concentration of 

the nuclide 1 in the micropores is then given by 
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M^z'.y.t) = e 1 1 H^z.'.t-j*-) 

1"1 (J) -L, e " < V W J * * (J) / t 

j=1 m=j -m r=j o 

Q(J) 1 
rm I 

•rr 
q=j <V •V 

qr'mi'r 
with i 

=rm " 
A rw r -v i r =rm " wm - w p 

The function £ ( t ) i s given by 
rm 

/ + \ - Ui r*_ J ' \ 
- A r m ( t - JL' 

(5.8.16) 

where 

w,. = w/K. (5.8.17) 

B r=j w r+ lYn 

B ( j ) - TT ( J - - J - ) (5.8.19) 
m r=j r wm 

rj'm 

(5.8.20) 

(5.8.21) 

(5.8.22) 
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5.8.3 Transport With an impulse Release 

When the function •,. ( t ) is given by an impulse release function 

given by Eq. (5.1.17), Eq. (5.8.14) becomes 

- ( X , + * § * ) q ( z ) 
N ^ z . t ) = T N , 0 e 6 ( t - q (z ) ) 

1-1 11 1 - V T T > q ( * ) 
+ T £ -TT (Aq) £ e__ Nd° 6(t - q(z)) (5.8.23) 

j=l q = j *=j -TT (A r - V 

This equation shows that every concentration pulse travels along the 
z-t line given by t = q(z). Thus, if the removal mechanism of the nuclide 
in the fissure is only from convective transport, every nuclide can 
migrate at the same velocity with no retardation. The only effect to 
be expected is attenuation in concentration of the nuclide. 

The concentration of the nuclide i in the micropores can be 
obtained by substitution of Eq. (5.8.23) into Eq. (5.8.16), and is given by 

- (yw,)y r 0 - (x, + ^ ) q ( z ) -i 
H i(z,y,t) = e • ^ 1 [ T N , . 0 e ' b 6 ( t - £ - q ( z ) ) J 

" S f r X > s - ^ ***'•,-«-!.-«•» 
J"1 " * i ^ (\ ' xt> 

r=j 

ij ( 1 ) J, - (y«Jy f m f . -(x.-+^)q(z) 
+ T Y A L e .. ) F J «i e a (t-q(z)) 

F l 1 RFj R (J) rT? ™ L ™> B V J / r=j 
m 

+ T £ 7T (A ) r N k ° L , £ (t-q(z)} (5.8.24) 
t=i a=k . . i / , . > rm J k"l q = k l-k TT <* r - *,.) ™ 

r=k 
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The characteristics of the solution given by Eq. (5.8.24) have already 
been discussed in our previous reports (H-l, P-l). 

5.9 Transport of a Multi-Member Radionuclide Ohain. Diffusive Transport 
in Micropores 
In sections 5.2^5.7, analytical solutions to the transport of a 

single mother nuclide in a planar fissure, with diffusive transport in 
micropores, are presented. In this section we develop the analysis for 
the equilibrium transport of a multi-member nuclide chain in a fractured 
media, with diffusive transport in micropores. Here we present the exact 
solutions to the problem in recursive form. Because of mathematical 
difficulty in reduction of the recursive solutions, the nonrecursive 
solutions in general form are not given here. Mathematical approximations 
yield nonrecursive formulae which describe the space-time-dependent 
concentrations of the nuclide in the fissure and micropores, as given in 
the following section. 

5.9.1 Recursive Exact Solutions 
The transport equations of an arbitrary radionuclide chain with one-

dimensional fissure flow are, assuming local sorption equilibrium 

3N, 8N. o 

l f + v lT t ¥l = - ! J 1 + * 1 - l N1-l 

8 M1 D i * \ + , M - V l Ki-1 „ 
-W - i q - ^ - + Vi - —V^ 

t > 0, °° > z > 0 , y > 0 , i = 1,2,3 . . . 

( 5 . 9 . 1 ) 

( 5 . 9 . 2 ) 
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where N-(z,t) is the aqueous concentration of the nuclide i in the main 
fissure, M.j(z,y,t) is the aqueous concentration of the nuclide i in the 
micropore fissures, v is the water velocity, D. is the pore molecular 
diffusivity, K. is the sorption equilibrium coefficient, \^ is the radio­
active decay constant, and b is the interstice of the main fissure. The 
function J.(z,t) is the diffusive flux at l\~s fissure surface, given by 

8M-
J.U.t) = - E D, -r^- , z > 0 , t > 0, i = 1,2,3,.. 

1 ' dy ly=0 
(5.9.3) 

The initial and boundary conditions are 

N^z.O) = 0 Z > 0 (5 9.4) 

^(z.y.O) = 0, z > 0, y > 0 (5.9.5) 

N^O.t) = 0. (t), t > 0 (5.9.6) 

M^z.O.t) = N^z.t), , z > 0, t > 0 (5.9.7) 

where the function $.(t) is the general time-dependent concentration 
of the nuclide i at the waste repository. The function <$>At) is given 
by Eq. (5.1.12) for a step release, by Eq. (5.1.15) for a band release, 
and by Fq. (5.1.17) by an impulse release. The pore concentration 
M.j(z,y,t) approaches zero as y approaches infinity. 

Equations (5.9.1) and (5.9.2) are connected by Eq. (5.9.3), subject 
to the appropriate initial and boundary conditions given by 
Eqs. (5.9.4) - (5.9.7), and can be solved by Laplace and Fourier sine 
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transforms. The transformed solutions for N..(z,s) and H.(z,u,s) are 
given in recursive form: 

s+X, 2eD,z 

N^z.s) = ^ ( s ) e • v ' u i 

+ 

7 s+A, 2eD.c fc 

'ft 

2 ^ ^ D . . i A K 

r=j q=j qr 'o 
( " ' r (5.9.8) 

-x, i D, i U i ^ 
M.(z,a.,s) = L r K "^ ( H T ^ ^ < T MUz. s ) (5.9.9) 

j= l i i * - j . £ r - j B 2 A , S + , » J 

where s and m are the transformed variables with respect to t and y, 
respectively. 

Inversion of these equations gives the aqueous concentrations of 
the nuclide i in the fissure and micropores in recursive form: 
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k i . , t 
i ( z , t ) = e v I *, . (!-f) P^t-r^zjdr 

i-1 1 i 

-^1*3 if SET 
j=l J 

X,-m T l e v C Nj ( 2 - C , T 2 - t ) P f ( t - t , - r 2 ; a 1 ? } 

• q r

q (T n )dx 2d T ldc (5.9.10) 

M^z.y.t) = / N^z.t-x) P^x^.y jdx 

o 

(z, t -x)R r

q (y,x)dx 

(5.9.11) 

where 

a 1 b v ~ , i = 1,2,3 (5.9.12) 

u1 - J U T , i = 1,2,3, (5.9.13) 
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and the function P.j(t;a), Q^ ( t ) , and R^ (y , t ) are given by 

P,(t;o) a e 4t A r 

z(T t 372" (5.9.14) 

Q r

q (t) \/Dqr" A r ' fW J 

- X„t 

V< v v.* 
e ^ d ? , A r < D q r 

K_ I . A r / ; - -D„ t 
+ V V Dar e q -«-f|J(X r- D_)t | D r ] f r t ^ qr 

* 
X > D V qr 

(5.9.15) 

*>•*> -e"Dqrt r* J e x p ("^ ( v V ^ ) ^ < V 
/4D t /K r 

i e -V* 
2 e 

e erfc ( ^ ) 
|/ 4D rt/K r 

• / *V(V V C 
+ e erfc (-

y - Zt V(Xr- D q r)D r/K 

y 4D rt/K r 

X r > D * r (5.9.16) 



with the constants: 

Dqr = e qr / d q r 

V = W D q • V V D r 

d qr = Kq / D q " K r / D r < 5 - 9 J 7 > 

For the mother nuclide, Eqs. (5.9.10) and (5.9.11) give, for a step 

release » 

N,(z,t) = N,°e 1 erfc( ^ ) h(t - f ) (5.9.18) 

n - \ t a,z+b,y 7 

Mz,y,t) = K, e ' erfc( ', ] ) h(t - \) (5.9.19) 
1 ' 2/t-z/v v 

The equations are just the same as those given by Eqs. (5.2.25) and 

(5.2.26). Equations (5.9.10) and (5.9.11) give the recursive expressions 

for the space-tiroe-dependent aqueous concentrations of nuclide i in the 

fissure and micropores. Our remaining problem is to reduce the solutions 

into nonrecursive expressions. However, because of the rather complicated 

mathematical forms, i t is d i f f i c u l t to derive nonrecursive solutions 

directly from these recursive solutions. In the following section, the 

approximations that allow us to derive nonrecursive solutions w i l l b.. 

presented, 
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5.10 Approximate Solutions in Fissure-Flow Transport of a Multi-Member 
Nuclide Chain. With Diffusion in Micropores 

In the foregoing section, the exact solutions to the transport of 
radionuclide chain of arbitrary length, in fractured media with one-
dimensional fissure flow, is given 1n recursive form. We here present 
approximate solutions 1n which the radioactive decay of an individual 
daughter nuclide in the micropore liquid and in the solid phase are 
neglected. For a chain of long lived radionuclides, the resulting solutions 
can give a good approximation to the exact recursive solutions described in 
the foregoing section. 

b.10.1 Formulation 
Consider an infinite plane fissure of interstice b in which water 

is flowing in the z-direction at a constant velocity v. The nuclides 
released from the waste repository located at 2 = 0 migrate in this 
fissure and can diffuse into the stationary water in the micropores. The 
transport equation that describes the aqueous concentration of the nuclide 
i in the fissure is 

3N, 3N. ? 

1 T + V l f + * 1 H 1 - - ¥ J 1 + * 1 - 1 H M ( 5 - 1 0 J ) 

t > 0 , 0 < z < », y > 0 , 1 = 1,2,3, ... 

where HAz,t) is the concentration cf the nuclide i in the fissure, 
J.-(z.t) is the removal rate of the nuclide i at surfaces of the fissure, 
and X, is the radioactive decay constant of the nuclide i. 
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For diffusive transport in the micropores, and neglecting the radio­
active decay of the nuclides 1n the micropores, the- transport equation 1s 

3M, D, 3 2M. 
•rr - T- — 4 - = 0 t > 0, y > 0, i = 1,2,3, ... (5.10.2) 3t ^ 3 y<: 

where M.(z,y,t) is the concentration of the nuclide i in the stationary 
water in the micropores, D. is the pore molecular diffusivity, and K. is 
the sorption retardation constant of nuclide i in the rock medium. 

The diffusive flux J^z.t) which relates Eq. (5.10.1) to Eq. (5.10.2) 
is given by 

3M. 
.Uz.t) = - ED. -£ I , z > 0, t > 0, i = 1,2, ... (5.10.3) 

1 1 d y |y=0 

The initial conditions are 

N.(z,0) = 0, z > 0, i = 1,2,3 ... (5.10.4) 

M.(z,y,0) = 0, z > 0, y > 0, 1=1,2,3... (5.10.5) 

The boundary conditions are 

N^O.t) = ^ ( t ) , t > 0, 1 = 1,2,3,... (5.10.6) 

M^z.O.t) = N^z.t), t > 0, y > 0, i = l,2,3,... (5.10.7) 
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where the function (fiAt) is the general time-dependent concentration of 
the nuclide i at the wa 
y approaches infinity. 
the nuclide i at the waste location. The M.(z,y,t) approaches zero as 

5.10.2 Nonrecursive Solution 
Let s be the Laplace transformed variable with respect to time t, 

the transformed solution of Eq. (5.10.2) subject to the initial and boundary 
conditions given by Eqs. (5.10.5) and (5.10.7) is 

- J£ vr 
H,-(z.y.s) = N^z.s) e 1 (5.10.8) 

The diffusive flux in the transformed form is then given by 

J^z.s) = e D^J o 1 {7 N^z.s) (5.10.9) 

Taking the Laplace transform of Eq. (5.10.1) with respect to t and 

with respect to z with the aid of the i n i t i a l and boundary conditions, 

and solving the resultant equation with substitution of Eq. (5.10.9), we 

have 

Z V*) + ~ T i V l (P' s ) 

I U P , s ) = - ! v- ^ (5.10.10) 
s+x, 

p + v + a i « * 

where p 1s the transformed variable with respect to z. 

Let the solution take the form: 

N^z. t ) = £ N j j U . t ) (5.10.11) 

J-I 
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the general form of N^- (p,s) is then 

^ . . (P . s ) s+X. 
p + v + a 1 * * 

i=J 

i -1 

I S-^t* IJ Vs) 
i-j L * s+x 

«=j P 

1 « 

(5.10.12) 

wi th constants: 

c j j = rr ( 3—-) (5.10.13) 

>V = a r " a * ' r * * (5.10.14) 

r j , v v 

2eD r 

a r = ~bv~ P K 

(5.10.15) 

(5.10.16) 

Inversion of Eq. (5.10.10) gives 

N i ; j(z,t) = e v -̂(t- -J), P t̂̂ z) i=J 

ir(x ) i i fl ij _^_ 
*y_i W 3 _ e v%. ( t . f ) . G { l i t ) i 1 M ,,1-i 11 1 

«-J r=j 5 < ^ > 
r ? r # 

(5.10.17) 
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with the functions P^t ja) and Gn ( z , t ) : 

P^t; •a) -

2 a 

Gr£< 2 >t) = . e 

and the constants: 

i 
7T 
q=a 

(a—4—) 

sn = 

«r£ 
. A r " X * 

v(ay - H ) 

(5.10.18) 

a»«_„z + sL t a«z 
- f i r J l . e A " ' r * » r fc ( -4 : + «,. t/t) (5.10.19) 

(5.10.20) 

(5.10.21) 

Substituting Eq. (5.10.17) into Eq. (5.10.11), we have the space and 

time dependent concentration of the nuclide i in the fissure in the 

nonrecursive form: 

X i . ft " v ' 7 v ' - & 

0 

N^z.t) = e v J ^ ( t - x - *•) P^xja^Jdx 
0 

111.. . « ». , t -# j j T(A.) i i A U . _ i z /• v 

j « l v 4=d r=j i r > r ) 

(5.10.22) 
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The concentration of the nuclide 1 in the micropores 1s given by, from 
Eq. (5.10.8) 

» A z , y r t ) = j N.(z.t-t) P.fr.b.y) dr (5.10.23) 
' n 

where 
bi * J D 1 (5.10.24) 

i) Solution for a step release 
When the function ^ ( t ) is given by the step release concentration 

given by Eq. (5.1.12), the solution becomes 
- v 

A * ^ - L bM e" ̂  " *' V n ( z ^ e V N 
i • • 

n=l 

- ^ W A,̂ f,L -^-^« 
j=l S,=j r=j -n-'V' n=l H n 

_nj nt v l . in e .f, (z.t) 

rfi. 

bnj 6r* e taA5raz + 6rA ( t ' 7}" T z) • , V + . , - — — ? e .erfc(—=_+ 6 o/t-z/v 

2 
•" — T T Z v ' r - 6 , 

[ j ^ f / " ( z , t ) . f*n(z,t)] > (5.10,25) 
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where the function f 1 * n ( z , t ) and f 2 * " ( z , t ) are given by 

2,2 A„an z VVt-z/v) 2 "** n n. 2 
^"(z.t) = 4= / e 4 n dn h(t-z/v) (5.10.26) 

f , w ( z , t ) = -p= e n 4n 2 dr, h(t-z/v) (5.10.27) 

^ ; v 
zit-zh 

ii) Solution for a band release 
The solution for a band release is given by, from the superposition 

theorem (H-l) 

-A,T 
N^z.t) = N^z.t^j.Jhlt)- ^.(z.t.b^ e J )h(t-T) (5.10.28) 

M^z.y.t) = M.fz.f.b.jMt)- H^z.t.b^ e J )h(t-T) (5.10.29) 

where the functions N-(z,t; b..) and M.(z,y,t; b..) mean the solutions 

for the aqueous concentrations of the nuclide i for step release with the 

Bateman coefficient b ^ . 

5.10.3 Accuracy of Approximate Model 

In Table 5.10.1, the time-dependent concentration profiles of the 

mother nuclide 2.14x10 -yr Np, calculated from Eq. (5.10.25), are 

compared with the exact profiles given by Eq. (5.9.18). The approximate 

solution gives a fa i r l y good approximation to the exact solution over the 
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Table 5.10.1 Comparison of approximate solution, neglecting radioactive 

decay in the micropores, with the exact solution for a 
237 2 

first-member nuclide Np, step release, K,=100, D-,=0.01 m /hr , 

v=10 m/yr, b=0.01 m, e=0.01. 

Distance N1 (2 , t ) /N" x 10 

m t=1.0xl0 4 yr t=1.0xlO 5 yr t=1 .0x l0 6 yr 
approx. exact approx'. exact approx. exact. 

0.1 9.967 9.967 9.681 9.681 7.233 7.233 
0.2 9.965 9.965 9.681 9.681 7.233 7.233 
0.4 9.963 9.963 9.680 9.680 7.233 7.233 
0.6 9.961 9.961 9.679 9.679 7.233 7.233 
0.8 9.959 9.959 9.679 9.679 7.233 7.233 
1.0 9.956 9.956 9.678 9.678 7.232 7.232 
2.0 9.945 9.945 9.674 9.674 7.232 7.232 
4.0 9.923 9.923 9.668 9.667 7.230 7.230 
6.0 9.900 9.900 9.661 9.661 7.228 7.228 
8.0 9.878 9.878 9.654 9.654 7.227 7.227 

10. 9.855 9.855 9.647 9.647 7.225 7.225 
20. 9.743 9.743 9.614 9.612 7.218 7.217 
40. 9.519 9.518 9.547 9.543 7.206 ?.201 
60. 9.295 9.293 9.480 9.474 7.194 7.184 
80. 9.072 9.069 9.413 9.405 7.183 7.168 

100 8.849 8.846 9.346 9.336 7.172 7.152 
200 7.751 7.746 9.011 8.991 7.119 7.070 
400 5.696 5.690 8.342 8.307 7.009 6.907 
600 3.941 3.934 7.680 7.633 6.895 6.744 
800 2.556 2.552 7.030 6.974 6.776 6.582 

1000 1.550 1.547 6.398 6.337 6.655 6.420 
2000 0.04273 0.04261 3.646 3.588 6.013 5.622 
4000 0.00000 0.00000 0.7239 0.7073 4.650 4.134 
6000 0.00000 0.00000 0.07076 0.06889 3.349 2.864 
8000 0.00000 0.00000 0.003268 0.003176 2.246 1.864 

10000 0.00000 0.00000 0.000070 0.000067 1.401 1.136 
20000 0.00000 0.00000 0.000000 0.000000 0.04401 0.03354 
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entire range of migration distance, for times smaller than and comparable 

to the half l i f e . 

5.10.4 Transport of Three-Member Nuclide Chain 

The relative concentrations of a three member-nuclide chain 

234 u^.230 T h^226 R a a t t = -|0,000 y r , with no daughter i n i t i a l l y present, 

calculated from Eq. (5.10.25) for a step release, are show:i as the solid 

lines in Tig. 5.10.1. The pore d i f fus iv i ty of each nuclide is assumed 
2 

to be a constant value, D-| = 0.01 m /yr. The other parameters used in 
this calculation are listed in the figure. At this assumed migration 
time of 10,000 yr, the water can travel 1n the fissure to a distance of 
100,000 meters from the waste. Because of the surface retardation 
effect due to the molecular diffusion into the micropores, however, all 
of these nuclides cannot arrive at such a great distance curing this time. 

234 
At 200 m from the concentration of U, waste is attenuated a thousand­
fold below the concentration at the waste. Because of its relatively low 

ope 

assumed retardation constant, Ra can migrate farther than its precursor 
nuclides U and Th. The dashed lines show the concentration profiles 
of the nuclide chain calculated from the porous-flow transport model. The 
migration path length for each nuclide in porous-flow transport is less 
than for fissure-flow transport. In fissure flow transport, the maximum 
concentration for both parent and daughter nuclides occurs always at the 
waste location. 

In Fig. 5.10.2, the concentration profiles of 2 3 7Np-> 2 3 3 U - 2 2 9 T h in 
fissure-flow transport with step release and those in porous flow transport 
with step release are compared. 
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The concentration profiles of 2 3 4U-> 2 3 0 T h - Z Z 6 R a at t = 50000 yr, 
with no daughter nuclide initially present, calculated for a band release 
from Eq. (5.10.28), are shown as the solid lines in Fig. (5.10.3). The 
dashed curves show the concentration profiles calculated for the porous-
flow transport. Assumed values used in these calculations are included 
in the figure. The relatively sharp concentration band of the nuclides 
in porous flow transport is smoothed in fissure-flow transport by pore 
diffusion, with a lower maximum concentration than in porous-flow 
transport. Even at a time exceeding the leach time, a nuclide can still 
remain at the waste location, because of re-release of the nuclide from 

the rock medium by molecular diffusion. 
237 233 229 Concentration profiles of Np-> U - Th for a band release are 

237 shown in Fig. 5.10.4. For the nuclide Np, with a lower retardation 
constant, the maximum concentration occurs at a smaller distance than 

233 
expected in porous-flow transport, whereas for the daughter nuclides, U 229 and Th, with higher retardation constants, the maximum concentrations 
are found at greater distances than in porous-flow transport. The 
maximum concentration of each nuclide is an order of magnitude less than 
in porous flow transport. 



5.11 Nomenclature 

m. 

: interfacial area between stationary water and solid phases 
width of waste repository/ constant defined by Eq. (5.7.33) 

: constant defined by Eq. (5.2.16) or by Eq. (5.9.12) 
'a. : constant defined by Eq. (5.6.22) 

A ( j ) 
-i : constant defined by Eq. (5.8.18) 
A,JJ : constant defined by Eq. (5.10.20) 
b : interstice of main fissure (distance between planer walls) 
b i : constant defined by Eq. (5.2.18) or by Eq. (5.9.13) 
m b i : constant defined by Eq. (5.6.23) 
b ^ : Bateman coefficient, Eq. (5.1.14) 
B ^ ) : constant defined by Eq. (5.8.19) 
B ^ ' : constant defined by Eq. (5.8.19) 
BJP : constant defined by Eq. (5.9.17) 
B.(t) : Bateman function, Eq. (5.1.13) 
c : constant defined by Eq. (5.7.32)/ integration constant in 

Eq. (5.5.36) 
c-j : constant defined by Eq. (5.2.29) 
c 2 : constant defined by Eq. (5.2.30) 
C:(t) : relative concentration of nuclide 1 normalized by total 

concentration at repository 
-0 C. : initial concentration of nuclide 1 at repository, Eq. (5.5.13) 
C ^ : constant defined by Eq. (5.5.28) 
C^ J : constant defined by Eq. (5.10.13) 
d : width of repository/ spacing of fissures 
d 1 : constant defined by Eq. (5.7.22) 



d : constant defined by Eq. (5.9.17) 
D : dispersion coefficient 
D. : molecular diffusivity of nuclide i in micropores 
mD. : molecular diffusivity of nuclide i in micropores in the mth 

medium 
Dmi : molecular diffisivity of nuclide i in water 
„(J) 
-HTIl 

: constant defined by Eq. (5.8.20) 

V : constant defined by Eq. (5.9.17) 
el constant defined by Eq. (5.7.40) 
6qr constant defined by Eq. (5.9.17) 
E^x.e) function defined by Eq. (5.3.18) 
E^z.tia) function defined by Eq. (5.5.4) 
E(z,t;ce) function defined by Eq. (5.5.5) 
f(t;a) function defined by Eq. (5.7.31) 
fffz.t) function defined by Eq. (5.10.26) 
ff(z.t) function defined by Eq. (5.10.27) 
F(t;a) function defined by Eq. (5.7.34) 
9(s) function defined by Eq. (5.7.30) 

W" function defined by Eq. (5.8.22) 
G(t;a) function defined by Eq. (5.7.36) 
G r t(2.t) function defined by Eq. (5.10.19) 

\ spacing < )f repositories 
h(s) function defined by Eq. (5.7.29) 
h(t) Heaviside unit step function 
H(s) function defined by Eq. (5.7.27) 
^(z.t) diffusive flux of nuclide i at surface of fissure 



mJ.|(z,t) : diffusive flux of nuclide i at surface of fissure in nth medium 
Ic : mass transfer coefficient 
Kg . : distribution coefficient 

K 1 : sorption equilibrium coefficient defined by Eq.(5.2.3) 
L : length of waste repository 1n direction at water flow 
""•j(z.ytt) : function defined in Eq. (5.4.12) 
m- : release rate of nuclide i per unit time and unit cross-sectional 

area of water flow 
M.j(z,y,t) : concentration of nuclide i in stationary water in micropores 

iMz.y.t) : concentration of nuclide i in water in micropores with 
permeating water 

'"M.-U.y.t): concentration of nuclide i in stationary water in micropores 
in mth medium 

n., : amount of nuclide i in waste per unit amount of total waste, 
Eq. (5.1.16) 

N.j(z,t) : aqueous concentration of nuclide i in fissure 
mN.(z,t) : aqueous concentration of nuclide i in fissure in mtn medium 
N- : initial concentration of nuclide i at waste loction 

+ N. : saturated concentration of nuclide i in water 
P- : concentration of precipitate of nuclide i 

P? : concentration of precipitate defl.ed by Eq. '5.5.16) 

P? : initial concentration of precipitate of nuclide i 
p^tin) : function defined by Eq. (5.10.18) 
P^tsa) : function defined by Eq. (5.2.19) or by Eq. (5.9.14) 
P..j(t;a) : function defined by Eq. (5.4.23) 



q : geometric factor, tortuosity coefficient 
q. : rate of mass transfer of nuclide 1 at interface between water 

and solid phases 
q(z) : function defined by Eq. (5.8.15) 
s : Laplace transform variable 
S.j{z,y,t) : concentration of nuclide i in solid phase 
t : migration time 
t* : duration of a finite amount of precipitate 
t' : relative time defined by Eq. (5.5.22) 
T : duration of release, leach time 
T' : time defined by Eq. (5.5.45) 
u : dummy integration variable 
u,u ,u" : velocity of permeating water 
v : velocity of water in fissure 
v ; water velocity main fissure at waste location 
w : velocity of water in micropores 
w, : migration velocity of nuclide 1 defined by Eq. (5.8.17) 

Nj : dissolution rate of total waste per unit width of fissure 
x : distance in transverse direction parallel to the fissure surface 
y,y- : depth of rock medium, distance in rock medium measured from 

surface of main fissure 
m : depth of mth rock medium 
z : distance from waste in direction of water flow 
z' : time variable defined by Eq. (5.8.9) 
z m : distance of interface surface of (m-l)th and mth media from waste 
m z : distance defined by Eq. (5.6.11) 



a : arbitrary parameter 
Y- : constant defined by Eq. (5.4.14) 
$ : constant defined by Eq. (5.10.21) 
6(t) : delta function 
a ^ : constant defined by Eq. (5.8.21) 
e : porosity of fractured medium excluding main fissure 
m e : porosity of mth rock medium 
? : dunrny integration variable 
n : dummy integration variable 
n(z.t) : penetration thickness defined by Eq. (5.2.30) 
6 : parameter in Eq. (5.3.15)/ dummy integration variable 
\* : radioactive decay constant of nuclide i 
A™ : constant defined by Eq. (5.7.4) 
A r J l : constant defined by Eq. (5.10.15) 
vrl : constant defined by Eq. (5.10.14) 
£ : dummy integral variable 
x : resident time defined by Eq. (5.5.9)/ dummy integral variable 
(^(t) : time-dependent aqueous concentration of nuclide i at waste location 
4>j(t) : time-dependent source of nuclide i 
mx(t) : function defined by Eq. (5.6.19) 
ID : Fourier transform variable 
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6. Radionuclide Transport Based on EPA Assumptions for Generic Repositories 
6.1. Introduction 

As technical support for its draft proposed standard for a geologic 
repository, EPA has applied a one-dimensional calculation to estimate the 
long-term release of radionuclides from conceptual repositories and to 
estimate the health effects therefrom (SI). EPA has included in its model 
the effects of solubility limit of radionuclides and the time-dependent 
thermally driven buoyant flow of groundwater within the host rock due to 
decay heat. These effects have not been included in analyses by DOE 
contractors (CI) of the long-term radionuclide release from conceptual 
repositories in salt, granite, and basalt. The EPA approach also differs in 
that it provides for element-specific release rates of radionuclides from the 
dissolving waste form, due to solubility effects, whereas the DOE contractors 
have assumed congruent dissolution. 

However, the EPA analysis is limited to the transport of a single radio­
nuclide, with no decay precursor, so EPA's consideration has been limited to 
the fission products and the first member of actinide decay chains. EPA has 
neglected the important daughter nuclides, such as radium-226, that contribute 
significantly to the total release and health effects. As an aid to under­
standing the EPA analysis and conclusions of the performance of conceptual 
repositories and the implications therefrom, we present here our derivation 
of the analytical solutions of radionuclide transport consistent with the 
assumptions stated by EPA. We have extended the EPA-type analysis to deal 
with the transport of radionuclide decay chains. The results are Illustrated 
for the radionuclides considered in the EPA calculations and for the decay 
chains leading to radium-226. 
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6.2 EPA's assumptions 
In reviewing EPA's calculations of the transport of radionuclides to the 

accessible environment, it was concluded that EPA made the following 
assumptions: 

1. The repository is a porous medium containing a finite volume of 
water, in which the dissolved radionuclides are well-mixed. 

2. The repository lies between an underlying lower aquifer and an 
overlying upper aquifer, with a natural flow of groundwater from a 
lower aquifer to an upper one. 

3. Time-dependent thermally driven buoyant flow, due to decay heat, is 
superimposed on the natural flow which was described in 2. 

4. Contaminated water from the repository is injected as an equiva­
lent plane source into the upper aquifer. 

5. There is one-d1mensional advective transport of a radionuclide in 
a one-dimensional flow field in the upper aquifer. 

6. The effect of dispersion is neglected. 
6.3 Time-Dependent Concentrations Within The Repository 
6.3.1 General Concentration Equation 

Although EPA's assumption of complete mixing of water within the 
repository is of questionable validity, we will adopt this assumption for 
the purpose of developing a general analytical solution to compare with EPA's 
calculated results. For complete mixing within the repository, the time-
dependent concentration C.,(t) of radionuclide i within the repository is 
given by: 

dCAt) QJt)CAt) B,(t) 

t > 0, A 0 = 0, 1 = 1,2,3... (6.1) 
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where Q r(t) 1s the time-dependent volumetric flow rate of water through the 
repository, V 1s the volume of water within the repository, X^ is the decay 
constant of the 1th member and B.,(t) is the time-dependent rate of dissolution 
of nuclide i within the repository. EPA's analysis does not include the 
terms relating to the precursor radionuclide 1-1. 

Assuming that at time t = 0 the dissolution begins, the initial 
condition 1s: 

C^O) = 0 1 = 1,2,3... (6.2) 

According to our previous studies (HI,PI), the dissolution rate B.(t) 
can be expressed by any one of four different release modes, or by 
combinations thereof: 

(1) band release, wherein the waste dissolution rate is constant 
during the leaching process, I.e., congruent release. 

(2) exponential release, wherein all radionuclides in the undissolved 
waste undergo dissolution at the same constant fractional amount 
per unit time, 

(3) preferential release, wherein the fractional dissolution rate 
constant of (2) can differ for different radionuclides, 

(4) solubility-limited release, wherein the dissolution rate of 
each element is controlled by its solubility limit in 
groundwater. 

Applying the technique of our earlier study (HI), the solution for 
Eq. (6.1) with Eq. (6.2) can be obtained recursively: 

C.(t) = exp [- X^-Rft)] j exp [ X ^ H U T ) ] X 
o 

* l>i_l Ci-l ( T ) + B i ^ ) / v ] d T (6.3) 
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or generally 

^ ( t ) = ^exp [-Xjt - R(t)] x 

1 i-i /* rTi ?" 
x X T X l / exp[<X 1-A i_ 1)T i ] . /expr (* 1 _ 1 -X i _ 2 ) t 1 _ 1 ]x / 

j 1 = , i ' o <b <b 

. . . . / exp [XjTj+RfTjO] BjfTjJdTj dx^^T, . (6.4) 
'o where ° 

x • « 

R(t) = / - V - " (6.5) 
'o 

R(t) is the number of repository water volumes that have flowed through the 
repository during a time period t. 
For a radionuclide with no precursors, i = 1, and Eq. (6.4) becomes: 

C^t) = \ exp [ - ^ t - R U ) ] /expEx^+RdJJB^tJdT 

t > 0 ( 6 . 6 ) 

For a nuclide whose concentration reaches a solubility limit C,*, the 
time-dependent concentration is studied in greater detail in Section 6.3.3. 
6.3.2 Time-Dependent Flow Through The Repository 

The time-dependent volumetric flow rate of water through the repository 
is given by: 

Q r(t) = k rA rG r(t) (6.7) 

where k (m/yr) is the time independent hydraulic conductivity (m/yr) 
of the repository, A (m ) is the cross-sectional area of the repository, 
and G (t) is the time-dependent potential gradient for flow through the 
repository. EPA approximates the latter by: 



-ai* -apt -oc,t 
G r(t) = a,e + a 2e c + G Q(1 + a 3e J ) (6.8) 

where GQ is the constant gradient between the lower and upper aquifer, and 
a.j and a..- (i = 1,2,3) are constants determined empirically from separate 
calculations of the time-dependent thermally induced flow through the 
repository. 
Substituting Eqs.(6.7) and (6.8) into (6.5) yields: 

k A r a, -cut a, -a,t a, -out "1 R(t)=-^[-J-e 1 - ^ e 2
 + G 0 ( t - ^ e 3 ,J (6.9) 

where R{0) = 0. 
6.3.3 Concentration of a Single Radionuclide With a Solubility Limit 

Here we consider the time-dependent concentration of the first member 
of a radionuclide chain in the repository. In EPA's model of rapid mixing 
of liquid and dissolved radionuclides in the repository, the concentration 
C,(t) of a radionuclide is initially zero at the beginning of dissolution 
(t = 0). It increases with time, and if it reaches a solubility limit C, , 

* * * 
it does so at a time t-j . From Eq. (6.9), C, and t, are related by: 

,t* 
C,* = ^ e x p l - Ji^*- R(t,*) J expl A l T + R(x)J R,(T)dT (6.10) 

The radionuclide will begin precipitating at time t, . To determine the 
length of time that the precipitate will exist within the repository, we 
write a material balance on the amount P-»(t) of precipitate of species 
1 per unit volume of water in the repository: 

dP^t) O r(t)C 1* B,(t) 
dt + V + X 1 P 1 = ~ V A1 C1 

t > t,* , (6.11) 



The initial condition is 
P ^ t / ) = 0 

Equation (6.11) can be solved with Eq. (6.12) to yield 

,t 

(6.12) 

1 ¥>/ P,(t) = y-exp ( - ^ t ) / exp(A 1 x) [B 1 ( T ) -C, U,V + Q r ( T ) ) ] dr 

t 1 < t , 
u l 

(6.13) 

As a result of radioactive decay, convective transport from the repository, 

and complete dissolution of the solid waste, the precipitate wi l l eventually 

dissolve at a time t~ , which satisfies the equation: 

P ^ t g ) = 0 , t , < t 2 (6.14) 

After the precipitate disappears, the concentration of the nuclide again 
becomes time-dependent, as given by Eq.(6.1) for t > t~ and with the 
initial condition: 

c,(t2 ) = c (6.15) 

Equation (6.1) for i = 1 is solved with the side condition Eq.(6.15) to 

y ie ld : t 

1 C^t) = ^-exp [- X-,t - R ( t ) ] | / e x p [ x l T + R (T ) ] B ^ T ) d T + 
t 2 

+ VC *̂ expCA^j* + R( t 2 *)] 1, t 2 * < t (6.16) 

In summary, the concentration C-,(t) for a mother nuclide with a solubility 
* . limit C-] is given by: 

C,(t) r Eq.(6.6) , t, > t > 
# * * C. , t, < t <_ to 

V Eq.(6.16) , t2* < t (6.17) 
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6.3.4 Approximate Solution For Concentration in the Repository 
The time-dependent concentrations given in Section 6.3 and 6.5 are 

complicated because of the time-dependent integral R('t) of repository 
flow. To simplify, and to obtain a nonrecurslve solution for the nuclide 
chain, we approximate the time-dependent normalized water flow rate 
Qr(t)/V by a constant value A averaged over a time period from t = 0 to 
t = t f, so that 

'0 

A r - v T I QP(t')df (6.18) 

Substitution of (6.18) in (6.1) yields: 

dC.(t) B,(t) 
-&— + U r • M ^(t) = -L- + A^ C,., (t) 

t > 0, XQ = 0 , i = 1,2,3, ... (6.19) 

The initial condition is the same as Eq.(6.2). Taking the Laplace 
transform of Eq.(6.18) with respect to time: 

- fi sC. + (Ar + A,) C. = -f + A 1. l C,..-, (6.20) 

where C. is the transformed concentration: 
no 

C,- = C..(s) = / exp (-st) C^t) dt (6.21) 

From Eq.(6.20), C^ is 

ci "Vts+k^ + — m q — (6-22> 

where 
k i = \ + A. (6.23) 
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For i = 1 through n: 

c l = VTs+kYT 

c - 1 r F " 

i [JL. VI 1 
C 2 = V j_s+k 2

 + (s+k^)(s+k2) J 

TFk^TIi^T ••• 

•••• + (s+k1)(s+kz)...(s+kn) J ( 6 " 2 4 ) 

The general form for Cj is: 

VftS V ' (6.25) 
V A i J= l ^ (s+k,) 

By using the same technique as in our previous report (HI, p4-40), 

Eq.(6.25) can be rewritten as 

i . 1 
Z<*k E E,1 V F < - f - (6.26) ^N^fV^T 

where: 

EJ1 " £ \ ( 6- 2 7 ) 

F j l 1 = [qt V k l ' ] _1 ( 6-2 8 ) 

The inverse of Eq.(6.26) is 

C , ( t ) - ^ L Ej 1 ̂  FjV e x p f - k ^ t t ) (6.29) 
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where 
exp (-k1t)«i-BJ(t) 2'Jexp (-^tjB^t-TjdT (6.30) 

Equation (6.29) is the general expression of the approximate solution for 
the radionuclide concentration in the repository, under the constant-flow 
approximation. As mentioned in Section 6.3 we have four different dissolu­
tion modes for B.(t). The constant-flow solution for the three different 
release modes which does not include the solubility limits of individual 
radionuclides is derived below, 
(a) Band release mode: Here B.(t) is given by 

nAt)K° 
B i ( t ) = - A f [h(t)-h(t-T)] (6.31) 

and 

M 1 ) = L bii e xP ("V) (6-32) 
j=l J J 

where n^t) is the concentration of nuclide 1 in the solid waste, M is the 
initial amount of waste, h(t) is the Heaviside step function, T is the 
leach time, i.e., the time for total dissolution, and b.. is the Bateman 
coefficient 

bii = E^lT^" \ ' P (A1 " XiM ( 6- 3 3> 
1 J m=l m AiLq=m q l=m ' J J 

lsM 
By substituting (6.31) in (6.29) one obtains the concentration of nuclide 
i in the repository as 

ci<*>-TOri; h" i pji1 i (x%) "ij*) < 6 - 3 < > 
l j - l l-J | | p l in i 

where W 1 m(t) is: 

W 1 m(t) = [expt-^t) - exp(-Amt)] h(t) -
- exp(-k,T) [exp(-k 1(t-T))-exp(-Xm(t-T))] h(t-T) (6.35) 
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(b) Exponential release mode: In this case, the BAt) is defined as 

B,(t) = fn^tjM^ft) 

and 
i 

n,-(t) = £ b.Mexp (-n,t) l j = 1 U J 

where f is the fractional release rate for all nuclides, and fy is 

ft, = A, + f 

The Bateman coefficient b.. is given by Eq.(6.33). 
The concentration of nuclide i in the repository is then 

(6.36) 

(6.37) 

(6.38) 

ffl° ± * i 1 J b. 

where X1(|)(t) is 

(6.39) 

X l m(t) = [expf-^t) - exp(-nmt)] h{t) (6.40) 

(c) Preferential release mode: For this release mode the B.(t) is given by 

and 
B^t) = fin.(t)M°h(t) 

n,.(t)= j b^expt-Bjt) 
where 

W f i 

The Bateman coefficient b..., now becomes: 
' i 1 
7T * n / 7T (ft, - ft.) 
,-.m H 1-m « 

bid " £.i N, m=l I '" L < ) = m l=m 
1 « 

(6.41) 

(6.42) 

(6.43) 

(6.44) 
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The concentration of nuclide i in the repository Is then 

f<M° J. 4 1 4 j_ b,„ 
T. =3 W'$&^&f*k<&Ty*M ^ 

where * l m(t) is 

Y l n ( t ) = C e x p ( " k l t ) " exp ("V0 h(t) < 6- 4 6> 
6.4 Far-Field Concentration of Radionuclides 
6.4.1 Exact Solution for a Single Nuclide 

The contaminated water from the repository is assumed to mix 
uniformly with the upper aquifer which it crosses. The mixing point is 
designated by z = 0. Assuming that the flow rate Q a of the upper aquifer 
is constant and is much greater than the repository flow rate 0 (t), 
the concentration boundary condition N-(0,t) in the upper aquifer at 
z = 0 is: 

C,(t)Q (t) 
^(O.t) = \ •" , t > 0 (6.47a) 

wa 
The governing equation in the one-d1mensional flow field without dispersion 
given by: 

3N. 3Ni K. , 
~£+ vi -£+ *1N1 = ^ i x i - l Ni-1 • withA o = 0 1=1,2,3.,. (6.47b) 

By substituting the C^t) given by Eq.(6.6), and the general solution to 
the above transport problem (HI, Eq.(6.11)) one obtains 

N^z.t) = y^-exp [- X,t - R(t-z/ V l)] Q r(t-z/ V l) x 

x J exp [ ^ T + RjTj^B^Tjdx , t > z/v ] (6.48) 
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where z is the distance from the discharge point in the upper aquifer, 
and v, is the migration velocity of nuclide 1: 

*1 ' v/K, (6.49) 

where v is the pore velocity in the upper aquifer and ̂  is the sorption 
retardation constant for nuclide 1. In general, for local sorption 
equilibrium 

v. = v/K. (6.50) 

The fa r - f ie ld concentration N,(z,t) of the mother nuclide with a 

solubi l i ty l im i t is obtained by substituting the C,(t) from Eq.(6.17) 

into (6.47a); 

N^z. t ) = Eq.(6.48) , 0 < t -z /v ] < t , * (6.51a) 

(t-z/v,) 
-g — exp ( - ^ z / v ^ , 

* 1 * i t " 2 / ^ 1 fc2* (6.51b) 

Q ( t -z /v , r -, 
= — L exp |_- X,t - Rft-z/v-^J x 

f r t " z / V l * i 
<{ / exp [ x l T + R( ) ] B^xjdt H-VC êxp [ ^ t / t R ( t 2 * ) ] | 

C, Q(.(t-z/v1) 

x 
"t. 2 

, t 2* < t-z/v1 (6.51c) 

Equations (6.48) and (6.51b,c) have been numerically integrated to obtain 
the results shown later in Section 6.5. 
6.4.2 Approximate Solution for Daughter Nuclides 

For the daughter radionuclides we adopt the approximation in 
Section 6.3.4 that the repository flow rate Q is constant. Substituting 
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into Eq.(6.47) the equations (6.34), (6.39), and (6.45) derived for band 
exponential, and preferential release modes, respectively, one obtains 
the general expression for the concentration of the above release 
modes as: 

1 . 1 N,(z,t) = -Tfn-exp <-V/v,) £• E i 1 £ F n
1 x 1 ya j=l J i-j J l 

x£• r%x l m(t- z/v.)h (t-z/V i) + 

m=l m 1 

+ ̂ T i V k <°*P ( ' W ^ £ Dlm * 
a j=l m=j l=j 

J , J . P b 
x r EP

1 E F q x ^ f - x 
p=l q=p K s=l s q 
t 

x / g 1 m(x)x q s(t-T)Q r(t-x)dT (6.52) 
•'o 

where N^z.t) is the concentration of nuclide i at distance z and time t, and 
\ = fl/T ; band release 

1 exponential release (6.53) 
j ; preferential release 

1 i"1 

A, 1 = 7T (X /v ) (6.54) 
J q=j M q 

B m j " £ ( 1 / V q " 1 / V m> < 6 - 5 5 > 
q^m _ 

Dlm B [ * V l ^ ( 6 - 5 6 ) 

q/mjj'm 

9 1 m ( t ) - exp [ A l m ( t - z / v j ] h( t -2/v n ) (6.57) 
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<VV1 " V vm> A l m ' ll/l, - Wm) < 6- 5 8> 
( W ; band release 

X ; exponential release (6.59) xqs~ 
Y ; preferential release 

The convolution integral in Eq.(6.52) has been performed analytically, 
and N.(z,t) can be easily calculated from Eq.(6.52). 
6.5 Numerical Demonstration Using EPA Parameters 

Here we demonstrate the application of the foregoing analytical 
equations to calculate the time-dependent concentrations and cumulative 
releases of radionuclides from the generic repositories considered by 
EPA. The same parameters adopted by EPA (SI) were used in numerical 
evaluations. Principal assumptions and parameters are: 

1. The repository contains unreprocessed spent fuel initially 
containing 100,000 Mg of uranium. 

2. Dissolution begins 500 years after emplacement. 
3. Dissolution follows the exponential release mode, with a rate 

-4 constant f = 10 /yr. 
4. The effective transport distance in upper aquifer from the 

mixing point z=0 to the biosphere is 1600 m. 
5. The average groundwater velocity in the upper aquifer is 2.1 m/yr, 

resulting in a water transport time to the biosphere of 760 years. 
Table 6.1 shows the radionuclide inventories (SI), sorption retardation 
constants (SI), solubilities (SI), and health effects per curie released 
to the environment (S2) used by EPA. 



Table 6.1 EPA's Properties of Radionuclides -a/ 

Nuclide Half Life 

Yr 

Inventory 

Ci 

Retardation 
Coefficient 

Solubil i ty 
Limit 

ppm 

Health 
Effect 
Factor 

C-14 
Sr-90 
Zr-93 
Tc-99 
Sn-126 
1-129 
Cs-135 
Cs-137 
U-234 
Np-237 
Pu-238 
Pu-239 
Pu-240 
Pu-242 
Am-241 
Am-243 
Ra-226 

5730 
28 

1.5 x 10 6 

2.12 x 10 5 

1.0 x 10 5 

1.7 x 10 7 

2.0 x 10 6 

30.2 
2.5 x 10 5 

2.1 x 10 6 

86.4 
2.44 x 10 4 

6600 
3.87 x 10 5 

458 
7370 
1620 

2.8 x 10* 
6.0 x 10 9 

1.9 x 10 5 

1.4 x 10 6 

5.6 x 10 4 

3.8 x 10 3 

2.3 x 10 5 

8.6 x 10 9 

1.5 x 10 5 

3.3 x 10 4 

2.2 x 10 8 

3.3 x 10 7 

4.9 x 10 7 

1.7 x 10 5 

1.7 x 10 8 

1.7 x 10 5 

1 
1 

100 
1 
10 
1 
1 
1 

100 
100 
100 
100 
100 
100 
100 
100 
1 

0.001 
0.001 
1.0 

0.001 
0.001 
0.001 
0.001 
0.001 
50 
50 

4.58 x 10 
1.21 x 10 

-2 
-1 

2,86 x 10 -4 
1,20 x 10' 

1.09 x 10' 

3.83 x 10' 

1.98 x 10' 

5.98 x 10' 

2.29 x 10' 

6.93 x 10" 

6.54 x 10' 

6.77 x 10' 

7.31 x 10' 

2.77 

3.11 

-2 
^3 

-2 
-1 

a/ All values, except for radium-226, were taken from (SI). For radium the retardation 
coefficient is set to be equal to that of strontium, and the health effects factor is 
derived from data in (S2). 
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6.5.1 Repository Characteristics and Groundwater Flow Specifications 
Two different conceptual repository sites were considered by EPA which are 

discussed here. The first site considered is basalt which is characterized 
as a host rock of high permeability (conductivity) and with an underlying 
aquifer. The second site is granite which has a low permeability and no 
underlying aquifer. EPA assumes that those of a geological characteristic 
are identical to basalt site. For the same ratardation constants and 
solubilities calculated results for EPA's basal!: repository will be identical 
to EPA's tuff repository. EPA also considers a salt repository, but the 
emphasis is on the unexpected failure mechanisms so the salt repository 
is not considered here. 

Eqs.(6.7) and (6.8) are the governing equations for the thermally 
driven buoyant flow in basalt and granite repositories respectively. Fig. 
6.1 shows the buoyant flow as a function of time given by Eqs.(6.7) and 
(6.8) and are shown for these sites. Empirical constants of Eq.(6.8), 
dimensions of the repositories, and the conductivities of host rocks are 
listed in Table 6.2. EPA has adopted for granite a hydraulic conductivity 
and hydraulic gradient which is tenfold smaller than that of a basalt 
site. Water flowrate in the basalt repository decreases by about tenfold 
during the thermal period. After ?0,000 

years of implacement a constant f'lowrate of 2,400 m /yr is obtained. In 
the first two hundred years after waste implacement the water flow rate in 
the granite repository is 1/100 that of the basalt site. The water flow 
rate in granite decreases rapidly thereafter and eventually reaches zero. 
This is caused by lack of lower aquifer to supply water. 

Dissolution of the radioactive waste i'» assumed to begin 500 years 
after waste implacement. The flowrates through the repositories are 
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basalt granite 

Empirical 
constants for 
thermally 
driven buoyant 
gradient 

»1 1.32X10-1 1.32x10-2 Empirical 
constants for 
thermally 
driven buoyant 
gradient 

a 2 1.02xl0 - 1 1.02xl0"2 

Empirical 
constants for 
thermally 
driven buoyant 
gradient *3 2.88 -

Empirical 
constants for 
thermally 
driven buoyant 
gradient 

*i. yr"1 1.6: 
3.1-
2.6: 

«10 - 3 

Empirical 
constants for 
thermally 
driven buoyant 
gradient 

*3, y r _ 1 

Go 

k r, m/yr 

1.6: 
3.1-
2.6: 

KlO - 4 

KlO-4 

Constant 
gradient from 
lower aquifer 

*3, y r _ 1 

Go 

k r, m/yr 

l.OxlO - 1 

i.OxlO - 3 3.0xl0 - 4 
Conductivity 
of host rock 

*3, y r _ 1 

Go 

k r, m/yr 

l.OxlO - 1 

i.OxlO - 3 3.0xl0 - 4 

Cross-
sectional 
area of 
repository 

A r, m 2 

V, m 3 

8.03 

2.0: 

<106 

Volume of 
water in the 
repository 

A r, m 2 

V, m 3 

8.03 

2.0: <106 

Holdup time of 
repository water, yr, 
at 500 yr 

1.67xl02 5.7xl04 
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12,000 m /yr for basalt and 35.2 m /yr for granite. 
6.5.2 Radionuclide Concentrations 

Fig. 6.2 shows the variation of the concentration of plutonium-239 
in the repositories with time, in absence of solubility limit. The higher 

239 concentration of Pu in the granite repository is due to lower groundwater 
flow in the site. Figure 6.3 shows the calculated time-dependent rate of 
discharge of plutonium-239 from the dissolving waste and from the repository, 
neglecting the plutonium solubility limit. The discharge rate of plutoniun-239 
from the dissolving waste to the repository water is almost the same as the 
discharge rate from the repository to the upper aquifer, because of the 
relatively small assumed holdup time of the groundwater in the basalt repository. 
From EPA's data we estimate a holdup time of groundwater in the basalt 
repository of 170 yr at the beginning of dissolution,increasing to 830 yr 
at 20,000 yr after emplacement. The discharge rate in the basalt repository 
will decrease eventually because of the exponentially decreasing dissolution 
rate of the undissolved waste. 

From the EPA data we estimate the holdup time of groundwater in the 
4 granite repository to be about 6 x 10 yr when dissolution begins, increasing 

to 2 x 10 yr at 10,000 yr after emplacement. Because of this relatively 
long holdup time, the increase in the concentration and discharge rate in 
granite is slower than that of a basalt repository. During the period of 
concentration increase, the groundwater flowrate is continuously decreasing, 
and the product of the concentration (Fig.6.2) and flowrate in (Fig.6.1) 
yields a maximum at about 2,500 yr. As the flowrate tends to zero so does 

4 the product of concentration and flowrate. After 10 yrs radioactive decay 
of plutonium-239 further decreases this product. 

EPA assumes a plutonium solubility of 1 part per billion (ppb) in 
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groundwater, which corresponds to 6 x 10 Ci/m J for plutonium-239. 
Solubility interference from other plutonium isotopes is neglected. The 
calculated concentrations shown in Fig. 6.2 for basalt and granite repositories 
exceed the solubility, so the results shown in Figs. 6.2 and 6.3 are un­
real istically high. The calculated concentrations of plutonium-239 at EPA's 
assumed distance of 1600 m to the biosphere are shown in Fig. 6.4. The 
concentrations are calculated with and without the solubility limit. There 
is a thousand fold reduction in maximum concentration due to solubility 

limit. For basalt, the solubility limit causes an increase in discharge 
239 of Pu to the biosphere. This is due to formation of precipitate in the 

repository. This broadening of the release band is not seen for granite 
within the concentration range of Fig. 6.4. The solubility limit greatly 
deceases the maximum concentration of plutonium discharged to the environ­
ment from EPA's granite repository, because the lower water flow rate through 
granite reduces the rate of dissolution of plutonium and the rate of discharge 
of plutonium to the upper aquifer. 
6.5.3 Cumulative Releases 

In EPA's analysis, the cumulative amount of radionuclides released 
during 10,000 years is used to evaluate the total health effects from the 
geologic repository. Here we will calculate the cumulative release as a 
function of time, but the time period of this release will not be 
arbitrarily terminated at 10,000 years. 

The cumulative release U-(z,t) of radionuclide i at position z and up 
to time t is obtained by: 

U,-(z,t) = Q a / N^z.rJdT (6.60) 
'o 

Fig. 6.5 shows the increase of the cumulative release with time at z = 1600 m 
for basalt; similar results for granite are shown in Fig. 6.6. Parameters 



.... __.,. , , 
Basalt Repository 

~ Spent fuel: l 0 5 Mg Uranium 
Leach rote: IO"V"> 

Distonce from repository: 1600m 

1 

2 3 9 P u 

.... __.,. , , 
Basalt Repository 

~ Spent fuel: l 0 5 Mg Uranium 
Leach rote: IO"V"> 

Distonce from repository: 1600m 

f " T c 

c 

Z 2 6 R Q " 

c 
' * S n 

2 3 7 N D 

f 
- / si I 

2 4 0 P u 

if// I 

1 1291 

2 4 3 A m 

if// I 
1 
1 

10' I 0 3 10" 10° 
Time af ter emplacement, yr 

XBL8E5-5813 

Fig. 6.5 Cumulative amount of radionuclides released from EPA's 
basalt repository, without solubi l i ty l im i t . 



20; 

used by EPA (SI) In calculating these releases are listed in Table 6.2. 
As shown In Figs. 6.6 and 6.7, carbon-14, technetium-99, iodine-129, and 
cesium-135, which are the radionuclides with no sorption retardation, 
appear in the environment after a time delay of 1262 yrs, which is the sum 
of two delay times, a 500-year delay in the onset of dissolution plus EPA's 
assumed water transport time of 762 years. The Tin-126 with assumed 
retardation constant of 10 is released to the biosphere after 8100 years. 
EPA assumes retardation constants of 100 for the actinides, so actinides 
are released to the biosphere after 76,700 years. Consequently, health 
effects from released actinides do not enter into EPA's analysis of the 
potential health effects of its conceptual repositories, because EPA does 
not consider radionuclides released after 10,000 years. 

EPA's analysis (SI) does not include radium-226, possibly because this 
radionuclide is not the first member of a decay chain. Radium-226 is not 
initially present in the radioactive waste, but is a decay product of 
plutonium-238, amendum-242m, and curium-242, which are present in the waste. 
Although the precursors of radium-226 are all actinides and, according to 
EPA's assumptions, until well after EPA's cut-off time of 10,000 years, the 
daughter radium-226 is more mobile and must be considered. In our analysis 
we include the effect of Ra . We assume that the radium sorption constant 
is the same as that of the other alkaline earth, e.g., strontium, for which 
EPA assumes no retardation, i.e., K = 1. On this basis some amount of 
radium will appear 1n the environment, along with the other non-sorbing 
radionuclides, after 1,260 years. 

The curves for radium-226 in Figs. 6.5 and 6.6 are examples of the 
application of the equations developed 1n this chapter for the transport of 
radionuclides in a decay chain of arbitrary length. In the first 1000 years 
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after emplacement for the basalt and granite repositories, neglecting 
solubility limit, only technetium-99 and cesium-135 are predicted to have 
curie releases exceeding that of radium-226. As we shall see later, the 
calculated health effects from released radium-226 far outweigh those from 
the other radionuclides released during this time period. It is apparent 
that the release of radium-226 must be considered in a realistic analysis 
of the potential hazards from a geologic repository, even during the 
relatively short time period of 10,000 years assumed by EPA. The equations 
for the transport of radionuclide decay chains are vital for this analysis. 

The equations used to predict the transport and release of radium-226 
are the approximate exponential-release solutions of Section 6.4.2, where 
it is assumed that the flowrate of groundwater through the repository is 
constant. To estimate the value of the flowrate to use in these calculations, 
the cumulative release of uranium-234 predicted for time-dependent flow is 
coiipared in Fig. 6.7 with that predicted for constant flow. The calculated 
curve for uranium-234 for an assumed constant repository flowrate of 3,850 
m /yr is identical with the exact curve for uranium-234, calculated by 

applying Eq.(6.6) and using the time-dependent repository flowrate deduced 
3 by EPA. A constant flowrate of 3,850 rn /yr through the basalt repository 

is used to estimate the cumulative release of radium, in the absence of 
solubility limits. It is this average flowrate that has been used in the 
calculations for Figs. 6.5 and 6.6. 
6.5.4 Cumulative Health Effects From Released Radionuclides 

A stated objective of EPA's draft proposed standard is that there shall 
be no more than 1,000 calculated health effects over 10,000 yr from the 
environmental releases of radionuclides from a repository containing waste 

c 
from 10 Mg of uranium fuel. EPA has provided data (S2), shown in Table 6.1, 
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to be used in ca lcu la t i ng the number o f health e f fec ts per cur ies o f 

a c t i v i t y released to the biosphere, based upon i t s estimates o f wor ld 

populat ion and worldwide averages f o r the consumption of surface water f o r 

d r ink ing and f o r the consumption o f food grown in or i r r i g a t e d by water. 

Our r esu l t i ng ca lcu la t ions o f the cumulative heal th e f fec ts as a funct ion o f 

time fo r EPA's basalt and gran i te repos i tor ies are shown in F ig . 6 .8 , and 6.9 . 

The labels on the curves f o r the t o ta l health e f fec ts o f a l l rad io ­

nucl ides other than radium-226 ind icate the radionucl ides that are the main 

cont r ibu tors to the cumulative heal th e f fec ts dur ing the period ind ica ted . 

Within t h i s mixed group, technetium-99 is the main con t r ibu to r during the 

per iod up to 10,000 y r , except when the s o l u b i l i t y l i m i t of technetium i s 

considered. In the l a t t e r case carbon-14 becomes the main con t r ibu to r . 
4 5 5 6 

Tin-126 is the main con t r ibu to r from 10 to 10 y r . From 10 to 10 y r 

plutonium-239 is the main con t r ibu to r i f s o l u b i l i t y l i m i t s are not 

considered, and t in -126 and americium-243 are the main cont r ibutors when 

s o l u b i l i t y l i m i t s are considered. 

EPA's d r a f t proposed standard l i s t s cur ie releases of ind iv idua l rad io ­

nuclides tha t are upper - l im i t releases fo r 10,000 y r . The upper - l im i t 
3 

release fo r technetium-99 is 2 x 10 Ci per 1000 Hg of U, which corresponds 
5 5 

to 2 x 10 Ci f o r a 10 Mg repos i to ry . This compares to our calculated 

cumulative release o f 6.4 x 10 Ci o f technetium-99 in 10 y r , as shown in 

F ig . 6 .5 , ignor ing s o l u b i l i t y l i m i t . There i s an apparent inconsistency, 

in that the calculated cur ie releases of technetium-99 f o r basalt are ten­

f o l d greater than allowed in EPA's d r a f t standard, yet the ca lcu lated 

heal th e f f ec t s from technet1um-99 j u s t meet EPA's goal o f 1,000 health 

e f f ec t s in 10,000 y r . The discrepancy occurs because EPA has decreased the 

al lowable cur ie release of technetium-99 ten fo ld below that which i s 

ca lcu la ted by EPA data to r esu l t in 1,000 heal th e f fec ts ( P I ) . This resu l ts 
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from EPA's view that uncertainties in the data on uptake of technetium-99 

by plants jus t i f y tnis reduction in the allowable curie release l imi t for 

technetium-99. 

The curves for the health effects from rad1um-226 are calculated on the 

basis of no solubi l i ty l im i t of the uranium precursors of radium-226. I t 

is apparent that even during the 10,000 yr period adopted by EPA radium-226 

contributes over an order of magnitude more health effects than the sum of 

a l l the other radionuclides released during this period. The cumulative 
n 

health effects increase rapidly and level off only after about 10 yr, 

based upon the use of EPA's assumptions and parameters. Separate calculations, 

to be reported la ter , show a decrease in the cumulative health effects from 

radium-226 when the solubi l i ty of uranium is taken into account, but the 

conclusions concerning the importance of radium-226 remain val id. 

I t is apparent from Fig. 6.8 that when radium-226 is considered EPA's 

goal of no more than 1,000 health effects in 10,000 yr is not met by EPA's 

basalt repository. This i f a consequence of the large flowrate of ground­

water within the basalt repository, as estimated by EPA. 



6.6 Nomenclature 
a., (i=l,2..) Emperically fitted constant for buoyancy 

A ^ Defined by Eq.(6.54) 
p A Cross-sectional area of repository, (m ) r 

B., Bateman coefficient, Eqs.{6.33) and (6.44) 

B.(t) Release rate of nuclide i from waste, (atoms/yr) 

B. ' Defined by Eq.(6.55) 

C(t) Concentration of nuclide i at repository, (atoms/m ) 

C^s) Defined by Eq.(6.21) 

C. Solubility limit of nuclide i, (atoms/m3) 

D. J Defined by Eq.(6.56) 

E,1 Defined by Fq.(6.27) 

f Fractional release rates of all nuclides, (1/yr) 

f- Fractional release rate for nuclide i, (1/yr) 

F * Defined by Eq.(6.28) 

g l m(t) Defined by Eq.(6.57) 

GQ Constant hydraulic gradient from lower aquifer 

G (t) Hydraulic gradient from repository 

k r Permeability of host rock, (m/yr) 

K, Retardation coefficient of nuclide i 



M Initial amount of nuclide i, (atoms) 

n. Initial concentration of nuclide i in the solid waste 

n.,(t) Concentration of nuclide i in the solid waste 

N.(zt) Concentration of nuclide i 1n groundwater, (atoms/m ) 

3 
P*(t) Amount of precipitate at repository, (atoms/m ) 

o 
Q, Volumetric water flow rate in upper aquifer, (m/yr) 
a 

3 

Q (t) Time dependent water flow rate from repository, (m/yr) 

R(t) Defined by Eq.(6.5) 

t Time after beginning of leach, (yr) 

t1 Beginning time for precipitation, (yr) 

t- Time at precipitate disappears, (yr) 

T Leach time for band release, (yr) 
U.(z,t) Cumulative amount of nuclide 1 at distance z and up to time 

t, (atoms) 
v Groundwater velocity in upper aquifer, (m/yr) 

v i Migration velocity of nuclide i, (m/yr) 

3 V Volume of water within the repository, (m ) 

%<*> Defined by Eq.(6.35) 

xlmW Defined by Eq.(6.40) 

V'i Defined by Eq.(6.46) 



z Distance from repository, (m) 

otT(i*l,2,3) Emperically fitted constant for buoyancy flow, (l/yr) 

A l m Constant defined by Eq.(6.58) 

K̂  Constant defined by Eq.(6.23) 

A, Decay constant of nuclide i, (l/yr) 

A Constant defined by Eq.(6.18) 

n. Constant defined by Eqs.(6.38) or (6.43) 
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7.1 Mass Transfer From a Fuel Canister by Diffusion 
Paul L. Chambre' 

Consider a cylinder of finite length imbedded in a porous medium. The 
cylinder matrix contains a diffusing specie such as Si(0H) x or U0 2 which 
is set free at the surface of the cylinder at the solubility limit c of 
this specie in water and then diffuses into the exterior unbounded space. 
The diffusion coefficient is assumed constant. The governing equation for 
the conservation of mass of the diffusing species outside the cylinder in 
absence of any losses is 

K | £ = D f V 2 £ (7.1.1a) 

Here D f is the diffusion coefficient of the species in water and K its 
retardation coefficient. 

The boundary conditions are respectively 

c = c s (7.1.1b) 

on the surface of the cylinder and 
c = 0 (7.1.1c) 

on an infinite spherical surface enclosing the cylinder. If the concentra­
tion at infinity is non-zero, a change in the reference datum of c reduces 
that problem to the above formulation. Prior to the time t = 0 the diffusing 
nuclide has zero concentration in the exterior (porous) medium. 

For a cylinder of finite length, the Laplace operator in eq. (7.1.1a) 
has the form 

* > = ^ + f!r- i^V-$- > <"•'> 
ar r a 9 3Z 
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where r, e, z are cylindrical coordinates. For the exterior diffusion 
problem which we wish to solve, compact analytical solutions of eqs. (7.1.1) 
and (7.1.2) are not possible because the interior bounding surface is a 
cylinder and the exterior surface is a sphere. This of course does not 
mean that the posed problem does not possess a solution. Indeed one can 
obtain it in numerical form or by analytical approximations. Since we 
wish to retain a compact analytical solution to this problem, a suitable 
approximation is made for the shape of the cylinder. The finite cylinder 
shape is approximated by a slender prolate spheriod which is generated by 
rotating a family of confocal ellipses about their major axis. This 
family generates not only the replacement for the finite cylinder, but 
produces also the outer spherical boundary which is a member of this 
family. 

One might consider also other forms for the approximation. Suppose 
the inner surface of the domain is maintained in the exact form of a 
finite cylinder and the outer boundary is now a cylinder, but of infinite 
extent. For simplicity, consider furthermore that a steady state prevails 
so that one deals with the solution of Laplaces equation in the exterior 
field. Subject to the boundary condition (7.1.1b) the solution sought is 
mathematically equivalent to the problem of determining the capicitance 
of a cylinder in an infinite cylindrical box. It is well known that this 
problem does not possess an exact closed form solution although it can 
be readily shown that such a solution exists and is unique and can be 
approximated by various means. With these comments in mind, we reiterate 
that the interior cylinder surface will be approximated by a slender 
prolate spheroid which is described by the prolate spheroidal coordinates 
(a,e,^). Since the reader may not be familiar with this coordinate system, 
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we review and summarize in the following Its main characteristics. 
The relationship between prolate spheroidal coordinates (a,g,i|j) and 

the common rectangular coordinates (x,y,z) are given by 

x = f sinha sing cosip 
y = f sinha sing sirup (7.1.3) 
z = f coshot cosg 

where f is the focal distance of the prolate spheroid measured from the 
coordinate origin, see Fig. 7.1.1. To exhibit the geometric significance 
of a , take o to be constant and let 

a = f cosha, b = f sinha (7.1.4) 
in eq. (7.1.3). If these three equations are squared and added, there 
results 

Since a and hence a and b are constants, this represents a prolate spheroid 
in the x,y,z coordinate system (see Fig. (7.1.1)). One observes from 
(7.1.4) that as a becomes small, the prolate spheroid tends to a small diameter 
"cylinder". This "cylinder" has a radius b and a length given by (7.1.5) 
as 2a. In the following, we shall approximate the cylinder by small 
positive values of a. On the other hand, as a becomes very large, so do 
both a and b and (7.1.5) tends to the description of a sphere of large 
radius. The entire a range generates a family of prolate ellipsoids. 

In order to exhibit the geometric significance of (3, take p, to be a 
constant and let 

a = f cosB, 6 = f sing (7.1.6) 

Again square the equations in (7.1.3) and add so that 



M^ 

/?=const. 

yg = 7rj t//=const 

<// = 7r/2 

XBL 826-6304 

Fia 7.1.1. Prolate spheroidal coordinates (a,S,i|i). 
Coordinate surfaces are prolate spheroids 
(a = const), hyperboloids of revolution 
(B = const), and half-planes (ij< = const). 
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^m-fe-H+l^l =1 (7.1.7) 

Hence for 8 constant and thus i and B constant, this equation represents 
a family of hyperboloids of two sheets with foci at + f as shown in 
Fig. (7.1.1). When g = 0, a = f and 5 = 0, while when 3 = v, a = -f 
and 6 = 0. For either of these cases (7.1.7) reduces in the limit to 
the collapsed hyperboloid, i.e., the positive and negative z axis from f 
to °° and -f to -«> respectively. When 0 = S, a = 0, B = f for which (7.1.7) 
reduces in the limit to z = 0, i.e., the x-y plane. Finally, as can be 
seen from Fig. (7.1.1), the family of half planes * = constant with 
o î|i 4 2 11 forms the third member of orthogonal coordinate system a,0,i|> 
which has the range 

0 £ a ^ ° ° ; o < : B £ T T ; o ^ ^ . < 2 T r (7.1.8) 

In this coordinate system the square of the element of arc length is 
given with help of (7.1.3) by 

(ds) z = f z (sinhZct + sin 26) [(d a) z + (de) 2] + 

+ f 2sinh 2a sin 20(diM 2 (7.1-9) 

From this one obtains the metric coefficients of this coordinate system 
as 

h Q = h B = f (sinh2a + s i n 2 0 ) 1 / 2 ; h = f sinha sins (7.1.10) 

Now the form of the governing eq. (7.1.1a) in this curvilinear orthogonal 
coordinate system is 

(7.1.11) 



5. 

which reduces with help of (7.1.10) to 

CL < a < " t O < 6 ^ T T , o < ip f 2ir 

An alternate form of this equation is useful. Let 

C - cosho, M * cosg, \j> =\jt 

then (7.1.11) transforms into 

r2 2 - n 2* 3 c 

(7.1.12) 

(7.1.13) 

k-i)(i-p<) vf 

C s < C < «, -1 $ u ̂  1, o < 1(1 « 2ir 

as one can readily show. In (7.1.12) and (7.1.14) a s and c describe 
the cylinder (prolate spheroid) surface. Particular solutions to this 
equation can be constructed by separation of variables. With 

(7.1.14) 

C U . I J . M ) e " s * * (s,u«e) (7.1.15) 
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$ satisfies the Helmholtz equation in prolate spheroidal coordinates 

+ k Z (r 2-u 2) • = 0, where k 2 = i ^ - K (7.1.15) 

This equation can be separated again with 

$ (c,P.t) = R ^ (k,?) S ^ (k, u) ^ (n|i) (7.1.17) 

Here the radial function R (k,s) and the angular function S (k,u) 
satisfy the differential equations 

2 k [ {< 2- , Jac «*.<"•<>] "( <mn ' k ^ + T ^ J R m n < k ^ = ° 

h [{'-') h Smn C.M)] • (< m-kV - ̂ ^ (k.„) 
v 

(7.1.18) 
9 

The separation constants k and K m , which are eigenvalues in our problem, would 
be determined by boundary conditions imposed on R„„ and S „. This method 

* mn mn 
of solution is not pursued in the following since the determination of the 
spheriodal eigenfunctions and eigenvalues for the exterior problem are 
mathematically quite involved. We will instead obtain the necessary 
information about the solution by application of Laplace transform techniques. 

Before proceeding with this, we make the simplication that the concen­
tration of the diffusing element on the cylinder surface is independent of 
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the angle î  and constant over the entire surface so that C(C,U,T) obeys, 
see eq. (7.1.14). 

C s < C < ». -1 * V 4 1 (7.1.19) 

c(c,y,o) = 0, ? s < c < co , -1 <: u € 1 (7.1.20) 

C U S . V , T ) = 1 , • U K < 1 , I > 0 (7.1.21) 

C(«»,M,T) = 0 - l < p « l , T > 0 (7.1.22) 

3 C ( 8 p ° ' T ) = ° 5 S « S < ~ . T > ° (7.1.23) 

where 

C( 5 . H .T) = fo,)J,T) ; T = ^ 4 (7-1.24) 
c s Kr 

The initial condition is given by (7.1.20). The boundary conditions on 
the surface of the cylinder and on the spherical surface at the point at 
infinity are given by (7.1.21) and (7.1.22) respectively. Eq. (7.1.23) describes 
the symmetry of c about the midplane u = 0 of the cylinder. We now develop 
the steady solution as well as the early time and large time (approach to 
the equilibrium) behavior of this solution. 
The Steady State Solution 

For this case the governing equation for c(c) and its side conditions 
reduce to 



c ( ? s ) - 1 (7.1.26) 

c(») = 0 (7.1.27) 

I f the concentration at in f in i t y is on-zero, a change in the reference 

datum (c) reduces that problem to the above formulation. Here c has no 

u dependence because the boundary conditions (7.1.21) to (7.1.23) can be 

met in the indicated way. The solution to this problem is i'cinentary 

and is given by 

C ( t ) = 0 l i l S s « ? < " (7.1.28) 

where 

Q0(?) • \ log g j . (7.1.29) 

is the Legendre function of the second kind and zero order. In view of 

c+1 _ coshot +1 _ --4.L.2 o, ,, , , n , 
? r - cHFcTT- c o t h 2 f 7 - 1 - 3 0 ) 

Eq. (7.1.28) yields 

a s < a < » (7.1.31) 
log coth j 

cia; a 
log coth j ^ -

l iffusion f l ux is th 

J • " De £ s grad c 

" D e £ s 
h a 

dc. 
da (7.1.32) 

Here D g = eD f is the effective diffusion coefficient of the species 1n the 
water saturated porous medium, and e is the porosity of the medium. Eq.(7.1.32) 
with the help of (7.1.10), yields the diffusion flux from the surface of the 
prolate spheroid 
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cU,2r.,p) - / c( ?,u,p) P 2 n (p)dp (7.1.38) 

where the P„ (p) are the Legendre polynomials of even order. Only even 

members of the set are required on account of the symmetry condition 

(7.1.23). We have shown that for the leading term of the solution, only 

P (p) = 1 and thus c^.o.p) are required. The details are omitted. 

Applying (7.1.37) to (7.1.19) yields with help of (7.1.20). 

|_ ^2-,) J£ lM l ] + A. [(1.MZ) « W > ] = p(cV)c(cu.P) (7.1.39) 

Then applying (7.1.38) gives with n = o, 

d_ J-^2.,, dc i^p l j + ^ 2 , M|^ufii I', p ^ { c 2 . p 2 ) . 
'o 

.cU.p.p) dp (7.1.40) 

One observes, having first Laplace transformed equations (7.1.19) - (7.1.23), 
that the second (integrated) term in (7.1.40) vanishes by (7.1.23). The 
integral on the right hand side of (7.1.40) has the form 

/ (C 2-M 2) cU,u,p)dp = | ?
2- l)c(i;,o,p) - f / 1 c{c,ij,p)P2(u)dp (7.1.41) 

The last integral can be shown to have no contribution to the leading term, 
so there results for cU.o.p) = cU.p) 

h [ ^ - , ) d f ] = p ( 5 2 - 3 - ) c ^ s < ^ - ('•'•«) 
with the boundary conditions 

c(5 s,p) • fi c(»,p) - 0 (7.1.43) 
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We propose a solution to (7.1.42) of the form 

cU.q) - +U.q)e S , q = ^ (7.1.44) 

where *U.q) is to be determined by substitution into (7.1.42). There 
results 

3t [ ( c 2 - 1 ) 3 c ] * R ( * ' q ) (7.1.44a) 

where 

R(*,q) s 2 q [ ( c 2 - D j * + rt] + | q 2 * (7.1.44b) 

In view of eq. (7.1.43) we take the boundary conditions on <J>(t,q) to be 

4>(Cs.q) = \ 
S <{ (7.1.45) 

*(«.q) = 0 

We now define the Green's function G(s,£) for the differential operator 

in (7.1.44a) in order to solve that equation. Let 

?_ r u2--|) ffiJiiSl] = .8(5.5) (7.1.46) 

G{?S,C) - G(»,5) = 0 
,b 

Then with F(a,b) = / •• f> • (7.1.47) 
« (5-D 

we have 

(? 2 -D g f * A or G( ; ,0 - AF(t s,5) . c s < t < C (7.1.48) 

( t 2 - D gf - -B or G(5,€) "BF<e.«") . C < c < » 

The continuity of G(c.5) and the unit jump discontinuity of ( 5 2 - l ) gp 

at ? " €• 
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determines 

A = D^Fflj,") , B * D" 1F( ? S,5) ; D - F(c s,») (7.1.49) 

so that 

F(CS.C) . ?s < C « 5 

G(c.5) =« 

(VMS,.)] 

[D _ 1F( ? s ,e)[ F(c-) ?« c < 

(7.1.50) 

On evaluating D and F there results 

<Me> 

G(e.c) • 4 
T O Go ( c> - W ] , cs .< c < € 

Q0(?) 

«o^7 

(7.1.51) 

) [V e ) " W ] .5*5 

Returning now to the solution of eq. (7.1.44) we consider as our starting 
point Green's theorem 

(7.1.52) 

One substitutes for the differential operators under the integral sign the 
equations (7.1.44a) and (7.1.46), then one makes use of the Integral 
property of the delta function and applies the boundary conditions (re-stated) 

G(»,0 = 4>(«.e) = 0; G(5S,5) = 0, *(Cs.q) = \ (7.1.53) 
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There results 

*{£.q) = (Cs -1) — ^ £ - / G(c,£) R {•(c).q) * (7.1.54) 
^s 

But by (7.1.48) 

2 dGU-.E) 
(cs -U — g f • A (7.1.55) 

where A is given by (7.1.49). If one evaluates the integrals, substitutes 
the result into (7.1.54) and interchanges the labels £ and ?,there results 
the Fredholm integral equation 

Q M 
•U.q) = g ^ m W G(5.e) R (*(£),q) d£ (7.1.56) 

W q cs 

The large time behavior of the solution is determined by the "small p" 
behavior of its transform. For this reason, one usually expands the 
transform of the solution $ iii powers of p or q. This amounts to the 
iterative solution of the integral equation in form of a Neuman series. 
For our purpose (7.1.56) shows that the leading term 1n such a series is 
the first (integrated) term on the right hand side, i.e., 

'V's' q 

Higher approximations can be computed by substituting this into (7.1.44b) 
and then evaluating the integral (7.1.56) provided that this is done to 
the correct order of the dismissed u terms. In the present, we restrict 
ourselves to the zeroth, i.e., the leading approximation to c(?,q) which 
is a combination of eqs. (7.1.44) and (7.1.57) 

4 %M ' e " q ( ' " C s ) 

c(?.q) 'TTTFT h (7.1.58) 
W q' 
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The Laplace and Legendre Inversions produce then the desired approximation 
for the large time solution 

(7.1.59) 

As T + »,the complementary error function tends towards unity so that 
this expression agrees with the steady solution given by Eq.(7.1.28). 

The diffusion flux from the surface of the prolate spheroid is given in 
the S coordinate system by 

J = V. 8C 
»V 95 

5 = ? s 

V, JW 1 
X te .) /TTT 

where h » f m 
(7.1.60) 

The time span necessary to establish the steady state to 1% requires that 

1 
frfx" 10" 

With (L/ b) = 20, 

and f «= 150 en, eq (7.1.24) yields 

^r|- iT«fe-33^-««io- B ^ 

= 1 0 4 x 2.25 x 1 0 4 xlO 2 . , 011 
' ^ a d y state 3.14 x 5 x 10-*x ( 3 3 . 5 ) 2 '' 

(7.1.61) 

K=100 

4000 yrs (7.1.62) 

This 1s an appreciably long time period and Its consequence in establishing 
the steady state 1n laboratory experiments must be appreciated. For 
Increased retardation this time span Increases. 
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It is within the context of such experiments that the early time 
behavior of the solution is of interest. We turn next to the analysis of 
The Early Time Behavior 

In contrast to the large time behavior wh* 'i is characterized by 
small values of the Laplace transform parameter p, we are now Interested 
in the large valued parameter ..ase as p + » . 

The starting point of the analysis is eq. (7.1.42) for c(c,p) 

k [<•'-» f ] P k2 - j) c , ? s < x, < » (7.1.63) 

with the boundary conditions (7.1.43) 

cU s,p) = 1 ; c(»,p) = 0 (7.1.64) 
One of the most useful techniques for obtaining the asymptotic solution 
of (7.1.63) for p -• •» is with help of the Liouville approximation. For 
this introduce the new independent variable 

,W(t-)!-i \ y 2 

and the new dependent variable 

There results the greatly simplified equation 

4-j° [P + 9 (l)l N (7.1.67) 
dir 
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for which 

N(~,p) = 0 (7.1.68) 

Since one treats p •+ »>, the function g(n) is as usual treated as a 
negligible contribution and its specific form is of no further interest 
in the following except for the fact that it is a continuous and bounded 
function. 

The dominant solution of (7.1.67) which satisfies (7.1.68) is 

N(n.p) = Ae (7.1.69) 

If this is substituted into (7.1.66) and the boundary condition (7.1.64) 
is applied there results 

( c , p )" lp- i ] p - a i F 

On inversion there results 

/ r z ji r 2 n J / 4 

C ( C , , " T ) " ( [ ^ ] p - " a ) ^ w ( 7- i 7 i ) 

where n(r.) 1s given by (7.1.65). The early time surface diffusion flux 
can be determined from this equation and It exhibits, analogous to the 
second term in eq. (7.1.60), a x ' behavior, but with a different 
numerical coefficient. 
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7.2 Mass Transfer From a Fuel Canister by Diffusion and Forced Convection 
Paul L. Chambre' 

Consider a cylinder of infinite length imbedded in a porous medium 
through which water is flowing steadily in accordance with Darcy's law. 
The cylinder matrix contains a diffusing nuclide which is set free at the 
surface of the cylinder at the solubility limit of the species in water and 
then diffuses into the exterior unbounded space. All material properties 
are assumed constant. The flow is taken normal to the axis of the cylinder, 
but inclined flows can also be treated by the analysis given below. The 
governing equation for the conservation of mass of the diffusing species 
from a cylinder of radius r in the presence of radioactive decay is 

v 8c" . „/2 „ i 9c . v(r,e) 3c _ n | a c l 3c . 1 3 c ) , „ ; 
K 3 t + u<r-6> a r ' - ^ ^ - ' V [̂ 2 ?i? ?2̂ 2J _ X K C ' 

Here 

r 0 < r < » , o $ 9 « 2u, t > 0 (7.2.1) 

u(r,e) = -U I 1- y%- J cose; v(r,e) = U I 1 + -^- j sine (7.2.2) 

are the radial and tangential pore velocity components derived from D'Arcy's 
potential flow in the porous medium with U the free stream pore velocity far away 
from the cylinder, r is-the radial distance from the center of the 
cylinder and 6 the angle measured in the tangential flow direction from 
the frontal stagnation point at the cylinder surface. K is the retarda­
tion coefficient and 0* 1s the diffusion coefficient of the species, in the 
liquid. 

Prior to the time t = 0, the diffusing nuclide has zero concentration 
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in the porous medium. At time t * 0 the concentration at the surface of 
the cylinder 1s changed to a constant value c 

c(r0,B,t) * c s, o « 64 2ir, t J. 0 (7.2.3) 

and maintained at this surface concentration c subsequently. The 

boundary condition far from the cylinder Is held at zero concentration 

c(»,6,t) > 0 , o s 6 . $ 2 i r , t > 0 (7.2.4) 

I t 1s convenient to introduce non-dimensional variables with 

T = j £ . r - i , c(r.e.x) = £lEj&*£l e " 
K r o r o c s 

Ur 
Pe = „-=• , the Peclet number (7.2.5) 

u f 

KAr 
Da = —jj—, the Dankohler number for convectlve mass transport. 

Then the governing equations for c(r,6,x) transform to 

£.- d - i - 1 cose a=+ f i + i - l 5ini 3£= i_ [A + i3c + i_i!c 
3T - 1 rZ] c o s 6 8r + i r 2 J •" 3 e * l 3 r 2 r 3r r 2 3 e 2 

1 < r < » , O $ 6 < 2 T T T > O (7.2.6) 

cO.e.-r) = e D a T , o s< 8 < 2it, x » o (7.2.7) 

c(»,e,T) = 0, o <? 6 ;? 2TT, T >,O (7.2.8) 

with the Initial condition that c(r,8,0) = 0. 
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For typical porous media flows the Peclet number Pe may be large. 
-S 2 Typically, with U*2 m/yr, rQ » 0.15 m, and D f • 1x10 cm /sec will 

yield a Peclet number of 10. 

This suggests an asymptotic solution of the equation system for 

large Peclet numbers. In this case the principal resistance to mass 

transfer from the cylinder surface is in a direction normal to the fluid 

layer surrounding the cylinder, i .e . , in the r direction. The diffusion 
1 a2c transport tangential to the surface, i . e . , the term 1ys-j-t can then be 
r ae c 

neglected as will be shown below. To obtain the asymptotic form of the 

equations, introduce the new independent variable R in place of r 

r - l + J L . (7.2.9) 

then eq. (7.2.6) takes on the form 

| | - 2R cose | | + 2 sine | | - = -^-f + 0 fpe" 1 / 2 J (7.2.10) 

This is to be solved for c(R,e,t) subject to, see (7.2.7), (7.2.8) 

C(O,6,T) = e D a T , o^ 6 $ 2n, T $.0 (7.2.11) 

C ( » , 6 , T ) = 0, o 4 6 < 2TT, T >, o (7.2.12) 

with zero initial condition. 
For large Pe numbers the last term in eq. (7.2.10) is neglected. By an 
additional change of the Independent variables, one can reduce the time 
dependent diffusion and convection equation (7.2.10) to a simpler time 
dependent diffusion problem without convection. New independent variables 
i(R.e), t(i,6) are Introduced which transform C(R,6,T) into c(n.^) 
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i . e . , c(n.s) • C(R.6 ,T) (7.2.13) 

These variables are given by 

? ( T , e ) « - } c o s e + [ {{iffef-j-} (7.2.14a) 

where f(„e) - e " * §{§} with .(e) - ( ^ ) , b(e) - ( ^ j 

and 
T)(R,e) = R sine . (7.2.14b) 

As the reader can readily verify, these transformations, which are 
deduced by group-theoretical considerations, change eq. (7.2.10) to a 
very simple equation for c(n,?), I.e., 

2-
§§ = -Mf , n > o, 5 > o (7.2.15) 

subject to the side conditions 

c(o,c) = 1 , C 5- o (7.2.16) 

c K ? ) = o, 5 >, » (7.2.17) 
with the condition that c(n,o) = 0. 

The solution to this problem is 
E(n.c) = erfc(-4z.) (7.2.18) izk) 

The solution in R,0,T variables 1s obtained by substituting n(R,6), 
and 5(6,T) 1n (7.2.18). One obtains after some simplifications that: 

c(R,e,T) = erfc (R V c o t h Z\ * c o s f l ) (7.2.19) 

This solution satisfies (7.2.10) with side condition (7.2.11) 
replaced by unity. To obtain the x dependent boundary condition given 
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by (7.2.11) we use Duhamel's integral, i .e . , 

C(R,6,T) • C c(o,e,T') £ [er fc(RJ£St tL i lT-T-) + cos9J j d T , ( 7 2 2 0 ) 

Integrating by parts and transforming back to the original variable 6 one 

obtains _ -. 

c(?,Pe,Da,t,o) = c s exp(- ̂ - ) erfc i f - 1) / ^ ( c o t h §^-+ cose) + 

j ^ e " D a T erfc f f - l ) { f (coth 2T • cose) dr + c s Da 

(7.2.21) 

This solution (7.2.21) describes the time dependent concentration f ie ld 

in the presence of radioactive decay in a Darcy flow about a cylinder. 

The surface mass f lux for a diffusing nuclide is 

3r Ir=r 
j(Pe,Da,t,0) = - D 4 1 

3r I 

{¥ [><- ^ e"* -»2Pe l e x p ( . D a _ U t ^ c o t h ^ t + c o s e + 

o 

Ut 

+ Da j ° e " 0 " ^coth 2T + cose dt 1 (7.2.22) 
"o 

where 0 e = c t f in the effective diffusion coefficient of the diffusing 
nuclide and e the porosity of the medium. 

The surface mass flux, according to (7.2.22) depends on time and the 
angular position. The angular dependence is removed by averaging the 
surface mass flux over the cylinder perimeter. On the account of symmetry 
we have 



J a v (Pe.Da.t) - I J J* (Pe.Da.t.e) de 

Ut 
0 c e s W- [<»' <- %f) ! ̂  + Da /̂  e"DaT ̂  *] 

(7.2.23) 
where 

1/2 I(T) 5 1 (coth 2T + cose) de 

To evaluate I(T) we proceed as follows 
U/2 I(T) * I l-l + -VT .•>,• + cose de I(T) » J (-1 +-5-r-T2T + c o s e ) 

,ir/2, 
'o 

f1 / 0/2 

= fifty E [m2(r)] (7.2.24) 

where IH(T) H (1-e ) and E[x] is the complete elliptic integral of the 
second kind. Substituting for I(T) in (7.2.i'3) one obtains 

4D c f ( exp'" ~^"~' Fi- m (iff-)] f W ? 

Kr 0' 'o 

(7.2.25) 

In absence of radioactive decay (X=Da=0) there results 



_2/Ut 
t- 4D c (— E'-m "Kr ^ 

W ^ - ^ C -̂ f" (7"2-26) 

For application in section (7.5), we require the steady state, 
average surface mass flux in absence of radioactive decay. Hence, (7.2.26) 
yields as t-«>. with m(=>) • 1 and E[l] = 1, that 

âv = ̂  llf <7-2-27> 
The mass transfer per unit length Of cylinder under steady state condition 
is then given by 

m = 3 a v x 2T,r0 = 4.5135 DgC,. J F 7 (7.2.28) 

a result well known in heat and mass transfer studies where it is shown 
to be valid for a range of Pe>4 (K2),(L1). 

From (7.2.26) one can estimate the tine necessary to establish the 
surface mass flux to 993! of the steady state mass flux. From table of 
complete elliptic integral of the second kind one obtains that the 
criteria is given by 

$ = 1.2 (7.2.29) 

For a flow of U = 1 m/yr, r 0 = 0.15 m, and K = 100, t = 18 years, 
a relatively short time for the establishment of a steady state when 
compared with the case of pure diffusion. Theret = 4000 years was obtained 
(see 7.1.62). 

The analysis leading to the solution (7.2.21) for the time independent boundary 
condition is readily generalized to a time dependent boundary condition. 
The starting point for this analysis 1s Eq.(7.2.20). If in (7.2.3), c s is 

r,,,., /T<Kr \ 
replaced by c $(t), one must change C(O,S,T') in (7.2.20) to e T « l — n - a ] 
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As an illustration consider the radioactive decay of the surface concentra­
tion according to 

c(ro,e,t) = c s e " x t o<6 * 2it, t^o (7.2.30) 

in place of Eq. (7.2.3). Here <fi(t) * e" x t. Hence, we have 

-XT'Kr^ 
C{O,B,T') = e D a x ' e C r _ * 1 (7.2.31) 

After substitution of C(O,8,T') into (7.2.20) one can perform the 
integration analytically. Transforming back to the c and evaluating 
surface mass flux one obtains 

•+ D C i2P 
i (Pe,Da,9,t)= -f-5-exp(- %^) \ M [coth (|^) + cose] . (7.2.32). 

0 0 O 

This shows that the surface mass flux no longer reaches a steady state 
but tends toward zero as t + », 

For a flow parallel to the cylinder axis the mass transfer can be 
approximated as follows. The lateral cylinder surface is unwrapped into 
a flat plate of length L and width 2-irr , and subjected to a flow in the 
direction of the plate length. The steady mass transfer from a flat plate 
of width 2nr and length L under longitudinal flow^is given by 

"long " 2 - 2 5 7 V s ( r t ) V 2 2 ^ o ' (7-2-33) 

while the mass transfer from a cylinder of length L with the flow normal 
to the cylinder axis is in view of (7.2.25) 

• 5 1 3 D e c s (-DJ) 
1/2 

"norm = 4 " 5 1 3 De cs ( x ) L (7.2.34) 
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Hence 

Mnomt . 4.513 ' ' * 1 / 2 

*lon« (2-2571/T, ( * ) 

For a canister, with an aspect ratio 5^- * 13.2 
0 

M 
72201 ... , . 63 
"long 

This indicates that for flow parallel to the cylinder axis, the mass 
transfer is decreased by about 63% compared to that due to the flow normal 
to the cylinder axis because the thickness of the diffusion boundary layer 
is greater for M l o n g than for » M m . 

Finally we note that the large Peclet number approximation made in 
the analysis prevents one from letting the free stream Oarcy velocity U 
become small. If U + o, in eq. (7.2.1), the convection terms drop out and 
the equation describes then a temporal balance between the effects of 
diffusion and radioactive decay. For a constant surface concentration, 
given by eq. (7.2.3), the modified eq. (7.2.1) generates then a steady 
state solution as t * ». Since the e dependence is no longer needed, the 
governing equation is 

j | • J: # - B2c - 0, r > 1 
where 

2 2 r AK p 
6 'ST-' r " r" » (7.2-35) 

f 0 

yith the boundary conditions 

c(l) • c s , 6(») - 0. (7.2.36) 
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The solution is given by 

'(•"> • c s ^ f j y 1 • r >' ^.2.37) 

so that the surface mass flux is 
D.c. f-MB)] J ( r» 1 =1f f W ) ' (7'2-38) 

Here K.(n), M n ) are the modified Bessel functions of zero and first 
order respectively. 

A detailed numerical evaluation of the mass transfer without radio­
active decay, i.e., eq. (7.2.28), as well as the fractional dissolution 
rate are giv^n in section 7.5. The other formulae derived above including 
their dependence on radioactive decay will be investigated in the future. 
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7.3 Mass Transfer From a Fuel Canister by Diffusion and Free Convection 
Paul L. Chan*re' 

The problem concerns the mass transfer from a heated vertical cylinder 
which is imbedded in a water saturated porous medium. The temperature of 
the cylinder exceeds that of the surrounding with the result that a free 
convection pattern develops which drives the fluid along the cylinder 
surface. This induced velocity affects the mass transport of a diffusing 
species from the cylinder surface into the surrounding medium. It is 
thought that the effects of free convection might be important during that 
time when the fuel canister generates a sufficiently large amount of decay 
heat to maintain a temperature difference of about 50°C (or more) between 
the canister surface and the surrounding medium. The aim of the analysis 
is to determine the velocity, temperature and concentration fields and to 
develop a formula for the surface mass flux. 

The following assumptions are made: 
a) A steady state description is adopted. 
b) The vertical cylinder surface is replaced by a flat plate surface 

having the same length as the cylinder and a width equal to the cylinder 
circumference. 

c) The pore water is assumed to have temperature Independent properties 
except for its density. The water flow obeys Darcy's law. The fluid 
filling the porous medium is assumed to be a single phase. 

d) Boundary layer theory simplifications are assumed valid, see eq. 
(7.3.14) below. 

The governing equations are: 

Conservation of Mass |£ + {$. = o (7.3.1) 
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Conservation of Momentum (Darcy's Law) 

« - - * ( & * . » ) (7-3.2) 

v = - ^ § (7.3.3) 

Conservation of Energy 

»$+"$'<hfr . « e ^ (7.3.4) 

Conservation of Species 

U £ + V a y - = V £ <7-3"5> 
Equation of State of Liquid 

P = P 0 D j ' - M T - T j ] (7.3.6) 

where 
? .2 2 

/ = 5 - = . + 3- 5. (7.3.7) 
sx ay 

The coordinate system is shown in Fig. (7.3.1). The velocity components u,v 
point respectively into the x and y direction. In the above equations 
P,T,P,cp are the pressure, temperature, density and heat capacity of the 
liquid and p„ its density far away from the plate, k is the permeability of 
the porous medium. Xfi is the effective thermal conduction of water saturated 
porous medium as measured in the laboratory, u and B are dynamic viscosity 
and coefficient of thermal expansion of the liquid in the porous medium 
respectively. D f is the diffusion coefficient of the diffusing species in 
the liquid. 

The boundary conditions for our problem are 
v(x,o) ' o, T(x,o) = T w; 6(x,o) = c s, for x>o (7.3.8) 
u(x,<*) « v(x,»; - 0; T(x, ) = T,,,; e(x,») = 0, for x>o (7.3.9) 



,3* 

\ / 
Tv, 

U(«,») 

v(»,y) 

Fig. 7.3.1. Co-ordinate system used in the 
free convection model. 

Fig. 7.3,2. qualitative shape of f(n), f'(n) and 
c(n) for large Lewis number. 
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There will be a "slip" condition for the u component of the velocity at 
the plate surface which 1s as yet unknown. Furthermore, the temperature . 
difference (̂ -T,,,) which depends among other parameters on the heat 
release from the cylinder 1s also determined subsequently. 

Eq. (7.3.1) can be satisfied in the usual way by introducing the 
stream function ${x,y) with 

u(x.y) - j * ; v(x,y) = - |f (7.3.10) 
If one differentiates (7.3.2) with respect to y, (7.3.3) with respect to 
x and then algebraically adds the resulting equations, one obtains with 
help of (7.3.6) and (7.3.10), 

^P„M)f=V 2t (7.3.11) 

On the other hand (7.3.4) and (7.3.5), expressed with (7.3.10), give 

ff-f|=^ (7-3.12) 

fI^fV= ("-IS) 
One has thus these three governing equations for the determination of 
the unknown functions V,T and c. For the purpose of establishing the 
main physical features of the solution, it 1s convenient to utilize the 
boundary layer simplifications. These imply that the transport of mass, 
energy and concentration in the major flow direction (i.e., u) is small 
compared to that normal to the plate. With 

it « it , i\ « ii , 4 « 4 (7.3.14) 
BTC ay 3x* ay e 8x ' 3y 
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Equations 7.3.11-13 result in, 

ay 

These equations are subject to the boundary conditions,(see (7.3,8), 

(7.3.9) and (7.3.10)) 

Sfcjjpal = o, T(x,o) « Tw 5 g(x.o) = c s (7.3,18) 

®&=L - * § * = > • - 0 , T(x,«) = T. 5 c(x,») = 0 (7.3,19) 

valid for x>o. 

Equations (7.3.15) and 7.3.16), which are coupled equations for T and \)>, 

are solved first. One determines thereby the temperature induced stream 
function i)j(x,y) which describes the free convection flow pattern. With 
knowledge of ty, one can then solve for the concentration c(x,y) separately. 
For this reason we concentrate first on the solution of (7,3.15) and 
(7.3.16). These partial differential equations are reduced to ordinary 
differential equation by the introduction of the similarity variables 

n = R a 1 / 2 ( y //xC) (7.3,20) 

* = a e ( R a ) 1 / Z ( £ ) 1 / 2 f( n) (7.3.21) 
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e(n) • r - ^ - (7.3.22) 

c(n) » f - (7.3.23) 
s 

where 

Ra = ^ (j[) S (TW-TJL (7.3.24) 

Here L is the length of the plate and Ra the Rayleigh number of the 

l iquid saturated porous medium. With these variables the governing 

equations reduce to 

f " (ri) - 8" (n) = 0 (7.3.25) 

e" (n) + g-f (n) e' M = o (7.3.26) 

A _ 1 c " (n) + l f (n) C ( n ) = 0 (7.3.27) 

where 

A = ^ = L e (7.3.28) 

is the Lewis number. The boundary conditions transform to 

f(o) » 0 ; 8(o) = 1 ; c(o) = 1 (7.3.29) 

f'(») = 0 ; 6(«) = 0 ; c(») = 0 (7.3.30) 

as can be seen by introducing the new variables into (7.3.18) and (7.3.19). 

A f inal integral of eq. (7.3.25), which satisfies the boundary 

conditions (7.3.30) for f" and 0 at n = «°, 1s given by 

f ' (n) - 6{n) (7.3.31) 
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Since the x component of the free convection velocity is determined by 

u = !y = ( T " R a ) f' ( n ) (7.3.32) 

one observes that the normalized vertical velocity U'T1' and 
<*„ 

the temperature distr ibution e(ri) are, according to (7.3.31), of the same 

form. Thus, the determination of the function f(n) is of central 

importance. To obtain an equation for f(n),eliminate e between equations 

(7.3.25), (7.3.26) and (7.3.31), with the result that 

!Ui+lf ^4=0 (7.3.33) 
d n

J ' drf 

Exactly the same differential equation arises in the problem of the 
boundary layer flow of a viscous fluid over a flat plate, the famous Blasius 
problem (B2). But in contrast to the boundary conditions f(o) = f'(o) = 0, 
f'(°°) = 1 in that problem, the conditions for the present case read 

f(o) = 0 ; f'(o) = 1 ; f'(») = 0 (7.3.34) 

The qualitative shape of the solution f(n) of (7.3.33), (7.3.34) and that 
of its derivative f'(ri) are shown in Fig. (7.3.2). As already stated, 
the free convection induced vertical velocity component and the temperature 
distribution normal to the plate are both characterized by the shape of 
the f'(n) function. 

Next we determine the mass transfer from the vertical surface. For 
this one requires the normal derivative !£• which in turn involves 1̂ -

6yh=0 3 T 1ln=0 
But n contains Ra and in this Rayleigh number there occurs the as yet 
unknown temperature difference (T^TJ. (Ty-T^) is determined by the heat 
flux through the canister surface and the convective and conductive heat 
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transport into the porous medium. So one must first find (T W-TJ. The 
local heat transfer from the surface of the plate is defined by 

which with (7.3.20) and (7.3.22) yields 

"" = - \> ( V T J 3 / 2 § %r* 'Z * ~1 / 2 e ' ( ° ' < 7 - 3 - 3 5 ) 
where x is the effective thermal conductive of the saturated porous medium. 
The total rate of heat transfer from a plate of length and width W is then 

J-Q = W f q" (x) dx 

= - W X e ( T W - T J 3 / 2 j ^ ^ - - ) 2 L 1 / 2 8 ' ( o ) (7.3.36) 

Fig. (7.3.3) shows the variation of spent fuel heat generation with time. 
We now define the magnitude of the average heat flux from the entire plate as 

5" H JS, WL 
1/2 3/ z / k P»69l . i 

e 
Hence the desired temperature difference between plate surface and the porous 
media is given by 

2 |̂ 1/3 
(T.-TJ = i H*-ETr =?} (7.3.38) T T , f ! » • ) ' 1 T-TJ U^uri e u La e [ 9' ( 0 )]' 

(T -T ) is seen to be a function of the average heat flux issuing from w °° 
the fuel canister and the properties of the porous medium. The assumption 



9. 

(7.3.30) for c(n). The desired solution is 

•j^exp (- £ X V f(s)ds) M 
c(n) = 1 - - > J~T7K' H ( 7 - 3 - 4 0 ' 

so that the surface mass flux is 

ly=0 I n=0 

where E is the porosity of the medium. 
In view of (7.3.20) and (7.3.40). 

J-V, (f) 1/2 (7.3.42) 
• C e x p ( - U ^ ' f < s > d s ) dr>' 

The definite integral 

1(A) - ^ "exp ( - i j T n f(s)ds) dn' (7.3.43) 

involves the function f(n),i.e., the solution of (7.3.33) and the Lewis 
number parameter (7.3.28). 

A = ̂  (7.3.44) 

We shall discuss the complete evaluation of 1(A) for arbitrary A values 
at a later time, but develop now the asymptotic form of this integral for 
large values of A which may arise due to small values of the diffusion 
coefficient in porous media. In this case the concentration boundary 
layer is very thin compared with the thermal layer, as sketched in 



Fig. (7.3.2). One can then approximate f(n) by the first term of its 
power series expansion, I.e., 

f(n) = n + 0(n 2) (7.3.45) 
p If one neglects terms of 0(n ). 

. A n 2 

1(A) =- / 0"e 4 dn , . 

~ , for A large (7.3.46) 

Thus (7.3.42) yields, 

J - D fec s |]£ £1 > f o r A 1 a r g e (7.3.47) 

If one expresses Ra by (7.3.24) one has in terms of the physical parameters 

where the length S. is given by 

«=(H^»<vui)"! 

The average rate of mass transfer per unit length of plate for a plate 
of length L is readily computed from equation (7.3.48). 
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7.4 A Model for Leach and Diffusion Rates From Glass Bodies 
Paul L. Chambre' 

Experimental evidence indicates that when a typical silica base glass 
is brought into contact with water two physical processes occur in the 
dissolution of the glass. One of these is an alkali ion transfer, such 
as for example, Na , across the glass-water interface which gives rise to 
a gel-like S10« transition layer. The second process appears to be the 
corrosion of this layer resulting in the dissolution of the glass matrix. 
A number of theories have been proposed, differing in various detailed 
mechanistic ways, which attempt to explain qualitatively or quantitatively 
various aspects of experimental observations on glass dissolution. In the 
following, we develop a model which is based on only the two, generally 
accepted, experimental pieces of evidence. These are 
i) The movement of the glass interface with a (regression) velocity v, 

which is initiated by 
ii) The diffusion of an alkali ion across the glass-water interface. 

Three simplifying assumptions will be made. The interface velocity is 
assumed to be constant in time. The support for this assumption is indirect. 
It will be shown in the following analysis that a constant regression 
velocity leads to the often observed experimental result (M4) that the 
fractional release of a particular nuclide f(t) follows the empirical 
formula 

f(t) = ^ ^ 7 + c 2t (7.4.1) 

where c, and c^ are constants. On the other hand there exists also some 
experimental evidence yielding a different time dependence for f(t)(H3). 
This has been interpreted by investigators to be due to a corrosion layer 
which is developing on the glass surface, gradually Increasing the resistance 



of mass transfer from the Interface. In the analysis, the case of accretion, 
is also included and the f(t) function deduced. The remaining assumptions 
concern the nature of the diffusion mechanism of the alkali ion. We shall 
assume a constant diffusion coefficient for the ion in the bulk glass and 
the gel-like surface transition layer despite the fact that the diffusion 
coefficient is considerably larger in this layer (H2). Furthermore, we shall 
ignore the effect of the negative surface potential on the ion transfer. 
Such a potential 1s generated when glass is immersed in water. The effects 
of thi latter two assumptions require future study. 
The Analysis 

The analysis applies to a body of planar, cylindrical and spherical 
shape. We take as the governing equation 

- {z- -I 
Here c(r,t) is the concentration of the nuclide, D the diffusion coefficient 
and \ the radioactive decay constant if the nuclide is radioactive. 
m describes the geometric character of the diffusion field. For the case 
of the sphere m = 2, for the cylinder (of infinite length) m = 1 and for 
the slab m = 0. r is the position variable within the region of interest, 
t the time and R(t) the position of the movable boundary which will be 
prescribed below. The initial nuclide concentration is given as c(r) so that 

c(r.O) = c(r)„ 0 < r < R(0) s a. (7.4.3) 

At the surface of the solid 

c |R (t),t\ = 0 , t > 0 (7.4.4) 

but if the surface concentration is instead c f 0, it is always possible 
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to reduce this to the condition given by eq.(7.4.4) by taking the reference 
datum for the concentration at c%, provided X • 0. In addition to the 
above conditions, one prescribes 1n case of the sphere and the cylinder 
that c (0,t) 1s bounded and in the case of the slab of thickness 2R(t) that 
3c (0,t)/3r vanishes for all times. 

The equation for the moving boundary R(t) 1s based on the simple 
hypothesis that 

R(t) = a - vt, e g t $ a/ v (7.4.5) 
where a is the initial position and v the surface regression velocity. 
A regressive surface at time T L = a/v the finite sized body has completely 
dissolved. This limits the time span for the solution. If there is 
accretion, tie take v negative in the expression for R(t) and consider 
t j.0. The equations(7.4.2) to (7.4.5) completely define the model. 

The solution for the different geometric configurations (fig. 7.4.1a) is 
carried out below. It turns out that the solutions for the sphere, cylinder 
and slab are very similar. The case of the sphere is treated in detail, 
then the changes which need to be made in case of the slab are indicated 
and the final solution is given. These results are exact and are valid 
for any range of the parameters entering the problem. The cylinder is 
analyzed by an approximation method which 1s valid for the large values 
of the paramster (va/D) usually encountered in practice. By forming the 
product of the solutions for slabs of different or identical widths one 
obtains at once the solution to the case of a parallelopiped or cube, 
respectively. Similarly multiplication of the slab and (infinite) 
cylinder solutions yields the solution for a cylinder of finite length 
(fig. 7.4.1b). These results are consequences of some well known theorems 
and are valid for a tiire span in which the smallest initial dimension of 
the body has been reduced to naught by the leaching process. 
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Fig. 7.4.1. Geometries of problems considered 
(arrows indicate direction of surface 
regression). 
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Fig. 7.4.2. Spatial distribution of the 
concentration inside sphere r = 0.01 
for various rates of surface . 
regression (A=0). 
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The Sphere 
Let 
c(r,t) • exp (Xt)rcsp(r,t) (7.4.6) 

then eqs. (7.4.2) to (7.4.5) reduce with m « 2 to 
2 

| £ - = D 2 - § - , 0 < r < a - vt, 0 < t < a / | v i (7.4.7) 

c(r,0) • rc(r) s g(r ) , 0 < r < a, (7.4.8) 

c(a - vt . t ) « 0 0 < t « a / | v | (7.4.9) 

and on account of the boundedness condition on c (0 , t ) , 

c(0,t) ' 0 , 0 < t <a/jv| (7.4.10) 

Now the Kelvin function, 

—T17? e x p (" W ) * 2{irDt)' 

1s a particular solution to eq. (7.4.7). By the super-position principle 

and the method of Images one can construct a more general solution to 

eq. (7.4.7) which satisfies conditions (7.4.8) and (7.4.10) as a detailed 

verification shows. 

This solution has the form, 

c( r , t ) = ^ 7 5 - I f a g(s) S (r , t ;s) ds + / h(s)S(r,t;s)ds 1 , 
2(irDt) 1 / Z l."0 a > 

(7.4.11) 

0 < r $ a - vt , 0 « t .s a/ivi 
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where the source function 

S(r.tss) - exp [ - * j £ f l i ] - exp [ - i f t § £ ] . (7.4.12) 

In eq. (7.4.11), g(s) is the I n i t i a l concentration distr ibution and h(s) 

is an as yet unknown source density function which is determined by imposing 

the last remaining condition on the moving boundary, i . e . , eq. (7.4.9), 

/ " a g(s)S(a-vt , t ;s) ds + / "h (s )S(a -v t , t ; s ) ds = 0. (7.4.13) 
o a 

Now the functions g(s) and h(s) are partly at our disposal. Since g(s) 
is prescribed only for 0 < s < a, we analytically continue it in the 
following manner 

(7.4.14) 

Similarly h(s), which must be determined according to the solution (7.4.11) 

and the condition (7.4.13) in the span a < s < «° , is chosen in the remaining 

part of the range as 

h(s), s > a 
h(s) = < 0, |s| < a 

arbitrary, s < -a. (7.4.15) 

With this choice one can now combine both integrals in eq. (7.4.13) by 

elementary transformations resulting in integrals with the same integration 

l im i t s , i . e . , 

jT"h(s+a) exp (- jp-J - h(s-a) -g(s-a)) .exp ( - f ^ j d s = 0. (7.4.16) 
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The satisfaction of this condition requires that h(s) must obey the 
ordinary difference equation, 

h(s+a) exp (-vs/D) -h(s-a) « g(s-a). (7.4.17) 

The solution to this equation can be constructed in successive s spans of 
width 2a, utilizing the properties of the Initial distribution g(s) and 
the continuation properties of h(s) with the result 

h(s) = g(s-2na) exp j"nv(s-na)/DJ 

(2n-l)a < s < (2n + l)a, n = l,2,... (7.4.18) 

Having found the unknown source distribution h(s), c ( r , t ) given by 

eq. (7.4.11) can be shown to satisfy a l l bhe conditions of the problem. 

There results, on returning to the original variables, after some minor 

simplifications 

+ 2 f a s c ( s ) exp [nv(s+na)/D| S ( r , t ; s +2na) ds}, 
n=l 4 U ' 

0 4 r ^ a-vt, 0 « t < a / l v l (7.4.19) 

For bounded c(s), the series can be shown to converge for the Indicated 
t range, i.e., for all times for which sphere material remains. It should 
be noted that, 1n view of eqs. (7.4.8) and (7.4.14), the Initial distribu­
tion c(s) must be an even function about s * 0. 

A case of practical Interest 1s the one where the Initial concentration 
1s uniform throughout the sphere, i.e., c(r) • c 0 for 0 $ r < a. The 
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integration in eq. (7.4.19) then yields the following explicit result for 
the concentration in the interior of the sphere, 

c sp l a' T ' c 2(r/a) 

where 

.{2(r/a) - (erfc e ] - erfc e 2) - 2-r 1 ' 2 ( ierfc 6 l - ierfc e 2) 

- Z Rerfc e 2 1 + erfc e.i-i) exp (-ng6i) -
n _1 i_ 

-(erfc 822 + erfc e 1 2 ) exp (-ng62) + 

+ 2 T ' 2 (ierfc 8 2 1 - ierfc e ^) exp (-ngs^ 

2T ' (ierfc e 2 2 - ierfc e 1 2) exp (-np62)} 

(7.4.20) 

1 (2n(1-BT) + (-l)| + (-1)J (r/a)) 
eij (^l/Zj 

Si s n(l-Bx) + C-D^r/a), (7.4.21) 

and T £ Dt/a j S = va/D, the interface Peclet number. (7.4.22) 
erfc (z) and i^erfc (z) denote, respectively, the complementary error 
function and the m repeated Integral error function which are tabulated 1n<«>. 
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For e « 0, this reduces to 

(_ r n ~ o L 2 T " < 
(7.4.22a) 

erfc 

The spatial distribution of the nuclide concentration given by eq. (7.4.20) 
is shown in fig. (7.4.2) for a specific value of the dlmenslonless time 
(T = 0.01) and for different values of the dlmenslonless regression 
parameter (5. One observes as g Increases that the regression of the inter­
face steepens the concentration gradient compared to a stationary Interface 
(B = 0). Fig. (7.4.2) also shows the effects of accretion. In contrast to 
the previous case the concentration profile is S-shaped and the surface 
mass flux shows a marked decrease which indicates a resistance to mass 
transfer. 

A quantity of primary interest to the experimentalist Is the fractional 
release of the radionuclide due to the combined effects of diffusion and 
interface movement. This may be obtained by Integrating the concentration 
at any time t over the volume of the sphere, dividing the result by the 
initial amount of diffusant present and subtracting this quotient from 
unity. Thus for the case of an initially uniform concentration, 

f(t) = 1 - Q(-r)/Q0, (7.4.23) 

(l-Br)a 2 where Q(T) = ; 4irr c._(r/a,t) dr, 

Q 0 » | « 3 c 0 . (7.4.24) 
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f(x) has been evaluated numerically with help of eq. (7.4.20) for \ « 0. 

Fig.(7.4.3) shows the numerical results of the evaluation of eq.(7.4.23) for a 
number of regression Peclet numbers (5 and for a limited range of 0 < T < 2x10 . 
One observes that the fractional release is initially a linear function of 
x and then it becomes quadratic in x . This is exactly the behavior 
observed in many laboratory leaching experiments as already stated in 
eq. (7.4.1). More extensive numerical evidence will be given in Section 
(7.6). To pressage this result, we will show here that eq. (7.4.23) is 
closely approximated by 

f(t) = 6 J ^ - ) + f ( Y " ) 0 4 t .< t + ^ 0.4TL (7.4.25) 

for both regression (v>o) and accretion (v<o). 
The Slab 

The system of eqs. (7.4.7) to (7.4.9) describes the diffusion process 
in a slab of half width (a-vt), with an initial concentration distribution 
g(r) = c(r), in absence of radioactive decay. If the solid is exposed to 
regression over both faces, with the center of the slab located at r = 0, 
the boundary condition is replaced by the symmetry condition 

3c . (o,t) 
— ^ = 0, 0 $ t $ a / | V j (7.4.26) 

In order to satisfy this re lat ion, one chooses as the source function 

S(r , t ;s ) = exp | - &$£• + exp [" - i f t § £ ] . (7.4.27) 

instead of eq. (7.4.121. The analysis proceeds then along the same lines as 
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for the sphere. However, the function g(s) must now be defined as follows: 

g(s) - < 
o, 

(7.4.28) 
g(-s), |s| < a. 

The final result is 

*"•'»• £S8rJ> ,«[-W 1]* 
oo a — -. 

• 2 (-1)" f c(s) exp lnv(s+na)/D|.S(r,t;s + 2na) ds} 
(7.4.29) 

0 N< |r| < (a-vt), 0 « t ^ a/|v| 

For a bounded even function c(s) this result can be shown to converge to 
the solution of our problem. Again if the initial concentration is 
uniform throughout the slab one obtains with the shorthand notations 
introduced 1n eqs. (7.4.21) and (7.4.22) the following result 

C(J,T) = csL(r/a,T)/c0 = \ exp (-XaZx/D) {(erf e 2 + erf e ]) 

+ 2 (-Dn [(erf 62i - erf e ] 2 ) exp (-nes,) + n=l 
(7.4.30) 

+ (erf 6 2 2 - erf 8 1 2) exp (-ns«2f|) 
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Fig. 7.4.3. Variation of fractional release from sphere 
(radius = a) with dimensionless time T for 
different dimensionless regression speed. 

T «0t/q* ("I03) 

XtLIH-Olt 

Fig. 7.4.4. Variation of fractional release from slab 
( i n i t i a l width 2a) with dimensionless time 
T for different dimensionless glass-water 
Interface regression speed B. 
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For B « 0, this reduces to 

^ • - M f - i <-""[-* (2n+l) - f (2n+l) + 

2T TIT + erfc 1772-J I 

The total fractional release is given by eq.(7.4.23) with 
(l-flj)a . 

Q(T) = 2 / c s L ( r /a ,T) dr 

ô o 

(7.4.30a) 

(7.4.31) 

Performing the integration one obtains 

f ( t ) = B T + T 1 / 2 f ie r fc { ^ - ) - ierfc ( ^ ^ - H + 

exp JnB(n-l)] . (erf p ^ - erf u 1 2 ) + 
~ / nn-1 

n=l "W 

+ exp [nB(n+l)]. ( e r f y 2 2 - e r f p 2 1 ) + f i 2 (n ) - ^ ( n ) > 

where 
u = 2n * (-1) 1 » M ) J (1-Bx) • 

(7.4.32) 

(7.4.33) 

B l ( n ) £ e x p { - nB(l-BT) [ n + H ) 1 ] } . | <-l)J erfc [ ^ ? E n f ( - 1 ) 1 > ( - l ) J ] 

For B=0 this reduces to 

f ( t ) 2 T V 2 ^ + Z n | ( - , ) n i - f C

T V ] (7.4.34) 
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A numerical evaluation for X • 0 is shown in Fig. 7.4.4 for some ranges 
in B and T. 

In section (7.6) we will give numerical evidence that eq. (7.4.3Z) 
can be closely approximated by 

""• !fe)"2*H*)7 
The conclusions for the slab are thus quite comparable to those obtained 
for a sphere. 

The Cylinder 
In the case of the cylinder one can proceed in the same manner as 

above. Instead of the source function eq. (7.4.12) one utilizes the 
fundamental solution. 

S(r,t;s) = {s/(2Dt)} exp [- (r*+s2)/(4Dtj]. I 0 (rs/(2Dt)} (7.4.36) 

where I_(z) is the modified Bessel function of the first kind, zero 
order. However, this case leads to a rather complicated integral equation 
for the unknown source density h(s) and for this reason the following 
approximate solution is recommended. 

For large values of the parameter 8 = va/D (about 200 or more) the 
interface regresses at such a rapid rate compared to temporal changes in 
the diffusion pattern that the latter is affected primarily in a very 
thin boundary layer of thickness 6 close to the surface as the calcula­
tions show, see Fig. 2. Hence, in order to describe the rate of the 
diffusion of the ion through the interface, it is important to take 
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Is made that the average heat f lux varies so slowly with t ine so that 

(7.3.38) can be applied to a quasi-steady state. F1g. (7.3.4) shows a 

typical trend for this temperature difference ES a function of time for a 

given q" ( t ) descriptive of a spent fue l . The temperature difference 

drops to 100*C In about 130 years. The calculation 1s based on the fol low­

ing parameters values 

X • 2.894 w/R "K (1) 0 * 2.07 x 10" 4 1/°K 

k • 2.96 x 1 0 " 1 4 • * (D L » 4.7 m (2) 

ji » 5.5 x 10" 4 kg/m sec r - 1.78 x 10" 1 m (2) 

P„ • 10 3 kg/m3 Q (o) = 5.5 x 102 w (2) 
c p * 4.184 x 10 3 J/itg °K e'(o) ' ^ 

Before proceeding with the mass transfer analysis we estimate next 

the magnitude of the vert ical s l ip velocity component u for the above 

data. From (7.3.32) and (7.3.34) the free convection velocity component 

along the plate surface 1s given by 

• • ( £ ) 
- P-69 < V T J J! ( 7 - 3 - 3 9 > 

For a temperature difference of 100°C one computes u = 0.34 n/yr. This is 

competitive with commonly assumed groundwater flows of 0.1 to 1 m/yr which 

are used 1n the fa r - f i e ld calculations. F1g. (7.3.4) gives the magnitude 

of the free convection velocity as a function of time. 

The local mass transfer rate from the plate 1s now computed from the 

solution of (7.3.27) subject to the boundary conditions (7.3.29) and 



13. 

account of the steep concentration gradient close to the boundary. For 

this reason one introduces the transformation 

c(r , t ) - exp(Xt)r 1 / Z E c y ( r . t ) (7.4.37) 

into eq.(7.4.2), where now m-1. There results 

(7.4.38) ac _ n / 3 c . c I 

Now close to the boundary where the diffusion effects are most prominent 
the two terms on the right hand side are of entirely different order of 

2 2 2 2 2 
magnitudes, 3 c/3r = 0(1/6 ) and c/4r » 0(l/r ). Since 6 is very 
small compared to r, the second term is dropped in favor of the first 
and there result the eqs. (7.4.6) to (7.4.10) with the initial distri-

1 /2 
bution g(r) - r ' c(r). Hence the approximate solution to the cylinder 
problem can be obtained by simply replacing the term sc(s) by s ' c(s) 
on the right hand side of eq. (7.4.19). It is worthwhile to point 
out that if one merely drops the term (l/r)3c/3r in eq. (7.4.1) in 2- 2 favor of 3 c/3r , one obtains a less accurate approximation to the 
solution than the one given above. 

The exact analysis of the cylinder is planned for the future. 



7.5. External Mass loss Rate and leach Time for a Glass Cylinder 
7.5.1. Introduction 

Two mathematical models for the rate of mass transport from a waste 
cylinder surrounded by groundwater In an infinite porous medium have been 
developed in sections (7.1) and (7.2). In the first model, the cylinder is 
approximated by a prolate spheroid and the rate of mass transfer of a 
species dissolved from the waste solid is assumed to be governed by the 
rate of molecular diffusion of the dissolved species into stagnant ground­
water. This theory 1s illustrated by analyzing the steady-state mass 
transfer rate from the cylinder with the dissolved species having a 
constant concentration on the cylinder surface. The maximum value of this 
surface concentration is the solubility of the dissolved species in ground­
water, and this saturation concentration at the surface is assumed in the 
illustration. 

In the second model, the mass transfer of the dissolved species from 
the waste surface is due to both molecular diffusion and forced convection 
by the groundwater moving in D'Arcy's flow in the surrounding porous medium. 
Again, the theory is applied to the steady-state mass transfer with a 
constant saturation concentration of the diffusing specie on the cylinder 
surface. The waste cylinder is idealized as a cylinder of infinite length, 
and the groundwater is assumed to flow perpendicular to the cylinder axis. 
This allows one to obtain the rate of mass transfer from a unit length of 
the cylinder. Numerical calculations are made for a cylinder with the 
same radius as that of a cylindrical waste form with end effects accounted 
for. 

Calculations are made for the rate of dissolution of silica, in 
amorphous form, from a borosilicate glass cylinder, and for the rate of 
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dissolution of low-solubility radloelements 1n the borosillcate glass, 
using the two models described above. 

In Section 7.5.2, the steady-state mass transfer rate, mass transfer 
rate per unit length, and average surface mace flux of a species from a 
prolate spheroid and slender cylinder which is defined as a cylinder with 
a ratio of height to radius of 10 or greater are given. In Section 7.5.3, 
the leach times of the prolate spheroid and slender cylinder are derived, 
subject to the assumptions that the waste form consists of a single species 
and that the ratio of height to radius of the cylindrical waste-form is 
constant during the leaching process. In Section 7.5.4, the governing 
equations for obtaining the dimensions of the prolate spheroid approximating 
a cylindrical waste form are given. In Section 7.5.5 we present the 
dimensions of the cylindrical waste-form, calculated dimensions of the 
equivalent prolate spheroid, diffusivity of a species in a water-saturated 
porous medium, solubility of amorphous silica in water, and borosilicate 
glass density. In Section 7.5.6, a comparison between the dissolution rate 
and the leach time of different waste forms consisting only of amorphous 
silica are made. These sections deal primarily with the mass transport by 
molecular diffusion. 

In Section 7.5.7, the steady-state mass transfer rate by molecular 
diffusion and convection are given. The mass transfer rate for a finite 
cylinder is derived subject to the assumption that the surface mass flux 
from the ends of the cylinder has the same value as the surface mass flux 
of the infinitely long cylinder. In Section 7.5.8 the leach time for the 
cylinder is derived. Section 7.5.9 contains data used for numerical 
evaluation of mass loss rate and leach time. In Section 7.5.10 a compari­
son is made between surface mass flux for diffusion and for the diffusion-
convection model. 
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In Section 7.5.11, the diffusion and diffusion-convection models are 

applied to a s1lica-bas« glass cylinder containing low-solubility radio-

elements. Section 7.5.12 is the conclusion of the above analyses. 

7.5.2. Dissolution Rate Due to Molecular Diffusion 

At steady state the mass transfer rate per unit area (surface mass 

flux) is nonuniform for the prolate spheroid and depends on the position 

on the surface. The mass flux has a maximum at the poles and a minimum at 

the equatorial plane (see Fig. 7.1.1 in Section 7.1). The total rate of 

dissolution iL of a given species of effective surface concentration N is 

obtained by integration of the surface mass flux over the surface area of 

the prolate spheroid, and is given by (see Section 7.1) 

4ne D f N. f 
m„c — (7.5.1) 

ps a, ' 
log[coth(-^-)] 

where: 

in = the total mass loss rate of the prolate spheroid, g/sec 
2 

Of = molecular diffusivity of diffusing specie in water, cm /sec 
e = porosity 

3 N = c - c^ = effective surface concentration, g/cm 
c s = solubility limit in groundwater, g/cm 

3 
c^ = concentration in groundwater far from waste surface, g/cm 
e*s = surface shape factor of the prolate spheroid defined in 

Section 7.1 by Eq.(7.1.4) 
f = focal distance of the prolate spheroid, cm 

For a slender cylinder, i.e., L %, lOr, Eq.(7.5.1) simplifies to 
ZTTC D f N s L 

log(t) 
T j f — (7.5.2) 
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where: 
ia • dissolution r i W for a slender cylinder, g/sec 

L • cylinder length, cm 
r » cylinder radius, cm 

From Eq.(7.5.1) the dissolution rate per unit length and the average 
dissolution rate per unit surface area of the prolate spheroid are given 
by Eqs.(7.5.3) and (7.5.4), respectively 

(7.5.3) •I 2ms D f Ns 

mps 
coshl [a s)log[coth(-|-)] 

2e D f Ns f 
Jps 

b(b+ | s in _ 1 e) log [co th (^ - ) ] 
(7.5.4) 

• 0 

ic = mass loss rate per unit length of the prolate spheroid, 
g/cm sec 

j = average surface mass flux of the prolate spheroid, g/cm sec 
e = f/a 
a = semi-major axis of the prolate spheroid, cm 
b = seni-minor axis of the prolate spheroid, cm 

7.5.3. Leach Time Derivation 
The leach time T is defined as the time interval between the beginning 

of dissolution and the completion of dissolution of the waste form. Assum­
ing here a waste form consisting of a single species, the time-dependent 
waste form volume V(t) is given by 

& (pV(t)) - - B(t) (7.5.5) 
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where: 
3 

p * waste form density, g/cm 
V(t) - waste form volume at time t, cm 
ifi(t) - mass-loss rate at time t, g/sec given by Eqs.(7.5.1) and (7.5.2). 

The initial condition 1s V(0) * V , where V is the initial volume of the 
waste form. 

Here we assume that at any time t the dissolution rate can be approxi­
mated by the steady-state solutions, Eqs.(7.5.1) and (7.5.2), so that 
Eq.(7.5.5) can be solved for V(t). From definition of the leach time T 
we have that 

V(T) - 0 (7.5.6) 
and leach time 1s obtained by solving Eq.(7.5.6) for T. 

We have for the slender cylinder 
V s c(t) * irr2(t) L(t) (7.5.7) 

and from (7.5.2) 
2ire D f N s L(t) 

WrW (7.5.8) 

with the initial condition (I.C.) that 
r(0) * r initial radius, cm 
L(0) - L initial height, cm 

Substituting Eqs.(7.5.7) and (7.5.8) into (7.5.5) yields 

A 2 2*e Df K L(t) 
& [P ir r 2(t) L(t)] ' - — f g f j — - (7.5.9) 
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with I.e. 
r(0) - r Q 

L{0) « L 0 

To solve Eq.(7.5.9), it is necessary to have another relation between L(t) 
and ? [ t ) . We assume that the ratio of height to radius remains constant 
during the leaching process, i.e., 

L ( t ) - L . ^ (7.5.10) 
o 

r(t) 
r o 

Substituting Eq.(7.5.10) into Eq.(7.5. 9) and solving for r(t) results in 

r(t) • r 1 f s
 L (7.5.11) 

L 3r 0
2 p log(=2.) J 

o 

From the definition of leach time we have from (7.5.6-7) that r(T s c) = 0, 
so that 

3 p r Q
2 log I 

Tsc " 4 e D f N S
L " < 7- 5- 1 2> m 

where: 
T s c = leach time for the slender cylinder, sec 

In deriving the leach time of the prolate spheroid it is assumed that 
the ratio of the minor axis to the major axis is constant during the leach­
ing process, resulting in the following equation (see Appendix A for details) 

2 r s n 
pb„ cosh(ct.)log fcoth(-^-) 

TPS • — F T U T N T < 7 - 5 - 1 3 > 
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where: 
T • leach time for the prolate spheroid, sec 
b. • initial semi-minor axis of the prolate spheroid, cm 

7.5.4. Approximating a Cylinder by a Prolate Spheroid 
We assume that the prolate spheroid has the same volume and surface 

area as the cylindrical waste form. Thus, equating their volumes, 

4 | s b 2 » it r 2 L (7.5.14) 

and equating their surface areas 

2 u bfb+f-sin"1 e) - 2 TT r(r+L) (7.5.15) 

Solution of Eqs. (7.5.14) and (7.5.15) for a. and b_ defines the desired 
prolate spheroid. As is seen from the above equations, a closed-form 
mathematical solution for a_ or b_ cannot be obtained, so a numerical analysis 
is required. 

7.5.5. Parameters of the Problem 
The following table shows the physical characteristics of the waste form 

used in the numerical calculations: 
Table 7.5.1. Physical characteristics of waste forms (Rl) 

Canister dimensions 
Inner diameter, cm 
Length, cm 

2 Surface area, cm 
3 Volume, cm 

Ratio L/r 
ar/ Assumed that 80% of waste canister is filled with waste glass. 

Commercial 
high level 
waste 
30.5 

?a/ 
ZAxlOT 

2.446x104 

1.75xl06 

15.7 

Defense 
high level 
waste 
59.1 

2 a/ 
2.4xl(T-
5.005xlO4 

6.58x106 

8.1 
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The diMnslons of the commercial high level waste form are used in numerical 
evaluation of the slender cylinder mass loss rate and leach time, listed in 
Table 7.5.4. 

Table 7.5.2 is obtained by approximating the waste forms by a prolate 
spheroid using Eqs.(7.5.14) and (7.5.15), with the aid of a (computer) 
program described in Appendix C. 

Table 7.5.2. Physical dimensions of prolate spheroid approximating 
cylindrical waste forms. 

Waste Forms a, cm b, cm c, cm e "s 
Defense high-
level waste 158 31.5 155 0.980 0.202 
Commercial high-
level waste 145 16.9 144 0.993 0.117 

The molecular diffusion coefficient of most nuclides in water-saturated 
porous media is usually lower than that in the unconfined water. The 

-5 ? 
diffusivity of most species in water is between 1 to 5x10 cm /sec (W2). 
The molecular diffusion coefficient of silicon dioxide and other species 

-5 2 in water is taken to be 1x10 cm /sec. 
Table 7.5.3 shows the solubility of two forms of silicon dioxide, i.e., 

a quartz and amorphous silica, in water at a pressure of 0.1013 HPa, pH of 7.0, 
and at different temperatures. The solubility of silicon dioxide as a 
function of pressure and temperature is given (Wl) in Appendix B. 

Table 7.5.3. Solubility limit of silicon dioxide in water 
Temperature, °C 
25"C 100°C 

Alpha quartz, g/cm3 4xl0" 6 5xl0"5 

Amorphous silica, g/cm3 1.2xl0"4 4.1xl0 - 4 

-4 3 'i 
A surface concentration of 1.2x10 g/cm and a density of 2.8 g/cm are 

chosen for a pure amorphous silica cylinder. This density corresponds to that 
of typical borosillcate glass (T1),(M3). 
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7.5.6. Numerical Results for Dissolution Rate and Leach Time for a Pure 
Amorphous Silica Cylinder 

Table 7.5.4 shows the calculated dissolution rates f\ leach times, 
using Eqs.(7.5.1), (7.5.2), (7.5.12). and (7.5.13) with the aid of a computer 
program (Appendix C). A porosity of 0.01 and the solubility of amorphous 
silica from Table 7.5.3 were used. The concentration of silicon dioxide in 
the groundwater far from the waste form is assumed zero. 

Table 7.5.4. Mass loss rate and leach time for a pure amorphous silica 1n 
stagnant water at 25° C and porosity of 0.01. 

Mass loss rate, q/day Leach time, yr 
Slender cylinder 5.6x10 3.54xlQ5 

Commercial high « fi 

level waste 6.6x10"* 3.03x10° 
Defense high , fi 

level waste 8.8x10"* 8.58x10 
All three waste forms yield similar results. There is reasonable 

agreement of mass loss rate and leach tine between a prolate spheroid 
approximating the commercial high level waste form and the slender cylinder. 
Thus, Eqs.(7.5.2) and (7.5.12), derived for the mass loss rate and leach 
time of the slender cylinder respectively, can be used. 

7.5.7. Dissolution Rate Due to Molecular Diffusion and Groundwater Motion 
The mass loss rate per unit length of an infinite cylinder with ground­

water flow normal to its axis is given by (see Section 7.2) 

m* = -̂- D f e N s ( P e ) 1 / 2 , valid for Pe >_ 4 (7.5.16) 
where: 

n£ = mass loss rate per unit length of cylinder, g/cm sec 
Pe = Ur/Df, Peclet number 
U = groundwater pore velocity, cm/sec 
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From Eq.(7.5.1), the Mass loss rate per unit surface area of the cylinder is 
obtained 

/U 0 f\l 

where: 
*t 2 

j - 5 ^ « mass loss per unit surface area of the cylinder, g/cm sec 

From this, one obtains the dissolution rate for a cylinder of length L, 
subject to the assumption that the mass flux from the ends of the cylinder 
has the same value as the surface mass flux from the cylindrical surface. 
The result is 

m = — D f e N (r+L) ( P e ) 1 / 2 , Pe * 4 (7.5.18) 

where m * dissolution rate from cylinder, g/sec 

7.5.8. Leach Time for a Cylinder, Diffusion and Convection 
As a result of dissolution, the radius decreases with time as does the 

Peclet number. The leach time T 1s defined as the time interval from the 
beginning of the steady-state dissolution of an infinitely long cylinder 
until the cylinder has completely dissolved. For simplicity it is assumed 
that Eq.(7.5.16) is also valid for Peclet numbers less than four. The 
following expression for the leach time is obtained (see Appendix A for 
derivation). 

c 6 e D f N s PeQ

Wi ° Uf 
where: 

T * leach time for the cylinder located in flowing groundwater, sec 
r = initial radius of the cylinder, cm 
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7.5.9. Parameters of the Problem 
Groundwater pore velocities of 10, 5, and 1 m/yr are assumed. The radius 

of the cylinder is 15.2 cm, which is the same as that of a commercial high 
level waste glass cylinder. The cylinder consists of silicon dioxide. The 
surface concentration of silicon dioxide is 1.2x10 g/cm and the concentration 
of silicon dioxide in the groundwater far from the cylinder is assumed to be 

-5 2 zero. The diffusivity of Si02 in groundwater is taken to be 1x10 cm /sec. 
The porosity of the medium is 0.01. 

7.5.10. Numerical Results for Surface Mass Flux 
In Table 7.5.5 are presented the calculated average surface mass fluxes 

for diffusion and convection in flowing groundwater (Eq. 7.5.17) and for 
diffusion in stagnant groundwater (Eq. 7.5.4), using the computer program 
described in Appendix C. A porosity of 0.01 is chosen. 

2 Table 7.5.6 Average surface mass flux of silicon dioxide g/cm day for 
the diffusion and diffusion-convection models, porosity = 0.01, 
N s = 1.2xl0"4 g/cm3, D f = lxlO"5 cm2/sec, r = 15.2 cm, and 
L = 2.4 m. 

Groundwater pore velocity, m/yr 
10 5 1 0- 7 

Surface mass flux, g/cm2 day 3.5xl0"7 2.5xl0"7 l.lxlO"7 2.7xl0"8 

a/Molecular diffusion model, Eq.(7.5.4) 

For the pure amorphous silica cylinder (r = 15.2 cm) emplaced in a medium with 
porosity of 0.01 and groundwater pore velocity of 10 m/yr, from Eq.(7.5.19), we 
obtain T = 2.3x10 yr. The proper value may be less, if an accurate solution 
for Pe< 4 were available. Such an analysis is presently being completed. 
For example, from Eq.(A.29), we find that after 1.7x10 years the cylinder 
radius has decreased from the initial value of 15.2 cm to 1.2 cm when the 
Peclet number becomes four. 



7.5.11. Solubility Limited Dissolution of Silica and Low-Solubility Radio-
elements In a Silica-Base Glass Cylinder 

In the previous sections two mathematical models of dissolution from a 
cylinder with only one diffusing component were considered. In this section, 
a silica-base glass cylinder containing additional lew solubility components, 
such as various radioelements, is considered. 

The time-dependent fractional dissolution rate of component j is defined 
as 

fj (t) - ifij (t)/ Hj (t) (7.5.20) 
where: 

f. (t) = fractional dissolution of component j at time t, 1/sec 
m.. (t) * dissolution rate of component j at time t given by 

Eq.(7.5.1) for molecular diffusion and Eq.(7.5.18) for the 
molecular diffusion-convection models, g/sec 

H- (t) = V^ (t) n^ (t) = mass of j at time t in glass, g 
V- (t) = volume of undissolved waste at time t, cm 

3 n- (t) * density of j in undissolved solid waste at time t, g/cm 
Substituting the m, (t) given by Eqs.(7.5.1) and (7.5.18) into (7.5.20) yields 

V t } = nf({) 
3e D f

J e 
b* log[coth(^-)] 

8e D f
J (Pe 3) (H-f) 
,3/2 „2 TT r 

molecular diffusion 

molecular diffusion-convection 
PeJ = it > 4 

D f ~ 
, 0 < t < T 

(7.5.21) 
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where: 
N, j * difference between the concentration of j in the groundwater 

on the waste surface and concentration of j in groundwater far 
3 from waste surface, g/cm 

i 2 
D f • diffusion coefficient of specie j in groundwater, cm /sec 
T = leach time given by Eq.(7.5.13) and Eq.(7.5.19), sec 

In the above equation 1t is assumed that the ratio of the major axis to the 
minor axis of the prolate spheroid is constant during the leaching process. 
In Eq.(7.5.21) r and b are functions of time, with functional forms given 
by Eqs.(A.29) and (A.10), respectively. 

To apply Eq.(7.5.21), it is assumed that the rate of bulk dissolution 
of the solid waste is controlled by dissolution of the silica matrix, i.e., 
the preferential release of a waste-component by diffusion in solid is 
neglected. As the silica matrix dissolves, all the components in the silica 
matrix are released congruently from the solid but are not necessarily 
dissolved. !f the solubility of an individual waste component is so low that 
its fractional dissolution rate is less than that of the waste matrix, then 
precipitates of the low-solubility component will form. It is assumed that 
the precipitates remain on the waste surface and slowly dissolve at a rate 
given by the rate of mass transfer of the low-solubility species into the 
surrounding liquid, with the concentration of the low-solubility species in 
the liquid adjacent to the waste surface given by the solubility of that 
species in groundwater. The possibility of forming colloids or other non-
dissolved suspended particulates within the groundwater is neglected. 

These assumptions can be written as 
fj(t) = Hin ( f s i l i c a (t), f\j (t)) j = 1.2....N (7.5.22) 

where: 
Mln (X,Y) - minimum value of X or Y 
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For numerical demonstration we consider a borosilicate waste glass with 
r « 15.2 cm and L » 2.40 m emplaced in a porous medium with a porosity of 
0.01 and groundwater pore velocity of 1 m/yr. The concentration of each of 
the components in the groundwater far from waste cylinder is assumed zero. 
The molecular diffusion coefficient in groundwater is assumed to be 1x10 
2 

cm /sec for all the diffusing components. The initial inventories and solu­
bilities of constituents in groundwater and the corresponding calculated 
fractional release rates are given in Table 7.5.7. Table 7.5.8 shows the 
calculated fractional release rate of the constituents from the above waste 
glass in absence of groundwater flow. For this case the prolate spheroid 
has the same volume and surface area as the waste cylinder. 

Table 7.5.8 also shows the experimental results of fractional release 
rate for some radionuclides(Ml). The experimental results are adjusted for 
the surface area of the waste cylinder on the assumption that the release 
rate is proportional to surface area exposed. Comparison between these 
calculated values indicate that in the repository conditions dissolution of 
the low-solubility radionuclides is controlled by the concentration boundary 
layer and not by the kinetics inside the glass matrix. 

7.5.12. Conclusion 
Two solubility-limited dissolution models were developed in Sections 7.1 

and 7.2. The models permit one to calculate the steady-state dissolution 
rate of a diffusing species from a cylinder which is embedded in a water 
saturated porous medium. In one model the mass loss is due to molecular 
diffusion only, while in the other it is governed by molecular diffusion 
and groundwater convection. 

The models are appliad to an amorphous silica cylinder embedded in a 
medium with porosity of 0.01. The cylinder radius of 15.2 cm and height 
of 2.4 m are used, which are dimensions of a commercial high level waste 
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glass cylinder. For the diffusion model an average surface mass flux of 
2.7xl0"8 g/cm day and leach time of 3x10 yr are calculated. 

The models are applied to a borosiUcate high level waste glass. The 
fractional release rates of some low-solubility components are calculated. 
The numerical results indicate that if the solubility of these constituents is 
low enough, and their initial inventories high enough, they will not initially 
dissolve congruently with the waste matrix. Comparison of fractional release 

» 
rates due to diffusion and those due to diffusion-convection indicates that 
the aroundwater pore velocity of 1 m/yr causes a four fold increase in 
dissolution rate. This indicates a narrow range for dissolution rates 
obtained by the two models. 

Comparison between calculated fractional release rate and experimental 
values indicates that for low-solubility glass components the dissolution 
rate may be controlled by concentration boundary layer, porosity of the medium, 
and groundwater pore velocity and not by kinetics inside the glass matrix 
or solid-liquid interactions. Therefore, interior cracks of the waste solid, 
devitrification, and other mechanisms that could Increase the rate of solid-
liquid interaction would not be expected to affect the solubility-limited 
dissolution rate, unless they have some affect on the solubilities, if the 
solubility is sufficiently large, then the kinetics of interaction between 
the solid waste and water may be dominant. 
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Table 7.5.7 Calculated fractional release rates for borosllicate glass 
waste 1n flowing groundwater. 

Waste cylinder: r • 0.152 m, L » Z.40 m, fission-product and actinide oxides 
from 460 kg of uranium fuel. Groundwater pore velocity of 
1 m/yr. 

Initial species 

Constituent 

concentration 
in the waste, 
q/cm3 

Solubi l i ty, 
q/cm3 

Fractional 
Dissolution rate, 
y r " ' 

Si0 2 1.6 a/ • 1.2xl0" 4 & 3.4xl0" 6 

Tc 1.92xl0~3 b / 3xl0- 9 & 7x10"8 

U 1.22x10 -2 ^ 2xl0" 9 ^ 8x10"9 

Np 1 .92x l0 " 3 ^ 2.4X10"11 & 5.7X10"10 

Pu l . l S x l O " 4 ^ Ix lO" 9 & 4x10"7 

Am 3.56'xlO" 4^ I . B x l O " 1 2 ^ 2.3X10"1 0 

a/ Reference (M2). 
b_/ Assumed 0.5% U and Pu and all fission products and actinides (Bl). 
c/ For amorphous Si02 (SI). 
d/ Reference (Kl), 
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Table 7.5.8 Calculated fractional dissolution rates for boroslllcate glass 
waste in stagnant groundwater. 

Waste cylinder: r * 0.152 », L • 2.40 m, fission-product and actinide 
oxides from 460 kg of uranium fuel. 

Fractional dissolution rate, yi 
Constituent 

Initial specie 
concentration 
in the waste, 

g/cm3 

Solubility 
q/cm3 

> 

1.2xl0' 4 y 
3.0xl0 - 9 5/ 

2.0xl0 - 9 2/ 

2 .4x l0 - 1 1 £/ 

l.OxlO"9 e/ 

l .BxlO - 1 2 2/ 

all the fission 

Calculated 

8.7xl0 - 7 

1.8xl0 - 8 

1.9xl0 - 9 

l.SxlO-10 

l.OxlO - 7 

5.fxl0 - 1 1 

Observed-7 

1.6xl0"3 

1.5xl0 - 6 

6.6xl0"4 

2.6xl0 - 5 

2.7xl0"6 

Si02 1.6 b/ 

Tc 1.92xl0 - 3 -' 

U 1.22xlO"Z £/ 

Np 1 .92xl0" 3 ^ 

Pu l . l S x l O - 4 ^ 

Am 3.56xl0 _ 4 £/ 

a/ Reference (Ml), 
b/ Reference (M2). 
c/ Assumed 0.5* U and Pu and 
d/ For amorphous SiOj. 
e/ Reference (Kl). 

products and actinides (Bl). 



7.5.13 Nomenclature 
a Semi-major axis of the prolate spheroid CM 
b Semi-minor axis of the prolate spheroid cm 
b Initial sentl-mlnor axis of the prolate spheroid cm 
c Solubility limit in groundwater g/cm 
C Concentration In groundwater far away from waste surface g/cn3 

D f Molecular diffusivity in water cm /sec 
Di Molecular diffusivity of component j in water cm /sec 
e Eccentricity of prolate spheroid 
f Focal distance of the prolate spheroid 
f .(t) Fractional dissolution rate of component j at time t sec"1 

j c Average surface mass flux of infinitely long cylinder in flowing groundwater g/cmzsec 
2 j Average surface mass flux of the prolate spheroid g/cm sec ps 

L Cylinder height cm 
L Initial cylinder height cm o 
L{t) Cylinder height at time t after dissolution begins cm 
m(t) Dissolution rate at time t g/sec 
m.(t) Dissolution rate of component j at time t g/sec 

V 
tnt Dissolution rate per unit length of the prolate spheroid g/cm sec 

c 

Total dissolution rate of the prolate spheroid g/sec 

Dissolution rate for a slender cylinder g/sec 
Dissolution rate from a cylinder in flowing groundwater 

Hi* Dissolution rate per unit length of infinitely long cylinder in 
flowing groundwater g/cm sec 

M.{t) Mass of j at time t 1n the waste glass g 
J 

n A t ) Density of j in undissolved waste at time t g/cm 3 

J 
N Difference between concentration in the liquid adjacent to waste surface and concentration in the groundwater far away from waste surface g/cm 3 
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7.6 Calculations of Dissolution of a Glass Matrix by Internal Molecular 
Diffusion and Surface Regression 

P. L. Chambre' and S. 0. Zavoshy 

1. Introduction 
In this paper we consider the dissolution of a glass matrix containing 

sodium oxide. It is experimentally observed that sodium molecular diffusion 
and ion-exchange at the glass-water interface depletes the glass matrix of 
sodium ion. Further, the glass matrix is dissolved by water. This matrix 
dissolution is viewed as regression of dissolved glass-water interface. 
The fractional release of sodium from the glass has a form of 
c,t ' +c 2t, where c, and c 2 are two constants (H1.M3). A dissolution model 
that yields a fractional release which is initially parabolic (proportional 
to t ' ), and then becomes linear function of time (proportional to : ) , 
is developed in section 7.4. 

A mathematical dissolution model is developed based upon these two 
observed phenomena, i.e., internal molecular diffusion and glass surface 
regression. It is assumed that the loss of the diffusing ion from the 
interior of the glass due to molecular diffusion will lessen the integrity 
of the glass matrix. Furthermore, it is assumed that the glass-water 
interface has a constant velocity during the dissolution process. The 
regression speed is positive for the case of a regressive glass-water 
interface, zero for stationary interface, and negative for the progressive 
interface. The concentration inside the glass and fractional release of 
the diffusant from the glass are obtained for a sphere and slab of finite 
width. 

For numerical evaluation a ternary sodlum-boroslHcate glass is con­
sidered. Sodium is the diffusing nuclide. The concentration of sodium 



2. 

at the glass-water Interface is chosen to be zero. The radius and half 
width of the slab are equal to the radius of a spent fuel canister. A 

-13 -11 range of regression speeds from -9.7x10 to 3.9x10 cm/sec is chosen. 
The normalized concentration, surface mass flux, and fractional release 
of sodium are evaluated. 

2. Governing equations for the normalized concentration, surface mass 
flux, and fractional release. 

Case 1. Finite slab 
The following equation defines the normalized concentration of the 

diffusing specie in the slab of width 2a 

cJ!L (x,t) = N s + N° S s L(x,t) (7.6.1) 
where: 

csL ^ x , t' = n o r m a l'' z e c' concentration of dlffusinq specie in the slab 

c - (x,t) = normalized concentration of the stable diffusing specie in 
the slab with zero concentration on the boundary 
(see Eq. (7.4.30) in section 7.4 with \=o) 

N s =C-± 
c o 

N ° " < co * cs> / c o 
c. = surface concentration of the diffusing specie, g/cm 
c 0 = Initial bulk density of diffusing specie in the glass, g/cm 
x = position from center of slab, cm 
t = time, sec 

The fractional release is obtained by the following equation: 
J-&T 

f s L(t) » 1 - N s (1-vt/a) - N° f c"sL (y,t) d y (7.6.2) 
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where: 
f .(t) » fractional release of diffusing specie at time t from the finite slab 

p» va/D 
a - initial half width of finite slab, cm 
D = molecular diffusion coefficient of diffusing specie in the glass 

2 matrix, cm /sec 
x = Dt/a2 

v = regression speed, cm/sec 
An asymptotic form for f'sL(t) is obtained which is 

2 Q 2 1/2 1/2 f s L(t) * fe H° (D/a^) t + vt/2d (7.6.3) 

The surface mass flux is given by 

J SL " " D < V cs> " S T | a. v t
+ v cs (7.6.4) 

where j . is the surface mass loss of diffusing specie from the finite slab, 
g/cm sec. 

Case 2. Sphere. 
The normalized concentration of the diffusing specie in the sphere is given by 

cj!p (r,t) = N s + N° £ s p(r,t) (7.6.5) 
where: 

C S D ( r , t^ * n o | r m a l ' ' z e d concentration of the diffusing specie in the sphere 
c (r,t) = normalized concentration of stable diffusing specie in the sphere 

with zero concentration at the boundary 
(see Eq. (7.4.20) in section 7.4 with X=o) 

r * radial position from center of sphere, cm 
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From Eq. (7.6.5) we obtain the surface mass flux, I.e., 

J S P " -D < V cs> T F I D / v c s < 7 - 6 - 6 > 
I R-vt 

p 

where j is the surface mass loss of diffusing specie from sphere, g/cm sec 
The fractional release is obtained by ,1-6T 
f s p(t) = 1 - N s (1-vt/R) 3- 3 N° I c s p(y,t) y 2dy (7.6.7) 7 

where: 
f s p(t) = the fractional release of diffusing specie from sphere at time t 

6 = vR/D 
R = initial radius of sphere, cm 

An asymptotic form of f-n(t) for early period of dissolution is sp 

f s p(t) = |§- (D/RZ) + 3 (vt/2R) (1+NS) (7.6.8) 

and as the total dissolution time Is approached the following asymptotic 
relation is obtained 

f s p(t) = 1 - (1 - vt/R) 3 (7.6.9) 

This is due to time dependency of surface area of the sphere. 

3. Parameters of the problem 
The values of a and R were chosen to be 17.8 cm, equal to the radius 

of a spent fuel canister. The glass density is taken to be 2.8 g/cm . 
Table 7.6.1 gives the value of molecular diffusion coefficient of sodium in 
a ternary sodium-borosilicate glass at 100° and 200°C. Table 7.6.1 was 
obtained by applying the following equatJon (Fl) 

D(T) - D QExp(- Q/RT) (7.6.10) 
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where: 

D(T) • sodium diffusion coefficient at temperature T, cmZ/sec 
2 

D = frequency factor, cm /s 

Q * activation energy, Kcal/mole 

R = gas constant « 1.99xl0"3 Kcal/mole °K 

T = temperature in degrees Kelvin,°K 

Table 7.6.1. Na self-diffusion in ternary Na 20-B 20 3-Si0 2 glasses (Fl) 

Na20/B203 mole* D ( ){cm 2/s) g / QCKcal/mole)-7 D 1 0 0 (cm 2 /s) - / D 2 0 0 (cm 2 /s) - / 

31.3/6.25 5.01xl0"6 11.5 9.36x10"13 2.84X10"11 

30.9/9.10 6.31xl0"6 11.7 9.00xl0" 1 3 2.52x10"11 

28.6/14.3 3.98x10"5 13.1 8.61xl0" 1 3 3.59x10"11 

32.3/3.22 5.01xl0~4 13.4 7.24xl0" 1 2 3.29xl0" 1 0 

31.7/4.76 1.21xl0"4 13.0 3.00x10~12 1.22xl0" 1 0 

a/ For temperature range of 100° to 250°C. 

b/ At 100°C. 

c/ At 200°C. 

For numerical evaluation a ternary sodium-borosilicate glass at 100°C 

with the composition 28.6 Na20/14.3 B 20, mole % was considered. From 
-13 2 Table 7.6.1we obtain D=D,Qg = 8.61x10 cm /s . The surface concentration is 

taken to be zero. 

Values of B = -20, -10, -5 , 0, 5, 10, 50, and 800 were chosen. Value 

of B = 800 corresponds to v = 3.3xl0"6 cm/day. 

4. Numerical results and discussion 

The numerical results are obtained with the aid of four computer 
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programs (see Appendix A for the program details). The cut off time for 
calculations Is the leach time T. . This is defined as 

T L - | L/v | , v r" 0 (7.6.11) 

where: 
T, = leach time, sec 
L = initial characteristic length of the problem, cm 

(half width of the finite^ slab or sphere radius). 
The value of T. corresponds to total dissolution of the glass matrix if 
v > 0, and doubling of L if v < 0. The surface mass flux was obtained by 
numerical differentiation of Eqs. (7.6.4) and (7.6.6). 

Figs. 7.6.1 - 7.6.7 show tha normalized 
concentration vs. half width of the finite slab, for p = 0, 5, 10, 800, -5, 
-10, and -20 respectively. For v > 0, increase in v, (p) will result in 
steepening of the concentration profile at the glass-water interface. 
This effect can be best seen in Fig.7.6.4,where p » 800. Also, the absolute 
value of the concentration gradient at the interface is increased as v 
increases. For negative values of v, the normalized concentration profile 
becomes S-shaped, see Fig. 7.6.5. 

Fig.7.6.8 shows the variation of the normalized surface mass flux of 
the finite slab with time (T ' Dt/a) for different values of p, (v). At 
the early period of glass dissolution the normalized surface mass flux is 
proportional to t ' and is independent of the regression velocity. This 
indicates the diffusion-controlled mass loss. For p • 800, after approxi­
mately 100 years, a constant surface mass flux of 2.4x10 g sodium/cm day 
is obtained. 

Fig.7.6.9shows the variation of the fractional release with time for 
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different values of v. Fractional release has a behavior of the form 
c,t ' + Cot, where c, and c z are two constants, see Eq. (7.6.6) for 
values of c, and c*. 

Figs. 7.6.10 - 7.6.13 apply to the sphere and show the 
normalized concentration vs. radius of sphere for B = 0, 10, -5, .and -10 
respectively. Comparison with Figs. 7.6.1, 3, 5 and 6 indicates that sodium 
depletion is faster for the sphere than for the slab. The plot obtained 
for S = 800 is identical to Fig. 7.6.7, thus it is not reproduced.. 

Fig. 7.6.14 shows the variation of the normalized surface mass flux of 
the sphere with time (T) for different values of B, (v). As leach time 
is approached there is a drop in surface mass flux due to depletion of 
sodium Inside the sphere. 

Fractional release for the sphere case is obtained by way of numer­
ical integration of the normalized concentration. Fig. 7.6.15 shows the 
variation of fractional release with time (T) for different values of 
B, (v). 

5. Conclusion 
A glass dissolution model based upon two observed phenomena, i.e., 

internal molecular diffusion and glass surface regression,is developed. 
An asymptotic equation is obtained for fractional dissolution of diffusant 

1/2 from the glass. The asymptotic equation has a form of c-it + c,t where 
c, and c 2 are a function of molecular diffusion coefficient and regression 
speed. The experimental results of fractional dissolution of component 

1/2 T 1s of the form C,t ' + Cgt, where Cj and C 2 are two constants which 
depend on the diffusing component. Values of C 1 and C z are obtained 
from glass dissolution experiment. By fitting Eq. (7.6.3) or (7.6.8) to the 



8. 

experimentally observed f(t) we can obtain the Internal molecular 
diffusion coefficient of component '1' and the glass-water regression 
speed. This 1s presently under study. 
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Appendix A 
Derivation of the leach time for sphere, prolate ellipsoid, slender 
cylinder, and infinite cylinder. 

Conservation of mass 1s the governing equation which for a quasi-
steady state 1s 

£ (pV(t)) = - m(t) (Al) 

where: 
p = density (g/cm ) 

V(t) = volume at time t (cm 3) 
m(t) = mass loss rate at time t (g/sec) 

With the proper initial condition (V(0) * V Q, Initial volume), Eq. (Al) 
can be solved. The following geometries are considered and analyzed. 
1. The sphere radius is r, the concentration on the surface 1s constant 

and denoted by N,, the concentration in the liquid tends to zero as 
• r tends to Infinity. For the sphere we have 

V = | n r 3 (A2) 

m = 4 TI rD e N s , D e s e D f (A3) 

Initial condition r(0) = b' (initial radius) 
Substituting Eqs. (A2) and (A3) into Eq. (Al) and after some algebraic 
manipulation yields 

p r dr = - D e N s dt (A4) 
Initial condition r(0) = b^ 
Integrating with respect to time from t » 0 to t yields 

(b^) 2 - r 2 (t) * 2 D e N s t/p (A5) 



2: 

For total dissolution of the sphere we require that p ( T $ p h e r e ) = 0, 
hence 2 

P(b 0) 
Tsphere ' F B ^ < A 6> 

where: 
Tsphere = l e a c h t i m f o r s P h e r e ( s e c) 

2. The concentration on the surface of the prolate ellipsoid is constant 
(N s), and the concentration far away from the ellipsoid tends to zero. 
For the prolate ellipsoid case we have 

V = | it ab* « | u f 3 sinh2 a cosh a (A7) 

4 it D N f 
• 6 * (A8) 

log [coth (-̂ )] 

Initial condition a (0) = o s initial surface shape factor 
f (0) * f initial focal distance 

Substituting Eqs. (A7) and (A8) into Eq. (Al) yields 

&• (f 3 sinl/ a cosh a) = f _ i — ( A 9 ) 
H P log [coth (f)] 

Initial condition f (0) • f 

a (0) = a s 

Eq. (A9) cannot be solved since there are two unknowns and one 
equation. It is necessary to have another relation between f and a. 
To overcome this difficulty we assume that either f, o, or some function 
of f and a 1s constant during leaching. Hence, we analyze the following 
two cases. 



Case 1. a is constant and is equal to ag. 

The above assumption can also be stated as: the ratio of major axis 
to minor axis is constant throughout the leaching. Thus, Eq. (A9) is 
simplified to 

f oT = * De Ns [P S l n h 2 ( a s ) c o s h ("s5 l 09(»th ( T 3 (A10) 

Initial condition f(0) * f 
By integrating Eq. (A10) from t = 0 to t, we obtain 

fjj - ̂ (t) = 2D eN s [p s1nhZ(as)cosh(as)log(coth(-^-))] t (All) 

For total dissolution of the prolate ellipsoid we require that 

f(T ) = 0 and obtain 
b 2 

Tp - 2DTT c o s n K * l o3(coth(-^-)) (A12) 

where: 

T = leach time of prolate ellipsoid (sec) 

b = Init ial semi-minor axis (cm) 

Case 2. The minor axis is constant. 

From the above assumption implies that after sufficient time the 

prolate ellipsoid has shrunk to a sphere with radius equal to the semi-

minor axis. The volume and mass loss rate are rewritten as 

V = | u ab2 = J I T b̂  coth a (A13) 

_ - l 
m = 4 n 0 e Ns b 0 [slnh a log (coth(|))J (A14) 
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Initial condition o(0) » a ? 

Substituting Eqs. (A13) and (A14) Into Eq. (Al) yields 

P b* slnh a logfcoth^)) ̂  (coth a) - - 3D e N s (A15) 

Initial condition tx(0) = a. S 
After some simplifications, we obtain 

3 D e N s log [coth(?rJ] 
««t- c7nh» "'"a (A16) „ . 2 sinh a 

p b o 
Initial condition a{0) = a. 
Integrating the above equation between t = 0 to t yields 

6 D. N.t _ txc_. _ - 2 
e

2

 s = [log(coth(-j-j j |- [ log{coth(|) j ] (A17) 

From Eq. (A17), we obtain r!, the time that w i l l take the prolate 

el l ipsoid to reduce to a sphere with radius b , i . e . , a •* «° 

b 2 a 2 
T p = s V V D«>B{coth{^))] (A18) 

The leach time for total dissolution of the prolate ellipsoid is viewed 
as the sum of two time intervals. The first time interval corresponds 
to reduction of the prolate ellipsoid to a sphere. The second time 
interval is the leach time of the sphere. Thus, from equation (A18) 
and (A6) we have 

T p = Tp * Ts Phere < A 1 9> 



5. 

or o 
Pb« .. r. . ..A.n 2 

T_ * j-p-^O* [log(coth(f-)j] /3) (A20) p ..,.., 

Comparison of Eqs. (AT2) and (A20) shows that the leach 
two different cases differ only by a multiplier. From table of the hyper­
bolic functions, we have 

o s/2 1+ [log(coth(-^)j] /3 cosh(as)log(coth(-|-)) 
0.05 4 3.01 
0.07 3.36 2.68 
0.13 2.40 2.11 
Therefore, both cases yield similar results. This does not prove nor 
disprove the validity of the assumptions used in their derivations. 
The first case (a constant) 1s chosen as the criterion for establishing 
leach time. 
3. Slender cylinder (L»10r) 

For the slinder cylinder, we have 
V * TT A (A21) 

m = 2 n D e N s L/log(L/r) (A22) 

Initial condition r(0) * r d Initial radius 
L(0) * L 0 initial height 

Me assume that the ratio of height to radius is constant during leaching. 
This 1s written as 

r * r Q q(t) (A23) 

L * l0 C(t) (A24) 



I n i t i a l condition q(0) • 1 

Substituting Eqs. (A21), (A22), <A23), and (A24) Into Eq. (Al) and after 

some transformations, we obtain 

q(t> § | - g-S-S (A25) 
W 3 P C log (L 0 / r 0 ) 

I n i t i a l condition q(0) • 1 

Integrating with respect to time from t * 0 to t yields 

4 D. N. t 1 / 2 

q(t) = (1 ' S

 L ) (A26) 
3 r 2 p log(-°-) 

o 

From defini t ion of the leach time we require that q(T.,) * 0, and obtain 

3 r Q

2 P l o g ( ^ ) 
Tsc " 4 6 e N s ° <« 7 > 

4. In f in i te ly long cylinder 

The mass balance in a unit length results in 

^ (ir r 2 p) • - j = Dfi Ns ( P e ) 1 / Z , Pe * 4 (A28) 

In i t i a l condition r{0) - r Q 

Integrating with respect to time from t » 0 to t for r ( t ) yields 

r 3 / 2 ( t ) - r 0

3 / Z - - - J y Ns De t ( U / D f ) 1 / 2 / P (A29) 

From def ini t ion of the leach time r(T„) * 0, we obtain 

i r 3 / z p r 0

2 Ur 0 

T " = 60 e " s P e

V 2 ' P e ' T <*3<» 



Appendix B: The solubility Hm1t of silica In water 
as a function of temperature and pressure 
(Ref. Wl). 
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Fig. B.l Solubility of silica variation with 
temperature. Pressure corresponds to 
the Hquld-vapor equilibrium curve for 
H-0. The symbols correspond to 
experimental values. 
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F1g. B.2 Solubility of a quartz variation with pressure at 
different temperatures in degrees C. The symbols 
correspond to experimental results. 
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HI. Halther, J. V. and Helgson, H. C , 'Calculation of the 

Thermodynamic Properties of Aqueous Silica and Solubility 
of Quartz and Its Polymorphs at High Pressures and 
Temperatures', American 0. of Science, V277 (1977). 



Appendix C The Computer Program 
UCB HE 70, 71, 72, 73, 7* 

The following computer programs are written in Fortran IV and have been 
executed on CDC-7600. 
UCBNE-70 Calculates the surface mass flux and leach time due to diffusion 
and diffusion-convection for a given glass cylinder. 
Description of Data Cards: 
1st Card: Free Format 

Icont 0, stop the program execution; otherwise continue. 
Ipara 0, same parameters as previous run; otherwise read 

new Input parameters. 
Ivel 0, same groundwater pore velocity as previous run; 

otherwise read the new value. 
Igeo 0, sane geometry as previous run; otherwise read the new 

values. 
2nd Card: Free Format. Consists of 4 pieces of Information. 

1st surface concentration g/cm 
2nd porosity 

2 3rd dlffuslvlty 1n groundwater cm /sec 
4th glass density 

3rd Card: Free Format 
1st groundwater pore velocity m/yr 

4th Card: Free Format 
1 glass cylinder radius cm 
2 glass cylinder height cm 
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UCBNE-71 Calculates the normalized concentration of a species in a 
slab with regressive surface. 

UCBNE-72 Calculates the fractional release of a species from a slab 
with regressive surface. 

UCBNE-73 Calculates the normalized concentration and surface mass flux 
of species from sphere with regressive surface. 

UCBNE-74 Calculates the fractional release of a diffusing species from 
a sphere with regressive surface. 
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C * UCINE-70 • 
C AUTHOR SHAH J . ZAVOSHt 
C OATE OCT. 1981 
C 
C THIS PRCGRAM CALCULATES THE SURFACE MASS FLUX FliCH I GLAS: CYLINDER. 
C THE INPUT PARAMETERS ARE 
C CS= SURFACE COKCENTRATICN (G/CK3) 
C EPS = POROSITY 
C OH = C1FFUSIVITY IN HATEF ICHZ/SEC) 
C RO 3 DENSITY (S/CM3) 
C UH GROUNDWATER VELOCITY (M/YRI 
C Ri GLASS CYLINDER RADIUS (CHI 
C HTi GLASS CYLINDER HEIGHT (CH) 

PROGRAM NONNY (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=CUTPUT> 
CINENS3CN Y ( 1 0 > , X ( 1 0 > , F ( 10 ) ,E (10 ) 

1000 CONTINUE 
READ(5,* ) IC0NT, IPARA,IVEL, IGE0 
IFCCOKT .cQ. 0) 50 TO 6(10 0 
IFIIPARA .EQ. 0 ) GO TO Tit 
READC5,'ICS.EPS.OW.RO 

'00 IfCVfc'L .LQ. 01 GO TO «0 0 
REAO<5,»IU 

500 IFI IGEO .EQ. 0) GO TO 300 
R£AD<5,»> R,HT 

900 CONTINUE 
NNN=0 
Vl = 3 . *K*R*HT/ i t . 
0E=CHIEFS 
OH=l.E-«i 
S1=R»<R»HT) 
X ( l l = H T / 2 . 
Y ( l l = S Q R T [ V l / X U n 

1 Y«1I = Y U ) - D H 
DO 13 1 = 1 , 3 
Xt I> = V l / Y U ) / Y « I ) 
E ( I ) = S C K T ( X ( I > » X ( I I - Y ( I > » V ( I ) t / X « I I 
F t l l s S l - V(X>*(Y(X> » X ( I ) » A S I M E t I ) ) / E ( I I 1 

13 Y ( I U ) = Y ( I ) *OH 
NNN=NNN»1 
F S = I F ( 3 » - F ( l ) l / a . / S H 
ACC = F(21/FP 
ACD = f (21 
IF(ABS(ACO).LE.C.00i> GO ( 0 101 
Y<i ) = Y<2>-ACC 

IFtNNN.GE.5Q> GO TS 500 
GO TO 1 

1G1 CONTINUE 
A = X<Z> 
e=r (2> 
IF in .GE.A* Ga TO B.m 
C=SUKT «**A-tf«B» 
ECC=C/A 
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7o/2 

SHAPE- ALOGC < A+B) / C) 
PI-ACOS(-l.) 

S-2.*PI*I»*(IH-(A*ASIN(ECC)/EnC)) 
CTS—ALOG( TANH( SHAPE/2 . ) ) 

AREA-2.*PI*R*(R+HT)/10000. 
VOLIJM-PI*R*R*HT/1000000. 
WRITF(6,2) 

2 FORMATC1H1,* DIMENSIONS OF GLASS CYLINDER : *) 

• WRITE(6,5)R,HT/100.,AREA,VOLIJM 
5 FORMATC//,* RADIUS CCM)»*,F10.2 ,6X,*HEI(?HT CM)-*, F10.2 ,6X 

1,*S!JRFACE AREA CM2)-*, F10.2 ,6X,*V0LIIME CM3)-*,F10.2) 
HRITE(6,15)DU,EPS,nE 

15 FORMATC/,*DIFFHSIVITY IN WATER (CM2/SEO)-*,lPE15.7,6X,*POROSITY-*, 
11PE15.7,6X,*EFFECTIVE DIFFUSIVITY CCM2/SE0)-*,1PE15.7) 
HRITEC6,6)CR 

1 FORMATC//,6X,* CS CG/CH3) -*,1PE15.7) 

WRITEC6.7) 

7 FORMATC/,* DIMENSION OF APPROX. PROLATE ELLIPSOID- *) 
WRITEC6,10)A/100.,B,C/100. 

10 FORMATC//,* A CM)«*,lPE15.7,fiX,*B (CM)-*,lPE15.7,fiX,*C (M)-*,1PE1 
15.7) 
WRITEC6,12)ECC,SHAPE,S/1O0O0. 

12 FORMATC* EflO/A -*,F12.fi,6X,*SHRFACE SHAPE FAOTOR-*,F12.fi,6X,*S CM 

12)-*,1PE15.7) 
DY-rifi40n. 

ZTOTAL-C 4.*PI*DE*CS*C)/CTS 
ZTOTAL-DY*7TOTAL 
7XENGT-7,TOTAL/2 . /A 
ZSTIRF-ZTOTAL/S 

PELT-C RO*B*R*COSHC SHAPE)*OTS) /C 2 ,*DE*OS) 
PELT-PELT/DY/365.25 
WRITRC6,30)7,TOTAL,PELT 

30 FORMATC//,* P .E . MASS LOSS RATE CGR/D)-*,1PE15.7,9X,*P.E.LEACH T 

HUE CYR)-*,1PE15.7) 

WRITF.(6,32) 7,LENGT,ZSIJRF 

32 FORMATC* P.E. MASS LOSS PER UNIT LENGTH CGR/DAY)-*,1PE15.7,6X, 



7»/3 

1*S11RFACE MASS FLUX (GR/CM2 DAY)-*,1FE15.7) 
ZSCYL«(2.*PI*DE*CS*HT)/(ALOr,(HT/R)) 
ZSCYL-. SCYL*DY 

SCLT-(3.*R*R*RO*ALOr,(HT/R))/(4.*DE*CS) 
SCLT-SCLT/DY/365 .25 
WRITE(6,35)HT/R,ZSCYL,SCLT 

35 FORMAT(//,* S.CYL.PJttO-*,F10.2,7X,*S.CYL. MASS LOSS RATE <fiR/D)« 
1*,F14.7,7X,*S.CYL. LEACH TIME (YR)-*,1PE10.2) 
WRITE(fi,75) 

75 FORMAT(//,* INFINITE CYLINDER *) 
500 CONTINUE 

V-(!I*100. )/365.25/A6400. 
PE-V*R/DW 
IF(PE.LT.4.) CO TO 5000 
WRITE(6,40) V*DY*3.6525,PE,DW 

40 FORMAT(///,* I! (M/YR)-*,1PE10.3,6X,* PECLET NO.-*,lPE10.3,fiX,*DW 
1(CM2/REC)-*,1PE10.3) 
7.IlL-4.5135*nF.*CS*RORT(PF.) 
ZTTL-ZTIL*DY 

ZUS-ZTIL/(2.*PI*R) 

RI-4.*PW/V 

Z L T - 0 . 9 2 8 1 * R O * ( R * S O R T ( R ) - R I * S O R T ( R I ) ) / ( O S * D E * S O R T W D W ) ) 

ZLT-ZL1/DY/365.25 
WRITE(fi,50)R,RI,ZUL 

50 FORMAT(//,* INITIAL RADIUS (CM)-*,1PE10.3,6X,*FINAL RADIUS (CM)-* 
1,1PK10.3,6X,*MASS LOSS PER IINIT LEMRTH (RR/CM DAY)-*,1PE15.7) 
WRITE(fi,55) Z1TS.ZLT 

55 FORMAT(* SURFACE MASS FLIK (GR/CMS DAY)-*,lPE15.7,fiX,*LEACH TIME 
1(YR)-*,1PE15.7) 

5000 CONTINUE 
CO TO 1000 

1000 CONTINUE 
STOP 
END 



• .y . 

C » » » . » » . » . » . 0CENE-71 • » * » • » • • • « » » » • • 
C AUTHOR ' SHAH J . ZAVOSHY 
C OATE JUL. 1981 
C THIS PRCCRAH CALCULATES THE NCR»ALI2F.C COKCcNTRATION AND SURFACE 
C MASS FLUX OF ft DIFFUSING SPECIES FROM A SLAB WITH I M T I A L HALF 
C WIDTH OF 2A. THE INPUT PARAMETERS ARE 
C A= I N I T I A L HALF WIDTH (CM! 
C DE DIFFUSION.COEFFICIENT CCMZ/SEC) 
C BETHA=V*A('D=DIKENSICNLESS GLASi-WATfcR REGRESSION SPEtO 

C 

PROGRAM NOME HhPlJT,OUTPUT,TAH-E5 = INPUT,TAPE6=CliTPl!TI 
QIMENSJGN X<22>»CC20« 

DIMENSION DD( lC I ,BETHV( iO) 
H = l . E - 6 
KO=.672 
ROS=0. 
CEFF=RO-KDS 

A = l 7 . 8 
D D ( l ) = e . £ i » ( i O . * * ( - I 3 ) l 
DDt2} = 3 . S 3 M 1 0 . * * ( - l l l ) 

BEThV«11 = 0 . 
BETHV(2) = 5 . 
3£THV(3 )=10 . 
3ETHVU1 = 5 0 . 
8ETKV«J = S0fl. 
S£ThV(6l = l 6 0 0 . 
BEThtf 17 l = - 5 . 

BETHV<8).=-1Q. 
B£THV<9)='-20. 
N3I = 9 
N0I = 2 

03 6000 ND=i tNDI 
D=OD(ND> 
0 0 500U K B = l , N B l 
3ETH=BETt-V (N3J 

T = . l 
T = T»a6<.Ca.»365.2i> 

R01 - (R0-SJS)»n»86l .JC. 
V=BETH»C<A 

K R i T E I 6 , 2 I A , V , D , B E T H 
FORMAT ( I K i "HALF HI CTH <CK) = * , F l i . 6 , 6X, *V ICM/SF.O =" , i « E i 5 . 7 , 6 X , 

X»D CCMXCC/SEC1=», l '>E l5 .7 t 6X, *6eTHA=<VXA/ ! : i=* , lPEi5 .7» 
W R I T E ( 6 . I 3 ) R 0 
FORMAT ( / , * DENSITY (GR/CH3 >=* i 1PE15.7) 

I F ( V . E Q . O . ) GO TC T 



TLV*«/V/a6<<00./3&5.£5 
WRITE <6,3>TLY 
FORHAT(/,»LEACH TIKEIYRI** ,1PE15.7> 
CONTINUE 

BEGINNING OF TIKE DO LOOP . fULTIPLIER=1G 

DO 100 K=fl,25 
I F I V . E Q . S . I GO TO 15 
TF(T.RE.ASS(A/V>) CO TO SCO 

TK = D * T / A / A 

SQ=2.<SQRT{TAJ 
FX=l. -3tTH»TA 

DX=PX/10. 

WRITE <6, 10 JPX»A,DX*A,7/861*00./365.25 
FORMAT ( / / . *W(T)(CH) = • , Ft d.<t, GX.*OX <CN )=» ,F10 . 5. 6X, M INE CYR > = »,1PE 

l i b . 6 ) 

BEGINNING OF NODAL LOOP. 

DO 50 1 = 1 , 2 3 
I F C I . G E . l l > 50 TO 150 

X ( I I = ( I - l ) » O X 
GO TC 200 
X ( I ) = X « I - i > » . l * D X 
I F ( I . G E . 2 1 ) GO TO l l i l 
GO TO 200 

M=I-Z0 
XI I )=PX-N»H/A 

C ( l l = ( E R F ( [ l . « X ( I ) l / S Q I f E R F ( l l . - X < i n / S 3 l ) / 2 . 

zn.-xin 
Y=1.*XCI» 

BEGINNING OF SUMMATION CF INFINITE SERIES. MAX. OF CO TERMS. 
00 20 Nr 1,1,0 

AR=N*PX 
S1=F.XPC-M»BETH*I»R-X(I I )J»(ERF((2.«AP.*Z)/SQ)-ERFU2,»AR-Y>/£G») 

S l=S l / 2« 
S2=EXF(-S»BETH"(«R»X<I)> l» <CRF M2.»AR*Y> /SO) -ERF U 2 . »A<W)/SO> 1/2 . 

S = ( S 1 * S 2 ) * ( ( - 1 ) * » N ) 

C ( N * l ) = C ( N ) t S 
I F ( C I N » l l . E Q . O . ) SC TO 35 

EP3=S/CCh*l) 
IF(ABS(EFSI.LE.ABS(CCN*1)I /100I) .> GOTO 35 

CONTINUE 
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35 I F C I . G E . H H GO TO 77 
C<(m)=CROS+CEFF»ABSICMMl>>>/RO 
C < l > = C ( i ) * C E F F / R 0 

M R I T E < 6 . 3 6 ) X i : ) * A , A 9 S ( C ( N * i > ) ,N,C (N* l> < ( U 
36 FORMAT ( / . ' P O S I T I O N <CH>=»,FiO.<»,i2X.*CONCENTRAT10H=»,r 13 . i » , 6X , 

l » N = » , I 2 , e X , * S U M t N ) = « , F 1 2 . 6 ) 
GO TO 50 

77 DERIV=-C<N+1)/H/M 
WRITE <6,J.5>M»H,CERIV,-ROl»D£RIV,N 

U5 FORHATl/ . »HICM » = »,1?E15 .7 , 6 X , •OERI VAT I V E = * , 1PE1S . 7 , 6 X , »KASS F l lX 
KGR/CH2 C « Y ) = » , J F E 1 5 . 7 , 6 X , I 2 ) 

TOTJ=-RCl*DERIV tVROS*8&<iOO. 
HKITE<6,5=) TOTJ 

55 F O R H A K / / . * TOTAL KBSS LOSS RATE (C/CM2 DAY >=• .1PE15 .7 ) 
50 CONTIM.E 
100 T = T * i C . 
500 COHTIKUE 
5000 SONTINUc 
60C0 CONTINUE 

SjnP 



TLY*A/V/S6<<D0./36S.£5 
HRITE(6.3)TLY 
FORMAT I / , » LEACH TINE <YR>x»,lPE15.7> 
CONTINUE 

BEGINNING OF TIKE DO LOOP . fULTIPLIEP. = 10 

00 100 K=0,25 
I F C V . E Q . I . ) GO TO 15 
TFIT.f iE.ABSIA/U)) CO TO SO 0 

TusOtr /A/fk 

SQ=2.*S0RT(TA> 
PX=1.-3ETH*TA 

DX=PX/10. 

WRITE 16,10 )PX*A ,DX«A,T/86 i fOO. /365 .25 
FORMAT < / / , *H(T>(CHI=* ,F ld . I»,6X.*0X ICM >=» , F 1 0 . 5 , 6X,»TIME (YR ) = » , I P E 

11"..6> 

BEGINNING OF NODAL LOOP. 

DO 50 1 = 1 , 2 3 
: F < I . G E . U I GO TO isa 

X t I I = < I - l ! " D X 
GO TC 200 
X ( I ) = X ( I - 1 > * . 1 * D X 
I F I I . G E . 2 1 ) GO TO 101 
GO TO ZOO 

M=I-20 
X(Z»=PX-N»H/A 

C C l ) = ( E R F ( ( l . « X ( I > > / S Q t » E R F ( l l . - X C ) ) / S a ) > / 2 . 
Z=1.-X<I> 
Y = 1 . « X U I 

BEGINNING OF SUMMATION CF INFINITE SERIES. MAX. OF <>0 TERMS. 
0 0 20 N=1,I|0 

AR=N»PX 
Sl=EXP«-M»BETH*(»R-Xt I I )>*«ERFH2."»R«Z) /SQ) -ERF<(2 .»AR.Y) /SGn 

S l = S l / 2 . 
S2=EXF(-K*BETH*IAR»X<I in*<CRFU2.*AR»Y) /S0) -ERF I (2 . *AH-Z>/SIJ) J/2 . 

S s l S l * S 2 > * l l - l l » » N > 

C ( N « l ) = C ( N ) t S 
I F ( C I N » l > . £ Q . O . ) SC TO 35 

EP3=S/CU*1) 
I F ( A B S ( E F S t . L E . A B S ( C I N * l > ) / 1 0 0 0 . > GO TO 35 

CONTINUE 



V 

35 I F U . G E . 2 l ) CO TO 77 
C{NU>=IROS*CEFF»ABSCCUU)))/RO 
CU)=cm*CEFF/RO 

WRITE <6, 36) X<->*1.4SSCCIN»1>) ,N,C I N ( l l - I ( l l 
3 6 FORMAT </. "POSITION <CH)=» fFiO. l»,i2X,*CONCENTRAT10N=»,ri5.<t. 6X. 

l»N=», i2 ,eX,»SUM(h)-* .F12 .6» 
GO TO 50 

77 DERIV=-CCN+11/H/M 
WRITE 16,<f5)M*H,DERIV.-RO l'DERIV ,N 

"•5 FORMAT(/t •HCCM> = ».lPE15.7,6Xt»3ERIVATI\/E=»,iPEi5.7,6V,»«ASS FLLX 
KGR/CM2 C»Y)=», iFE15.7,6X,I2> 

70TJ=-ECl*DERIV •V»ROS*86 doa> 
HRITE(6,5f) TOTJ 

55 FORMAT!//.» TOTAL N»SS LOSS RATE (C/CM2 OAY l=* .1PE15.7) 
50 CONTIM.E 
100 T=T*iC . 
500 CONTINUE 
5000 CONTINUE 
6000 CONTINUE 

STnP 
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C *** nCBNE-72 *** 
C AUTHOR SHAW J. ZAVOSHY 
C DATE AUG. 1981 
C THIS PROGRAM CALCULATES THE FRACTIONAL RELEASE. OF A DIFFUSING 
C RADIO-NUCLIDE FROM A SLAB WITH INITIAL WIDTH Or 2A. THE INPUT 
C PARAMETERS ARE 
C A = INITIAL HALF WIDTH (CM) 
C DG= DECAY CONSTANT (1/TR) 
C D= DIFFUSION COEFFICIENT (CM2/SEC) 
C BiV*A/D C THE DIMENSIONLESS GLASS -WATER REGRESSION SPEED 
C. **************************************************************** 
C THE FRACTIONAL RELEASE IS CALCULATED BY DIRECT EVALUATION 
C OF THE EOUATION FOR B .LE. 90, AND ASTMPTOTIC AND UPPER AND LOWER BOUND 
C OF THE EOUATION FOR R .LE. 90, AND ASTMPTOTIC AND TIPPER 
C BOUND LOWFR BOUND ARE USED FOR B .GT. 90. 
C, ****************************************************************** 
C 

DIMENSION Sn(50),SL(50) 
DIMENSION S(50),AR(5),AF.(5),ASFC(5) 
DIMENSION DD(10),BV(10) 
RO-.672 
ROS-0. 
CF.PF-RO-ROS 
non. 
DCYY-nC*86400.*365.25 
A-I7.fi 
DD(1)-R.61*(10.**(-13)) 
DD(2)-3.59*(10.**(-11» 
BV(I)».OOOOOI 
RV(2)-5. 
BV(3)-10. 
RW(4)-50. 
BV(5)-BO0. 
BV(6)-1600. 
BV(7)—5. 
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TIN-.001 

N0I-2 

NBI-7 

no 6000 m w . N n i 

D-DD(Nn) 

110 5000 NB-l.NBI 

B-JW(NR) 
V - P * B / A 

W R I T E ( 6 , 2 H , V , H , B 

2 F0RMAT(1H1,*HAT,F W M T H ( C M ) - * , F 1 2 . 6 , F > X , * V ( C M / S E C ) - * , 1 P E 1 5 . 7 , 6 X , 

1*0 ( C M X 0 K / S P X ) » « , 1 P E 1 5 . 7 , 6 X , * » R T H A - * , 1 P E 1 5 . 7 ) 

WRITE(6,,13) RO 

13 F0RMAT(//,* DENSITY (G/CM3) -*,1PR15.7) 

IF(I)C.E0.0.) RO TO 17 

WRITE(6 ,B)I)CYY, ,693/DCYY 

« F0RMAT(/',2X,*nECAY CONSTANTU/YR) -*,1PE15.7,6X,*HALF LIFK(YR)-*, 
11PE10.4) 

17 CONTINUE 

IF(V.EO.O.) GO TO 7 
TLY-A/V/R6400./365.25 

WRITE(6,3)TLY 
3 FORMAT(/,*LEACH TIME(YR)-*,1PE15.7) 
7 T-TIN 

T-T*B6400.*365.25 
IF(R.<5E.90.) 00 TO 234 

VRITE(fi,789) 
7R9 F0RMAT(////,* DIRECT CALCULATION — *) 
C 

C BEGINNING OF TIME W) LOOP.MULTIPLIER IS 10. 
n 

no 30 K-0,20 
IF(V.EO.O.) GO TO 21 
IF(ABR(T).r.F,.ARR(A/V)) Ct> TO 5000 

21 TA-P*T/A/A 



TETH-1.-TA*B 
0-2.*SORT(TA) 
n-(l.+TETH)/C 
F2-(1.-TETH)/R 

TI-(1.+TETH)*ERF(F1)-(1.-TETH)*ERF(F2) 
S(l)-TI+C*(F.n>(-Fl*Fl)-F.XP(-F2*F2))/l. 772*5* 
0-l.-S(l)/2. 
S(l)-0 

BEGINNING OF INFINITE SUM 1)0 LOOP. MAX. OF *0 TERMS. 

DO 10 N-1,40 
IF(N.E0.40) GO TO 30 
B1-KXP(-N*B*TETH*(N-1)) 
E2-EXP(-N*B*TETH*(N+1)) 
E-2.*N-1. 
F-2.*N+1. 
A1-F.*TETH 
A2"F*TETR 

Pl-F.l*(ERF((Al+l.)/C)-ERF((Al-l.)/0)) 
P2-E2*(ERF((A2-1.)/C)-ERF((A2+1.)/C» 
P3-EXP(N*B*(N-1))*(ERF((E-TETH)/C)-ERF((E+TFTH)/C)) 
P4-EXP(N*B*(N+l))*(ERF((F+TETH)/0)-F,FJ((F-TETH)/C)) 
PS-((-l.)**(N+l))*(Pl+P2+P3+P*)/(2.*N*B) 
S(NH)-PR+S(N) 
IF(S(N+1).EO.O.) GO TO 100 
F.PS-(S(N+1)-S(N))/S(N+1) 
IF(ABS(EPS).LE.ABS(R(N+l))/10nO.) GO TO 100 
CONTINUE 

S(N+1)-1.+(S(N+1)-1.)*CEFF/R0 -R0S*(1.-V*T/A)/R0 
HRITE(6,105)T/fl640O./365.25,S(N+l)tS(Nfl)*KXP(-nC*T),N 
FORMATv'/,* TIME(YR)-*,lPEin.*,6X,*FRA0TINAl, RELEASE"*,1PE15.7,6X 
1,*FRAC. RBL. WITH r»WAY-*,lPE15.7,*X,*N-*,I2) 



T-T*10. 

(50 TO 5000 
CONTINUE 

WRITE(6,456) 

FORMAT(////,* ASYMPTOTIC METHOD USED *) 

BEGINNING OF TIME DO LOOP .MULTIPLIER IS 10 . 

]W 31 K-0,20 

IF(V.EO.O.) GO TO 22 

IF(ABS(T).GE.ABS(A/V)) GO TO 235 

TA-D*T/A/A 

TETH«1.-TA*B 

O2.*S0RT(TA) 

F1-(1.+TETH)/C 

F2»(1.-TETH)/C 

TI»(1.+TETH)*ERF(F1)-(1.-TETH)*ERF(F2) 

S(1)-TI+C*(EXP(-F1*F1)-EXP(-F2*F2))/1.772454 
0 - l . - S ( l ) / 2 . 

SCD-0 

BEGINNING OF INFINITE SUM 1)0 LOOP. MAX. OF 40 TERMS. 

1)0 11 N-1,40 
IF(N.EO.40) GO TO 31 
fll»F.XP(-N*B*TETH*(N-l)) 
E2-EXP(-N*B*TETH*(N+1)) 
E-2 .*N-1 . 
F-2.*N+1. 
A1-E*TETH 
A2-F*TETH 
AR(1)-(E+TETH)/C 
AR(2)-(K-TF.TH)/C 
AR(3)-(F-TETH)/C 
AR(*)-(F+TETH)/C 
AK(1)-N*B*(N-1)-AR(1)*AR(1) 



5 

AK(2)-N*B*(IM)-AR(2)*AR(2) 
AF.(3)-N*B*(N+1)-AR(3)*AR(3) 
AE(4)-N*B*(N+1)-AR(4)*AR(4) 

DO 400 J«l,4 
ARYM-1. 
1)0 300 NN-1,4 
AFT-2.*J+1. 
AFB-J+1. 
FT-OAMFN(AFT,IERR) 
FB-OAMFN(AFR,IERR) 
SS-FT/(FB*( (4 .*AR( J)*AR( J) )**NN) ) 

300 ASY>WlSmK-l)**NN*SS 
400 ARFC(J)-EXP(AE(J))*ASYM/AR(.T)/SORT(3.1415) 

P1-E1*(ERF((A1+1.)/C)-ERF(<A1-1.)/C)) 
P2-E2*(ERF((A2-1.)/C)-ERF((A2+1.)/C)) 
IF(N.0E.2? 00 TO 250 
P3-ERFCAR(2))-ERF(AR(1)) 
P4-ASFC(3)-ASF0(4) 
CO TO 75 

250 P3-ASFC(1)-ASFC(2) 
P4-ASFR(3)-ASFC{4) 

75 PS-C(-1.)**(N+1))*(P1+P2+P3+P4)/(2.*N*B) 
S(N+1)-PS+S(N) 
IF<S(Nfl).EO.O.) 00 TO 101 
F.PS-(S(N+1)-S(N))/S(N+1) 
IF(AB8(EPS).I,E.ABS(S(N+1))/1000.) 00 TO 101 

11 CONTINUE 
101 S(N4-l)-l.+(S<Nfl)-l.)*CEFF/R0 -R0S*(1 .-V*T/A)/RO 

TOITE(6,106)T/fi6400./365.25,SO«-l),S(lH-l)*F,XP(-nC*T),N 
10S FORHATC/,* TIHE{YR)»*,1PE10.4,6XI*FRA0TINAL RELEASE-*, 1PE15.7,6X 

l,*FRAfi. REL. WITH l)KCAY-*,l?E15.7,*X,*H«*,I2) 
31 T»T*10. 
235 CONTINUE 
C 

imiTE(6,576) 



FO»UT(/ ,* BOUND METHOD IS USED. U.K.* DPFER BOnifl) FRACTIONAL REL 
1EA8E. IWLTAdll.B. - L.B. * ) 
T-TIN*B«400.*365.25 
DO 32 K-0,20 
IF(V.EO.O.) GO TO 23 
IF(AB8(T).GE.AB8(A/V)) GO TO 5000 
TA-D*T/A/A 
TETH-1.-TA*B 
0-2.*S0RT(TA) 
F1-(1.+TETH)/C 
F2-(1.-TETH)/C 

TI-(1.+TETH)*ERF(F1)-(1.-TETH)*ERF(F2) 
S(1)"TI+C*(EXP(-F1*F1)-EXP(-F2*F2))/1.772454 
0 - l . - S ( l ) / 2 . 
RLCD-0 
RIKD-O 

BEGINNING OF INFINITE SIM DO LOOP. MAX. OF 40 TERMS. 

DO 12 N-1,40 
E1-KXP(-N*B*TETH*(N-1)) 
IF(N.R0.40) GO TO 32 
E2-EXP(-N*B*TETH*(NH>) 
K-2.*N-1. 
F»2.*Hfl. 
A1-R*TETH 
A2-F*TETR 
ARO)«(E+TETH)/C 
AR(2)-(E-TETH)/C 
AR<3)«(F-TETH)/C 
AR(4)»(F+TETH)/G 
AE(D"N*B*(N-1)-AR(1)*AR(1) 
AK(2)-N*B*{N-n-AR(2)*AR(2) 
AE(3)-N*B*{N+1)-AR(3)*AR(3) 
AE(4)-N*B*(Ntl)-AR(4)*AR(4) 
CL31-AR(1)+SORT(ARC 1)*AR(l)+2.) 
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CL32-AR(2)+SORT(AR(2)*AR(2)+1.2732) 

CI!31-AR(1)+S0RT(AR(1)*AR<1)+1.2732) 
C1132«AR(2)+SpRT(AR(2)*AR(2)+2.) 

Cl41-AR(3)+KORT(AR(3)*AR(3)+2.) 
OL42-AR(4)+SQRT(AR(4)*AR(4)+1.2732) 

CI741-AR(3)+SORT(AR(3)*AR(3)+1.2732) 
Cl!42-AR(4)+SORT(AR(4)*AR(4)+2.) 

BLP3-S0RTO.2732)*(EXP(AE(l))/CL31-EXP(AE(2))/CL32) 
BIiP3-SqRT(1.2732)*(EXP(AE(l))/ClI31-EXP(AE(2))/Cl]32) 
BLP4-SORT(1.2732)*(EXP(AE(3))/CL41-EXP(AE(4))/CL42) 

BIIPA-S0RT(1.2732)*(EXP(AE(3))/C1141-EXP(A«(4))/Cn42) 
P1-E1*(ERF( ( Al+1. )/C)-ERF( ( A l - 1 . ) /C)) 

P2-F.2*(ERF((A2-1.)/C)-ERF((A2+1.>/C>) 
IF(N.GE.2) RO TO 50 
BLP3-ERF(AR(2)) -ERF(AR(1)) 

BIIP3-BLP3 
50 PSU-(-l)**(N+l)*(Pl+P2+BUP3+Bl!P4) 

PSL»(-1)**(N+1)*(P1+P2+BLP3+BLP4) 
PSL«PSL/(2.*N*B) 

PSU«PSU/(2.*N*B) 

S!I(I»H)»SIK»)+PSn 
RL(W-1)-SL(N)+PSL 

EPSn»<Sl!(N+»-SU(N))/SIT(N+l) 

EPSI.-(SL<N+1)-SL(N))/SL(N+1) 
IF(ABS(EPSU).LE.SU(N+1)/1000.) GO TO 410 
00 TO 12 

410 IF<ARR(BPSL).LF..SL(m-l)/1000.) RO TO 550 
12 CONTINUE 
550 S11(N+1)»1.+(SU()H-1)-1.)*CEFF/R0 -ROS*(1.-V*T/A)/RO 

SL(N+1)»1.+(SL(N+0-1.)*OEFF/RO -R0S*(1.-V*T/A)/R0 
WRITE(6,107)T/«6400./365.25,Sn<N+l),ABS(SII(N+l)-SL(N+l)),SI!(N+l)* 
lEXP(-nC*T),N 

107 FORMAT(/,* TIHE(YR)-*,lPE10.4,4X,*U.R.-*,lPE15.7,6X,*ni!I,TA-*,lPEl 
15.7,6X,*H.B. WITH DECAY-*,1PE15.7,4X,*N-*,12) 

32 T-T*10. 
5000 CONTINUE 



1000 OONTIHim 
STOP 
END 
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C THIS PR03RAMM CALCJ.ATiS CONCiNTRATIN AND 1ASS FLUX. 
3 CASE S F ^ * E . 
- UCBNE-73 
2 Author Shaw J. Zavoshy 
I Date August 1981 

DIMENSION C ( 5 0 ) , X ( J D 1 t E R S ( 1 0 > , E ^ I C ; ( 1 3 ) , X X » 1 0 ) 
OIHENSIOK FRACI3CI .QAV130I .SOI' . (5) 

DIMENSION TIMEI30) 
•IHENSICN DD(10>i9iTHIMi0> 
A = l * . f 

RO=.572 
R33 = 0. 
CE rF=R0-R3S 
o o < i ) = e . 6 i " ( i o . * » ( - u ) i 
U D ( 2 ) » J . 5 3 * < 1 0 . * * ( - l l t l 

NJI = 1 
N9t=9 

3 iTHV( l> = 0 . 
3£THV(2)=5. 
3£TH\/(3 1 = 10 . 
Bi r M ( u I = 5 0 . 
s; rm/(51 = 900. 
3- THlf (61=1600. 
B£THV(7) = - 5 . 

B£.rHVl8> = - 1 0 . 
3 i r H V ( 9 ) = - 2 0 . 
H = . 0 0001 

33 6000 ND = l , N O I 
0=3D(ND) 
03 5G0O N3=1,N0I 
BErH=6ETHMNB> 
P01 = (RO-ROSI*D*86I.OO. 

> / = e E T h * C ' 4 
T = . l 
T=r *86 -00 .»365 .25 

H?tTE (6 .2 ) A ,V ,D .BEH 
F C * M A T I l H t * RAOIJ3 ( I M ) - ' . F 1 2 . 6 o X , •V(0MCSEC>=*, lOcl5 .7 ,6X, 

1*0 <CHXCK/'SEC) = * . l » i l 5 . 7,6Xt*3.THA= (VX4/D) =*.1PC15.7> 
WRITEC5tlJ)RC 

13 FORMAT!/.• DbNSITY ( "iS/CMS I =», 1P-15. 71 
j r i t f . E Q . J . ) GO TO 7 

T L Y = A / V / 5 i * 0 0 . / 3 6 5 . : 5 
m A N 5 = 0/V/V 
WiUTE<6.3»TLY,TTRANS/8&l»00./365.25 

J FORMAT(/.'LEACH TIM£<Y*> = (A/Vl = * , ! » » 1 5 . 7,»<, 'TRANSITION ' IMEtYR) = 
i ( 0 ' V 2 > : M P F 1 5 . 7 ) 

' CONTINUE 

5 3EGINNIN3 OF TIM- 30 L O P . 11H.T I a L I E R=13 

IJ<=25 
3} 100 K = ) , I J < 

s : i R ( i i = o . 
i r ( v . i Q . C ) GO TO 
I F ( T . 0 E . A 3 S ( A / V ) I 

1 7 
SO TO SOO 

GO TO 3 0 1 



(I 

17 IJ**9 
311 CONTINUE 

rA=0»T/*/A 
iQx2.*S0*T<TA> 
»X=1.-B-TH»TA 
IFIPX.LE. .001/A ) CO TO 500 
DX=PX/10. 

W*irE<6.10 >T/864D0. ' , 3&5.25 ,PX , A,OKM 
10 FO*HAT</ / ,» TIHE i r R U » . l P E 1 3 . » . 6 < , » R IT ) (CM>x»,F12 ,<»,6X, 

1» 3R<CM) = » , F 1 2 . 5 I 

C BEGINNING OF NODAL . 0 0 > . 
03 SO 1=1.23 
I F I I . G E . l l ) GO TO ISO 

X ( I ) = ( I - l ) » O X 
K < l > = . 0 0 i / A 

GO TO 200 
150 XU>=X 11-11* . l»OX 

I - I I . G E . 2 1 I GO TO 101 
GO TO 209 

101 1 = 1 - 2 0 
X I I l = CX-H»H/A 

200 2 = 1 . - X I I ) 

r = i . » x ( i ) 
3t = 2 . » X ( I ) 
XK(1)=Z/SQ 
XXI2> = Y/SQ 

33 UO 1 1 = 1 , 2 
• ? : < I I ) = :RFC(XX ( I I » I 

1,0 £ R I F C ( I I ) = . 5 6 i , 1 9 * i X P { - X X C I I ) » X X t I I I > - X X I I I l » t R C ( H i 
c u > = i . - < £ R c < i ) - E R c m • S I » ( E R I F : C I I - : R I F ; ( 2 » ) ) / S I 

; BEGINNING 3F SUMMATION CF INFINITE SERIES. MAX. OF 1,0 TERMS. 

03 20 N=1,I»0 
I F I N . G E . <0) GO TO 100 

A?=N»PX 
AJE1 = N*B£TH»(N*FX-<( I ) I 
A?E2=N»3- iH* IN»PX•<( ! ! ) 

£ l = EX<>t-AREl> 
£>=E<PC-A*E2> 
X< l l l = (2 .»AR»Z) /SO 
X<I2 )= (2 . *AR-Y1 /SQ 
X< (3 )=<2 .»AR*YI /S3 
XX 1'.)= (2 . »AR-Z)/S3 

3) 89 11 = 1 .1 . 
1*3 CI>=iRFC<XMII>> 

J8 £RIFC<II)* .5&<«19«->: : M-XX(II>»XX(III > -XXIII l * t R C ( I I > 

S ' . m = - E i M E R C U l * S * : ( 2 1 > / S I 
SlH2 = E 2 » ( E R C I 3 U E i : i l » ) t / S I 

SJM3»-SQ»E1»IERIFC(1I -ERIFCI2M/SI 
SJMlts SO»E2*<ERIFC(3(-ERIFC(<tl) /S[ 



73/4 

S«SU>U*SUM2»SUM3*SJ'H 
C(1*1I»C(N>»S 

I F I C ( . S U ) .EQ.O.) 53 TO 35 

E P S ? S / C ( m > 
I F ( A B S ( E F J ) . L E . A B S < : i N f l ) ) / l . i < . ) 33 TO 35 

>0 CONTINUE 
35 i-'c.sc.?!) so TO rr 

C("(U)=(ROS»CEFF*A0S(C(N«1>>>/RO 
C( l )=C( l> 'CEFF/RO 

WRITE (6 ,J6>K( I>»A.ABS(C(NH>I t N , : { H + i I - 3 ( 1 » 
36 FORMAT ( / , 'POSITION (CCI * • ,F1D . b , 12< . 'CONCENTRATIONS*. F10 .<. , 6X . 

l ' N = ' , I 2 . 6 < . ' S l ) M ( N ) * » . F 1 2 . 6 ) 
G3 TO 50 

77 0-<?!!/=-C<N*i>/H/H 

WRITE(6.it5>M»H,0ERIV.-R0i»DERI\/.N 
• 5 FORMAT </« *H (CM ) = • , I ' E I S . 7 ,6X. 'DERII/ATI VE = ' . 1PE 15 . 7,6X.*MASS FLUX 

11G*/C*!2 DAY)=»,1PE15.7,6X, I2> 
T3TJ=-RC1'0ERIV i-V»RO3'S6if0a. 

WRtrE(6.55> TOTJ 
55 FO*MAT( / / ,» TOTAL 1AS3 LOSS « T E (5/CM2 JAY l x » , 1PE15. 7) 

SDIR(Mt l ) = SOIR(K)*D:PIV 
5 0 :OKTINU-

r = ? 
DIRAV=SOIR ( I U ) / 3 . 
FLJXAV=-R01»OIRAV 
FLJXT=12.5 663 7»FLUXAH»A*A»PX»PX 

WRITE (6 ,30 OIDIRAV.FLJXSV.FLUXT 
300 FORMAT (/.'AVERAGE 31 R.= * . 1PE1 5.7,6< . 'A VE?H GE FLUX(G=/CM2 DAY) = • , 

11 Pi 15 . 7 ,6X, 'MASS LOSS ( ; R / 0 A Y ) = » , 1 P - 1 5 . 7> 

100 T s T ' l O . 
500 ;0NTINU: 
5000 :ONTINUi 
jOOO :ONTINU; 

3TO» 



7V/I 
C 
C • • • » • • • • • • • ucBHE-7* • • « • « • . * • « • « • • • 
C AUTHOR SHAK J . ZAVOSHY 
C DATE SEP. 19 81 
C THIS PRCSRAM CAICUL»TES THE FRACTIONAL RELEASE CF A DIFFUSING 
C SFECIES FROM SPHERE. THE INPUT PARAMETERS ARE 
C A: RADIUS CM 
C R0= 0ENS*TY OF DIFFUSAN T G / M 3 
C ROS= CONCENTRATION ON THE SURFACE G/CM3 
C D= DIFFUSION COEFFICIENT (CH2SSEC) 
C BETHA=V»A/D = OIHENSIONLESS REGRESION SPEED 

DIMENSION X ( 9 9 9 ) , C ( 9 9 9 ) , Y P ( ° 9 9 ) , Y [ > P ( 9 9 9 ) , Y Z ( 9 9 9 > , H ( 9 9 9 , 3 ) iANS(5) 
OIHENSIGK ERC(16) ,XX(10»,ERIFC(10) 

OIMENSICN DD( l t ) ,aETHt f (10) 
A=17.8 

R0=.&72 
Ror=o. 
CEFF=RO-ROS 
oo(i)=e.ei»(io.*»(-i3)) 
DD(2) = 3 . 5 9 » ( 1 0 . * * ( - ) 1 ) ) 

NOI = l 
NBI=9 

BETHV(1) = 0 . 
3ETHV(2) = 5 . 
8ETKV(3)=10. 
3ETHV (1.1=50. 
BETKV(5I = 800. 
BETHV(6)=16G0. 
8ETHV(7) = ->;. 

BETHV(8)=-10. 
BETHV(9) = - 2 0 . 
H=.00001 

DD 630S MD=i,NDI 
D=00(NO) 
DO 5000 N3 = 1,NBI 
BETH=eETH»(NB) 

V=BETh»C/A 
T = . l 
T=T*86^CC . *365 .E5 

WRITE(6,2>A,V,O.BETH 
2 FORMAT(iH,» RADIUS (CK) = • ,F1 2 . 6 , bX, «V (CM/SEC ) = « .1PE15 .7 ,6X , 

1»0 ( C M X C ^ S E C ) = * v l ' E l S . 7 , 6 X , * a E T H A = ( V X A / 0 ) = » , l P E l 5 . 7 l 
WRITE(6,13)RO 

13 FORMATS,* DENSITY (GR/CM3>=»,1PE15.7) 
I F ( V . E Q . C ) GO TO 7 

TLY = A/V/«6<t00 . /365 .25 
TTRANS=D/tf/V 
WRITE(6,31TLY,TTRANS/86*0S. /36s.25 

3 FORMAT(/,*LEACH TIHF (YR) = (A/V>=» ,1PE15. 7 , 6X, •TRANSITION TIME(YR)= 
1 ( 0 / V 2 ) = * , 1 P E 1 5 . 7 ) 

7 CONTINUE 
C 
C BEGINNING OF T I f£ GO LCOP . C.ULTIPLIER = 10 
C 

IJK=25 
DO loo K=O,:JK; 

i F l V . E Q . O . ) GO TO 17 
IF(T.GC.ABS(A/V>) GC TO 500 



T//2. 
GO TO 301 

17 IJK=9 
301 CONTINUE 

TA=D»T/»/A 

SQ=2.*SQRT(TA) 
PX=1.-BETH*TA 

IF<PXiLE. , 0 0 1 / A ) GO TO 500 
OXsPX/100. 

HRrTE(6,lE t T / 8 6 < . 0 0 . / 3 6 5 . 2 5 ,PX»«,OX*A 
10 FORMAT<//,» TICE (Y , RJ=».lPElO. 2 , 6 X , » R<TI (CS>*» , F l E . i t ,6X, 

i » DR(CM) = * , F 1 Z . 5 > 
C 
C BEGINNING OF NOCAL LOO'. 

NNN=992 
00 50 1=1,NNN 

I F ( I .GE. NNN) GO TC 101 
IF<I .GE.92> GO TO 150 

X ( I ) = ( I - 1 ) « D X 
X ( l > - . 0 0 1 / A 

GO TO 200 
150 X ( I ) = X I 9 I ) + P X * ( I - 9 l > / 9 a O 0 . 

GO TO 2S0 

101 XU)=P>-H/A 
200 Z = 1 . - X ( I ) 

Y = 1 . » X ( I ) 
SI = 2.»XCI> 
XX(1) = Z/SQ 
XX(2> = Y/SQ 

00 <t0 1 1 = 1 , 2 
£RCIII>=ERFC(XX(II) ) 

1.0 ERIFC(III = .56<,19»EXP(-XX(II>*XX(III> -XX ( I I I'ERC (I I t 
C ( l ) = l . - t E R C ( l l - E R C ( 2 1 + S a * ( E R I F C t l ) - E R I F C ( 2 » n / S I 

c 
C BEGINNING OF SUMMATION CF INFINITE SERIES. MAX. CF *0 TERMS. 
C 

00 20 Nrl.ifO 
IF(N.GE. i.0) GO TO 1U0 

AR=N*FX 
AREi=N*3ETH»(N»PX-X<I»> 
ASE2=N*3ETH* I N*CX <X U > > 

ul=f.XP(-AREl) 
E2=EXP(-ARE2> 
XX(1> = (2.*AR*Z>/SQ 
XX(2)=(Z .*AR-YI /Sa 
XX(3>=(2.»AR*Y>/SO. 
X X C t > = < 2 . » A R - Z I / S Q 

03 3« 11=1,V 
ERCIII> = ERFC<XX1II»> 

88 ERIFC(II )= .56< i l=»EXP( -XX<II )*XX(II )> -XX ( I I ) *EP,C ( I I > 

SUM1 = - E I « < £ R C { 1 ) » E R C ( 2 I ) / 5 I 
SUH2= E2MERC(3>*ERCH>>/SI 

S U H 3 = - S G » E I » ( E R I F C ( I > - E R : F C ( 2 » J / S : 
SUMfcs SG"'E2*(ERIFC(3I-ERIFC(I.)) /SI 



T-tQ 

SxSUMl»SUH2*SUH3»SCHV 
C < N * l ) « C l N ) * S 

IFCC<NU>.EQ.O.> GO TO 3? 

E P S * S / C C m > 
IFUBS(EPS >.LE.£9SCC(N + 1>>/1.E<< I GC TO 35 

20 CO NT I NO f. 
35 Y Z ( I ) * 3 . » X t I ) * X U > » * B S < C < N * i H 

5 0 COKTINUE 
VPN=-YZCNNN>/H 

YPN=YP»CPX»PX 
Al= - . 5 
AN=- .5 

NNN=NNN-1 
N=NNN 
YP1=0. 

B l = 3 . * ( C Y Z ( 2 > - Y Z I l » ) / t X < 2 ) - X ( l ) J - Y P H / « X < 2 ) - X ( l > ) 
B N = - 3 . ' < < Y Z ( N ) - Y Z < N - l ) » / < X t N 1 - X ( N - l ) ) - Y P N I / ( X ( N ) - X ( N - U > 
CALL SFLIFUX.YZ,YP,YPP,NMNiW, IERRf fi.Ai,Bl,AN.6N) 
NUP=1 

XLO=X(l) 
XUP=X(NNN> 
CALL SFLIQ(X,Y7,YF,YPP,!UiN,XLO,XUP,KU.°,ANS.IERR2) 
FRAC=l.-ROS»ti.-V»T/A»»»3./RO -CEFF«4?S (AN5(1))/R0 
WRITE ( 6 , 3 0 0 ) IERR,IERR2,FRAC 

300 FORMAT < / / t » I E = » t I 2 , 6 X t » I E 2 = * . I 2 . 6 X , » FRAC. s » t l P E l 5 . 7 > 
1D0 T=T»10 . 
500 CONTINUE 
5000 CONTINUE 
6000 CONTINUE 

STOP 
END 



2. 

N Difference between concentration of component 1 in liquid adjacent 
S , J to the waste surface and concentration in the groundwater far away 

from waste surface g/cm^ 
r Cylinder radius cm 
r(t) Cylinder radius at time t after dissolution begins cm 
r Initial cylinder radius cm 
T Leach time (sec) 
T Leach time for prolate spheroid sec 
T s c Leach time for slender cylinder sec 
T Leach time for the infinitely long cylinder in flowing groundwater sec 
U Groundwater pore velocity cm/sec 
VAt) Volume of undissolved waste at time t cm 

llr Pe = jr- Peclet number 
uf 

Pe 0 E ^ 

$ 
Greek letters 
P = waste form density g/cm 
e = porosity 
a. = cosh" (-) Surface shape factor of prolate spheroid 

Defined by Eq.(7.1.4) 
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