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Abstract

A non-spurious quasi-particle scheme is presented,
lt; number-projection being exactly the brokem-pair mo#el. From
this property, quantities needed in the brokea-pair approach
are easily evaluated by making use of the extreme simplicity of
the quasi-particle algebra. Applications to the Hamiltonian
operator and to one-body operators are presented for seniority

v=0, | and 2.
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1. Iatroduction
——

1
In a previous paper ) » heunceforth referred to as I, the
. 2 .
differential structure of the Broken Pair Model ) (BPM) has been
exhibited. It was shown that for any n-pair o{-state with well

defined seniority Ve Z V:;l (see §3.1 of I for the no:ations)*
. <

Inet;0;p) = I ay

where

x = ;_ pe St 2

it was possible to factorize out the model parameters p;y in an
exponential term . More preciasely, the zero-broken-pair (O-b.p.)

states (1) can be written as

Tna;05p) = exp(z;_ 0 &pi)\nct;o) PEN

where ‘hd 0) corresponds to \Y\d O,P) with pj = 1

(i.e. :ﬂ. SA"‘Z S )} and
(ﬂ“.‘ 4‘) (%)

is the operator number of pairs in the orbit i, assaciated with

the V‘-particla seniority-V® ol -state \47 according to

?\f ‘d>= 0 ) . (5)

+ Py ']
The notation l...) » unlike l-..} » means that the corres~

ponding state is nmot normalized to unity.
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The differential structure of BPM follows lmmediately
from eq.(3) since the k-b.p. K -statees are connected to the 0-b.p.

of{~states (1) through the differential relatisns (eq.1.39)

Ko i ) = el nf) g Inas03p) @

) with iik} e, i,_«.-ik ‘ and 'a‘: =3/3P‘: . As mentionned in I,

the b.p. number k ie just the order of differeantiatiom, This defi-
nition differs from that usually adopted 3) but it has the great
advantage of ieadiqg ta a unified description of the k‘-b.p. sub~
spaces 5(‘(‘ » whatever th.e considered senlority v wmay be.
From relation (6) dnd for any operator [} indepen~

dent of the parameters pj, one then obtained

D)t &) =t/ 245, [Blnas0:p)] @

which simply relates b[g(kﬂ to 6‘_6(0“ + Consequently,
it appesred necessary to determine 0[6(0)1 only. As a result

{eq.1.55)

Olhd,o,p) Z ;‘ (hllh’qb“‘ ’l(“)[Nwl{‘}

‘ne( o,E)OP ‘(a(a( k; p) (8)
with

i‘flx « _7( [m(n -z Ll o



|
L

{ﬂ(nd :"“':‘ = 7—(«‘;\ (?‘:}w\"'\ - Z':;' J“.ﬂ‘l‘ - (10)

P

The quantities O;‘::.‘ (d"i;k" E) are n-independent
and can be evaluated’ according to their explicit defimitionm
teq.I,56) but, the simplest the way of determining them, the more -
poverful the equation (8). Indeed, this n-independency property
enables onre to evaluate them very easily. Without losing any
generality, a meaningful example is provided by the seniority
zeto case. If the operator 0 is the Hamiltonian operator fi, one

has the simple equality

ez, - e 3o an

with (see eq.I.8)

R(f) .,-_-Z__: ;(gﬁ’(g) i 1 Z Rl(ﬂ 2:((;;\;‘——%;)) .

Muleiplying both cides of (eq.11) with 1Ih! and

U-l exp 3410)]“0 = 'Iﬁ(r) exp 3.)0) Cam

and, consequently

{0 up tfj H esp 1\ 0) = <(')\éxp3"t.éﬁ(t). exp:f. 13 s



Binge exp :'f’ \0) ia nothing but a zero-quasi~
parcicle (0-q.p.) state ‘) (up to a normalization constan;).
it should be clear that the standard and well-koown techniques
of the Quasi~Particle Scheme (Q.P.S8.) can be used to evaluate
on. the one-hand the l.h.s. of (14) and, on the other hand, the
quantities 5) (a general demonstration of this simple resql:

is given below)

O3] Ao S 10) folepSt a0y = Bw
olexp j’: B, (ﬁj-&;) Hpilﬂ)/(ﬁ\expi*_gxpl lo) -
(Bo)pa) 20,5 e

with

oz = (Leph y' (17)

w(ﬂ ()
Then, the unknown quantities 4 Cp) and %4 (B)

are simply obtained by rewriting the l.h.s. result as a polynomial

in the variabdbles (pidﬁ) .

It ie the aim of this paper to generalize this senia~

rity zero example to the case of any operator 0 and any seniority

v f 0. Ae stressed out in I, because of the adopted b.p. nusber
definition, the case ¥ ¢ 0 makes no difference with the case

v = 0. As a consequence, the generalization turms out to be
s:rnighcforuaré as will appear below. In gect.2, a8 noi-spurious
q.p. scheme is built up from BPM with the help of what is called
the "exponentiation procedure™. The nroblem of extracting from

. Ug)
q.p. calculations the quantities Ogik,;(‘*"‘”kiﬁ) needed in

BPM is solved in sect.3. Results are presented for the Hamiltonian
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operator and far any one-body operator.

2. The non~-sparious quasi-patrticle scheme

In the following the definitions are those of I.
As a gemeral convention, for corresponding quantities, the nora-
tion adopted in BPM ip used in QPS with ap extra ™ (this does not

apply to the ome-particle and one-q.p. operators notation)

-~
2.1. The subspace G(O)

Let us consider in the N-particle O-b.p. subspace

G(O) , the seniority-¥¥ ofstate, witht N = 2g+w¥

fns;05p) = BARPY) (18)

where the V% particle seniority-V¢ d-gtate |y  writes
‘d}: 'R@Q\D) - 19

Multiplying both sides of (18) with 1/’\! and summing from
ne0ton=a (this defines the “expaneatiation procedure™)

one obtainms

[4;0;p) = expSala) - ) (20)

aan -

¥ g ) * .
Rigorously, one should write n* instead of n but, for simplicity
of notations, the indexelvill be suppressed unliess necessary.
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7.

or, equivalently, taking into account (19)

j:0,p) = 'P.‘(«)%) 1)

By defiunition, the states (Z0) lpln the subspace - ]

6(0). As above-mentioned, the ntate
‘ ) = tu 10> ) (22)

is an unnormalized 0-q.p., state which can be written as

\
(I )
|0 E) N [l + &) Lo p‘a.(in‘)n..((m,,ﬂ[u) (23)
The canonical Bognliubov-\?ala:ins) . transformation
associated with this 0-q.p. state is
d !u-]n'iu .
(m‘) a‘(tm‘) x ) ?;ﬂ(uu)] (24)
Remark: the usual BCS vave function corresponds to
th: parametrizacion ;= ‘Q/u‘ with the constraints Vi +Wki=1, -
(B(h;i'thS) -2 ;V}ﬁd . = N, together with the -agsumption
that (scslﬂ-)nlxcs) be minimal.
Since the transformation {(24) preserves gemiority 1) » -

the states (20) contain at least ¥¥q.p.. On the other-hand,

making use of the imverse' transformation

Ao {im) = 0‘2“ [‘L("m} 4 HL" Lt P+ A(iﬁ‘ﬂ (25)



in the equivalent definiciom {21), one sees iwmediately that they
also contain gt most "J"q.p.. Hence, the states (20) are ¥

q.p. states with vell-defined seniority‘l".l‘hai: expression in

terms of q.p. operators is obtained by inserting the transformation (25)
in the definitiom (2]1). The only term which survives is’that one

which corresponds to the replacement of P+(o() with the operator

( i ) ‘?,(d) (26)

deduced from P,(dl) by the gubstitution N

Qlems) —=» o=t difeme) en |

One thus obtains

\ec O'E) (T(O'L‘ )ﬁ(ﬂ) l;\,é) ' (28)

-

.l:ompa:!.son of eq.(28) "vi:h eq.(18) rewritten as
[ne; 0;0) = RN 0;p) 29

clearly exhihics the suu.llr sttucture of subspaces é(o) and
6(0), i.e. one goes from G(O) to 6(0) by substituting [0,p)
Iﬂ,o,P) and by making use of the tramsformation (27). The

norm of the q.p. states (28) is simply eveluated according to
«0;p14:07p) =(or?) (@plop)

ol
\o™™ - (30)
-y

|



the norm (O’P\ p) bung easily obtained !rom the particular - -
expreasion (23) of \D P) !

Fipally, a useful expreseion of the k = 0 o{-scaces
(20) {5 obtained by applying the exponentiation procedure to both
sides of eq.{3), namely

[40;p) = etz fap.}[a;0)

n

2,2 The differential structure of QPS

b d
As in the case k = 0, the q.p. subspace c(k) vith
k?l is deduced from the subspace a(k) by summing over the
pair numher. Consider the whole set of N-particle seniority.y®

states belonging to S(R) -eq.(1.28)-
-k
‘("'k)«l{“k}ltj ( m-u s‘m) :r“ (32)

Multiplying both sides with 1/(\‘\-‘(“ and summing

fromn = k co n = 00 , one defines the new set of states

‘:‘}"\k}—é) = (T(:n Sf") \“‘} O}E) (33) .

which, by definition, belong to 5(1&) From the definition

)
(20) of |d 0: P) s one umedxately obtains
T ———
fatadie) = 14,‘}"": O;e) (38

which elearly exh_ibits. the differential structure of QPS.



This relation has to be compared with eq.(6), its equivaleat
in BPM,

At this point, in view of forthcoming calculations,
it £s not unuseful to realize how one goes from (6) to (34).
Hultiplying both sides of (6) with 1[@\-k)l and sumoing Erom o=k

to a =03, one gets

l:E‘T:E) =’a§‘?‘" ka () W7 _ (35)

Since all the partial derivatives of :Ir
vanish identically.for .. Ogné\(-‘l s+ the lower limit
7=k in eq.(35) can be replaced by n = 0, restoring thereby the
operator E€Xp :ﬂ- —

Even if relationa (6) nnd‘(34) show that Eg(k) and
ES(k) have the same situcture, there is however a small difference

between them.For f—:}l,suhspaees E(k) are subject to the "summation”

Property
Zpi o0 43 s p) =Mkt )54y ) (36)
“K

~

while this is not the case for subspaces a(k) as indicated by

JZPA;W) = Jolt; dalip) (37a)
-Fals

7 “‘31“'1‘-1;;2) (37v)

This minor lack of syometry betwveen the two forma=-

R
liems is due to the fact that, ior k>/1, states of G(k) have not
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a vell defined number of q.p.. Lt is sufficient to exhibit this

~r
point in the simplest case, i.e. G(’l) . Using

” (~. ~ 1”"‘- .
< <
S’ = O s.;.- zb‘-s!“ P“- S_ ) (38)
S < .
where s is deduced‘ from S‘ by simply replacing the one-

particle operators with the one-q.p. operators, any o ~state of
—

éﬁ) writes
T ———— ~ . o~y
l:4Ep) = ox (85 -2p S-S 05p) 39
8 (n T+ GURIRT 0P o

The last equality follows from semiority coansidera-~

tions. Also, use has been made of the relation (see eq.(53) below)

A~ ~~—~— ’
<«;0;3\ﬂ:-’ ;0,90 = ploe QO G

~

Eq.(40) clearly shows that 5(1) contains V- nd

( V°t + 2)-q.p. states. More genmerally, aubspace 5 (k) is builc
o~ . ~ s o of

up from N-q.p. states with N ranging from N o V74 2k,
This mixing ensures that subspaces 6 {k) ere mon=spurious in

N f
the sense thac the number projection of a(k) is simply E’l (k)
-by comstruction |- i.e. the pumber-projectign, (or its inverse

the exponenriatisn proc:dure) estadblishes a one-to-one correspon—

dance between :i;{-('k;; E) andzj[h:!()d;{fkb E) .
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3. Application

®
3.1 Determination of the unknown quantities Oi"l" (d'd;k}P)

Let & be any p-independent operator. Its action

on bothsides of eq.(34) leads to .

0 Lt dp) = A [Bl0ipl (4

Thus, s:.ma.larly to what’ is obtasined in BPH, 6[8([()]
is simply related to 6[6(0\] . Il: is then easy to establish
the equivalent in QPS of eq.(8). Applying the "expomentiatiom

< .
procedure™ Lmo 1/y|‘ ta l.poth sides of eq.(1.52)

Olwai03p) = Z (1) Z__ bty (0T s=) 7, ““I«’)

el
X &' OE:‘ S‘—;‘)[.a,:r‘]m B> w3

and remembering that, for fixed k, onliy terma qich o)k are

non-zero in the r.h.s. ~as required by the coefficien:(‘:)— one

obtains

‘6“*;6 Z b.l““(") “‘ A0 P)

'w

% @/t L, 516,201

In practice, the infinite summatinn over k is strongly limited

by vanishing valu : ef [ﬁ j’](



13,
or, usiung succesaively equ.(Sa.Sl.lo) and (I.56) )
a~—— k')
0la;0p)= D (m(i) [N(-t’)]{m [5G
_ K FZ)
(i ‘
% O ey

L
Since the N® -q.p. states \(} ;p) are pure genio-
rity -\l states,eq. (45) caun be used to deduce from standard
q.P. calcula:xons the coefficients O‘l‘ﬂ(‘d’ ,p) which are

needed in BPM (see eq.8 ) . This can be done by considerirdg the

matrix element *
N | i') ~{ K g (ﬂ
("} OI‘P. I 0 [d,(];g) - %'__k__h:‘ b‘*‘k'} H’) ’Y,Md (";2) Okk‘] (el'd, k;z) 46)

vhere the quantities

X — (“ g S
’Vl:,‘-)‘(*;g) = ("‘Joif_\\N(“ﬂmMQ}E) ’ n
are connected to the k = 0 of-atate norm

"l (“:P) (%;0 :P\":olf) (48.8)
= (‘d;Dlexp(ZZ"n‘;‘%p,‘)l:(;a) .- o (48.b)

(k)

+ From seniority cousiderations, [Nu)] do not .con-

nect states \\!} and ld’) such that. L’ 4 o .
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through the differential relation (with %‘-'.—'i?“_b“' )

'N'Z{f:l(“lg) = [mkﬂ (‘X‘.ﬂ' I—ZZ, Sd'n-q't )‘_\ ?’z‘(“)("}_\:) ) (49)

The last relation follows from the defimition (10} .

and from the identicy

(7{‘"?‘1‘) EXP(ZZ?&‘ %FA)‘;:O’) =0 (s0)
'Tl{l*‘:% wip) = (7/*'.* =L, 544?)%‘:{:} (we) | a8
and of the expression (30) for 3'1‘%@ , ome gets

~ 10 K |
Tayer) - bbigal” 1%p Tabiz)  on

or equivalently, using normalized q.p. states

—— | ¢ 'V‘I';‘M-\-\—-Z.-.Z[S‘; jz\F\-f
@050} } e ( = |l 03p)
= Wm ' ch‘,‘-&-l—Z!:,S"‘"{e

k L
= TQ:\(P*}.Q}-») (53.a)

A ot —
f =7(;:( & O}El'%l% \_‘*; o,'f> (53.b)
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Having expressed D in terms of q.p. opervators with
the help of the inverse Bogoliubov-Valatin transformation (25),/
the l.h.a. of eq.(46) is evaluated using standard Q.P,S. algebra
and rewritten in terms of quantities (53) (care has to be taken

of the fact that the g.p. states are unnormalized ). Then a direct

. identification of that result with the v.h.s. 6f eq.(46) provides

the unknown q\lantities Gi“i’ (e(d k,p) . Comparison of
eq.(46) with eq.(I. 57)

(wa,; ,p]ﬁ]m 0;p) = (n! /n")z: b():‘:,‘(d')"zﬁ:l(h’d' p)
X O h,’,(*'d;k;z ) (5)

shows that the matri:': elements of & in E(D) can be deduced from
~

the corgespond:.ng matrix elements in E(D) simply by replacing

(K}
'ra_‘r,}(ﬂ)P) with (n‘/n") "Hl (\‘:dﬁz) » thus genera-
lizing the Tesults of the seniority zero case (see eqs.(l.1) and

(I.6)).This comparisen also provides the effective g.p. operator

2 ) a0 o
Oulp) =2 by @ (Nedygg O bessbip) om0

sucht that

(o °/P\°l°‘ ip) = '°;gl9@a(g)ld§°;P) e

* From our gemneral convention, 'Y({‘ ( o5 ) is defiuned

by eq.(47) with lg(, )t) simply :eplacedgvi.:h ‘hd O,P)
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3.2 Resules for some operabors

We now present results for the most frequently used
operators -the Hamiltonian operator and the one-body transitiom
operators~ in the seniority v= 0, 1| and 2 subayaces. Gnly opera-
tors which do not change the number of particles are considered
here., In eq.(8), the supmation indexes k and k; are relat2d to
the seniorities N© and V.v according to relation (I.53) with

r=~=40
k’§k+%_.(‘~a"-‘8"') 51

and the constraint k'» 0. From herpicity and complex conjugation
consideratiouns it is sufficient to omnly consider the case of

states ld) and \d') such that V"’) %, | states \x) with

of

P . . +
seniority £l = 0,1,2 are written as

jo) , v¥<0
[={ [om) = Galawma){0) , v‘_"-_\ ' s8)

-3
[abamy = (11 60 [afb)e au]T]o), 47 -2
In the following use is made of the notationsl

-3 L N
A= (1a8,8) 2 _.6:5._‘ =3I s ana F=c2ae )

3.2.1 The one-tedy operators

K
Q

serving) one-body operator

Let ? be the most general (particle number con-

* The coupling convention is that of I.
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with

17.

z = é_ Tbk) [ﬂ.(&)o a(b)l: (s9)

o

it icT . o -
Tlabk) =y o 4 g R 7_;<55xmbcuu,)<m.ﬁg\\m.7 6oy’

"y,

for which the summation index k in eq.(8) tak:s the values @ amd

1. This operator cannot connect states \d‘) and |u(’) suc'l:ﬂthat

\\'i_vi'l>'2. The unknown quantities are demoted by 'g{‘ﬁ (('u(;k;p) .

a) the case ln() =aD = l0>

)
T w0p) =0 _ (61.a)

132‘ (wd; iif‘) =S SQo (-)e“‘ (29,;).1 V(ae0) (61.5)

‘B) the case ld)glg} , |o(’> ;YGBSM)

T i) = - S S o (4 Q[ TlbeTY] 12

c) the case ld) = lau.) ) lu’)albmb

©) & o Wk 2 Al .
tof""i_oi'g)*ﬁ Afasiy K')."(a‘KM‘-Q"“Wﬁ)T(EA“) (63.2)

TG0 = S S o 177" OY Tlii0)

4 Ca 1 -1 .
80 K3CL Ko Qlgn R0 (4 o) [ Tob)] 6.



o

4) the case &) =|abTMY) , &)= led T'MD
"(gb,(x'd;b-,g) = o Iz {asmal Ty RS (Ve Bur)(1a Otz
¥ . % [S._‘ i3 {1‘;::;} T(_AbK)] ' (662>
B2 a5 p) = Sy e @20 Thie0)

+ LM ¢3wma Ry K30+ Q) (V+ R yr)

[S“S\,__ fudaago Tax 1.\ 153 i B ( ﬁhk)[p"r(bdk)]\ (64.b) ﬁ

3.2.2, The Ramiltonian operator

For a subspace with given seniority v, one has
k' = k = 0, !, 2 2nd the matrix elements of interest are given
- by relation (I1.60). The Ramiltomian operater ffor spherical

systems of identical particles) writes

ﬁ=§ e N 2 * T U (ab,cd)

«[Roroawl sfawore] ]

with (ﬁ is the two-body part of ﬁ)

um( B f-d) P? *&“Khs*)(h-sd )]-‘t 3\ (a"SM\& \chM) (66)

- ]



For practical convenience, all the results are
expressed in terms of quantities U (a.b cd,y) which i) are
linear combinations of the quantities (66) and ii) depend upon

the model parameters pj. All these quantities are dafxned in

Appendix together with their properties.

a) the case \ll) = \4') = {6d
%(ﬂi(‘(,‘.z) =0 . (67.a)
B wiy) -20:6 44 Lo 9 Q00 U eatizg)  cor.m

Ba e =0 % (0,0,)? Uleqnisp) 1.0)

6 the case [d) = lam) , [ =1bw)
: 'lﬁk,(“"iﬁ) S e . (68.2)
Wetwnp) =Suc[208604 4 To™ 4 @)U teriip))
(/e Q20 Zeo )t U Do)
L, %Uﬁ’(«,at,-g)] s
W) < Lo "0 U eanp)

+ (ulp)® (eI [E0™ % (@ JO P U g atyp)] 6070
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c) the case \d) = \ab]ﬂ) , ld’) ,\cd:ﬂ)

B Pl = b Z_ Yo

AT (T G“as)[‘“e‘::;" u“;’(u\,nb; E)] o (esa)

B ) - s fp0tes s L Za" SN0 U s )

+ 4 (pepalpapr) E A2 (1 Gy )08 az)

X {5-‘ Sus ; 0" (gt ug (:‘4:11}_!:)

y oo [$s5 U@ (e aip)a 4 (ﬂ.-!ﬂ.)"u?lﬁ,nqgﬂs (69-5)

'KS; («’;;‘E) = Sux & ety (q:0)t ut:’(a;“,z)

* Y (peps Iy.h.f‘ o‘ﬁ"JSA(H O )1+ Buts) (1 By) - '

x [ui i @448 34 UR (og, )

4 2&4&“-)&*&“ (0;195)“ u® («,;g,x)]- (69.¢)

Note the extreme simplicity of the results which

reflect nothing but the simplicity of the quasi-particle scheme.



4, Discussion and conclusion

As shown above, the properties of the "exponential
procedure” are threefold :

i) it preserves the differential structure of BPM or, in
other terms, the factorization of the model parzmeters in an
exponential term exp(zn‘: erlp‘_ ). ThiLensures that the effec-
tive operators acting in (?)(0) and E;(D) .are tke same
(apart from the 5rivia1 coéfficievt 7\[/YV( ) -see eqs.(55) and
(1.58)- ii) invpracticé, it enables to take advantage in a
straightforward way of ‘the existence of a vacuum (the q. p. one)
iii) it gives simple expressions £ar the mean values n‘qd(dF)
~-see eq (53)- so that the :Ldent:l.f:l.cat:l.un of the coefficients

{‘:k“(.( l\’,'k;f.) is straightforward- We stress out that in
many cases, because of the large amount of work done i: che past
with QPS, the only thing one has to do is to rewrite matrix
elements of operatars in the form (46) using results (53).
Needless ta say, number projzution techniques 8!‘-.:ou1d lead to
the same result. However, from practical point of view, it
appears simpler tc; uee the "exponential procedure” than the
various number-projection techniques. As a conelusion, it should

be clear now that it is as easy to work with BPM as with QPS.

Acknouledgments : This work has been done with the fimancial

support of the Accords Québec-Belgiqua.




Appendix

22,

o
The symmetry properties of the quantities L‘,Qﬁya&)

directly follow frow thelr definition (66)

UWbd) =0 Ebie os OS] § wamatijaasny

(A.1)

Then, £roﬁ the antisymmetry of the two-particle

states and the hermiticity of @ . (with 9@53)1 %]

li‘;‘(.l,,ul) = BlabY) U (ba, cd)

- = 8(d3) LS bhde)
LTI

" In practice, the quantities

(A.2a)

(4.2b)

(A.2¢)

are

real quanti:1es and § commutes with the parity operator so that

£
&) = 1. Quantities u-_r(tb d,p) which depend upon the

dependent operator

. model parameters p; are introduced by considering the paramater

(A.3)

(a.4)

1]
The definition of the quantities us(ab,d',p)



is simply obtained by replacing in eq.(A.1) the operctor &

—

with the operator Q(x)

(24778

US (bt jp) =0 080048001 3 chmmpiyedsmy  aus)

“(pre/un)t UT (ab,ed) .6

Obviously, symmetry relations uiiuilAr to (A.2a) and (A.2b) are
[
atiil valid when replacing u;l(a(s,cd) with us;-](d.k,cl;p)
A

but relation (A.2c) has to be repipced with

) (e
UD (ebedsp) = (peps Jpate) U T (cdsabip) .1
Quantities ug’(o.lv,d'lg) are then defined

according to

u[;] (d'"‘d'lx) = u(:’l (o.k, ‘A'lx) - (\" @AL'.I)R: (nl:,d)ﬁ] (A.l.n.

with
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R:(ak,cd;y) = Z“:_[fu 4: 1'l U (db,casp) “.9
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where the sfquare 9-j are related to the usual 9-j as

b e " o b -
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For these quantities u.ﬁd(qh,d“,) s+ only symmetry
~ .

relation similar to (A.2a) is valid with, in addicion -

A . : i3’ :
-I Z 15!‘;..3' U‘:, (A“""H’J = - u;‘](bq, “{EP) (.11,
Ylz oo = - i

Replacing in eqs.(A.8) and (A.9), ul:;l(ah‘cd"l,)

with the symmetrized quantities

US¥(ab, cd;‘g) = %[u‘,"(al,d;t) 4 U:‘(cd,aka)l a.12)

[
one firally defines quantities u T (ab, Iz ',P) for which
~

symmetry relations similar to (A.2) and (A.11) are valid.
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