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Abstract 

A non-spurious quasi-particle scheme is presented» 

its number-projection being exactly the broken-pair model. From 

this property, quantities needed in the broken-pair approach 

are easily evaluated by making use of the extreme simplicity of 

the quasi-particle algebra. Applications to the Hamiltonian 

operator and to one-body operators are presented for seniority 

v - 0, 1 and 2« 



2 V 

1' Introduction 

In a previous paper ). , henceforth referred to as I, the 
2\ 

differential structure of the Broken Pair Model ) (BPM) has been 

exhibited. It vas shown that for any n-pair o(-state with well 

defined seniority V « £__ V^ (see 53.1 of I for the notations) 

X-ZliuSt (2> 

it was possible to factorize out the model parameters p^ in an 

exponential term . More precisely, the zero-broken-pair <0-b-p.) 

states (I) can be written as 

where JnrfjO) corresponds to jft^O/p) with fi - I 

(i.e. J4 3 J**s^L «3̂  ) and 
•i 

is the operator number of pairs in the orbit Î, associated with 

the V -particle seniorlty-V* ©£ -state \<C) according to 

ffcl*>*0 (5) 

The notation 1.,. j . unlike, ]».. > , means that the corres­

ponding state is not normalized to unity. 



The d i f f e r e n t i a l structure of BPM follow» ismediately 

from eq.(3) s ince the k-b .p . e^-s tates are connected to the 0-b«p. 

d - s t a t e s (O through the d i f f e r e n t i a l re la t ions (aq.1 .39) 

lCn-kV;{iKJ-£%[(n-^i/n!]VjJ'i(1|n«(-,0;£> ( c , 

with UkjH'ii tj.-.-ij, and ^t*c=^/3p^ . As nentionned in I. 

the b.p. number k is just the order of differentiation. This defi 

nit ion differs {.torn that usually adopted J but it has the great 

advantage of leading to a unified description of the k-b.p. sub-

spaces 0\K } • whatever the considered seniority V nay be* 

From relation (6) and for any operator Ô indepen­

dent of the'parameters pj., one then obtained 

6|M«>fckE> - M l M < , [ôl»«-*°;ri <7) 

which simply r e l a t e s •' Consequently, 

i t appeared necessary to determine U^OvOJj only. As a resu l t 

( e q . r . 5 5 ) * 

with 

- i 
(9) 



The quantities Ot^ l^'^/^ipj a r e ^independent 
and can be evaluated' according to their explicit definition 
(eq.I,56j but,the Bimplest the way of determining them» the more 
powerful the equation (8). Indeed, this n-independency property 
enables one to evaluate them very easily* Without losing any 
generality, a meaningful example is provided by the seniority 
2ero case. If the operator Ô is the Hamiltonian operator H, one 
has the simple equality 

[fljr|o>]^o*<yj:io> 

with (see eq.1.8) 

Multiplying both sides of (eq.lj) with 1ml and 
summing from n • 0 ta n «<V , one gets 

ln«pl|0>],.o = K({)apl|o> (.3) 

and» consequently 

<o\«p^.H «pllo> = qhuf-SltyVf! io> < U ) 



5. 

Since exp ]j + | 0 / is nothing but a zero-quasi-, 
particle (0-q.p.) state J (up to a normalization constant)» 
it should be clear that the standard and well-known technique» 
of the Quasi-Particle Scheme (Q.P.S.) can be used to evaluate 
on. the one-hand the l.h.s. of (14) and, on the other hand, the 
quantities J (a general demonstration o£ this simple result 
is given below) 

<p[*?liM*l-Si,) «pl|o>/<6l«pi +.explio) = 

with 

rf»(rt Htftt 
Then, the unknown quantities Qvj, (p) and o(j^,(p) 

are simply obtained by rewriting the l.b.s. result as a polynomial 
in the variables (fit^t) 

It is the aim of this paper to generalize this senio­
rity zero example to the case of any operator S and any seniority 
T i6 0. As stressed out in 1, because of the adopted b.p. number 
definition, the case » j> 0 makes no difference with the case 
v • 0. As a consequence, the generalization turns out to be 
straightforward as will appear below. In sect.2, a non-spurious 
q.p. scheme is built up from BPM with the help of what is called 
the "exponentiation procedure". The oroblem of extracting from 
q.p. calculations the quantities *"̂ ly ifa^/"/£/ needed in 
BPM is solved in sect.3. Results are presented for the Haraileonian 



operator and for any one-body operator» 

2. The nôn-spar iou s quasi-par tide scheme 

In the following the definitions are those of X. 

As a general convention» for corresponding quantities• the nota­

tion adopted in BPM is used in QPS with an extra *° (this does not 

apply to the one-particle and one-q.p. operators notation) 

2.1. The subspace (T(o) 

Let u« consider in the N-particle O-b.p» subspace 

G (0) » the seniority-V* «estate, with M ~ 2n+V* 

where the V*-particle seniority-^ «t-at ate |©f̂  writes 

|=<> = T\Wlo> (is) 

Multiplying both sides of (18) with l/fll and summing from 

u. • 0 to n - oa (this defines the "exponentiation procedure") 

one obtains 

KoTfO = expX.|*> (20) 
4*A • 

Rigorously, one should write rf** instead of n but, for simplicity 
of notations, the indexetvill be suppressed unless necessary. 



or, equivalently, taking into account (19) 

(jojj) = T \ W ( 5 3 ) (2.) 
By definition, the states (20) span the subspace 

O(0)« As above-mentioned, the state 

fÔTtO = «p3*\«> (22) 
is an unnormalized 0-q»p, state which can be written *8 

|0^) - 1C [I + * * * * * * ptO^Wc)IUfrOll*> (23) 

The canonical Bogoliuhov-Valatin ) . transformation 
associated with this 0-q.p» state is 

d,[««d - *S [0*^0 * tt("i,*%<*»4 (24) 

Remark: Che usuel BCS weve function corresponds to 
th* parametrizaeion fcs^/u^ with the constraints Vj tV&sl , 
^BCSIXIBCS^ - 2 4JV4CI4 . - N , together with' the assumption 
that ^BCS\H-^N|BCS^ be minimal. 

Since the transformation (24) preserves seniority ) , 
the states (20)' contain at least V^q.p.. On the other-hand, 
making use of the i-nverse* transformation 

a,<<wO = <r> [*,(<*) * H*1***""* \u i t«Ol (25) 



i n Che equivalent d e f i n i t i o n '(21), one sees immediately that they 

a l so contain at most ' ^ q - p . . Hence* the s ta tes (20) are > ] * -

q .p . s sa tes with wel l -def ined sen ior i tyN .Their expression in 

terns of q.p. operators is obtained by inserting the transformation (25) 

in the de f in i t i on (21) . The only term which survives i s ' t h a t one 

which corresponds to the replacement of F (et) with the operator 

to-• * * * ) ! > , « (26) 

deduced from P+(e< ) by the subs t i tu t ion 

Q+(*WVi) — ^ <Ki <U(««lc) <27) 

One thus obtains 

\*A'E)=(7r^)%0 !<>;£) (26) 

Comparison of eq.(28) with eq.(]8) rewritten as 

| « M ; ° ; P ) * "P+W1YI;0;P) ( 29) 

clearly exhibits the similar structure of subspaces G(0) and 
Q (0), i.e. one goes from 0(0) to 0(0) by substituting lO'bj 
to |fl/"/ty a n * »7 making use of the transformation (27), The 
norm of the q.p-. states (28) is simply evaluated according to 

,-0S -T* ' (30) 



the norm (0 -p J 0 ' p ) being easily obtained from the particular -' 

expression (23) of \ 0 ; ^ 

Finally, a useful expression of the k - 0 «f-scates 

(20} is obtained by applying the exponentiation procedure to both 

sides of eq.<3), namely 

.<;°;B)= «rfc^^fc)l«o) 
(3D 

2.2 The differential structure of QPS 

As in the case k - 0 f the q.p. subspace G(k) with 

k^l is deduced from the subspace G(k) by summing over the 

pair number. Consider the whole set of N-particle seniority.v* 

states belonging to 5(k) -eq.(I."28)-

iM^ k i ;^ = (7rls^^- w ^> (32) 

Multiplying both sides with and summing 

from B « k to B •< Oô , one defines the new set of states 

CKîÏ£)-tKl!.,Sf-)V<ïO;Ê) (3Î) 

which, by definition, belong to G O O . From the definition 

(20) of jtfjO'p) t one immediately obtains 

N<« 

«iKte)=%àk"0;t) <«> 
which clearly exhibits the differential structure of QPS. 



This relation has to be compared with eq<(6), its equivalent 

in BPM. 

At this point, in view of forthcoming calculations, 

it is not unuseful to realize how one goes from (6) to (34). 

Multiplying both sides of (6) with and summing from n • k 

to n « 00_, one gets 

Since all the partial derivatives of -7 + 

vanish identically for . O^T\^\('l • the lower limit 

n • k in eq.(35) can be replaced by n • 0» restoring thereby Che 

operator £X|S ZÎ+ 

Even if relations (6) and (34) show that 0 ^ k 3 a n t i 

O O O have the same structure, there is however a small difference 

between them.For T-'̂ l subspaces Cb(k) are subject to the "summation" 

•property 

Z l P-ffc U"- k > °« ) Hkîi P>=K"-k+l )«f;K-»î;£> <>•> 

while this is not the case for subspaces 0 (k) as indicated by 

(37b> 

This minor lack of symmetry between the two forma­

lisms is due to the fact that, 101 k ^ l , states of 0<k) have not 



a well defined number of q.p*- It is sufficient to exhibit this 

point in the simplest case, i.e. C(ij • Using 

SÉ.ojfë-itwSi-tfSf) (38) 

where D. is deduced from JU by simply replacing the one-

particle operators with the one-q.p. operators» any of-state of 

C(j) writes 

WMïjÔ « oi(sf -z*k-$&)Uty) (30) 

The last equality follows from seniority considera­

tions. Also, use has been made of the relation (.sea eq.(53) below) 

Eq.(40) clearly shows that 0(1) contains V*- : nd 

( V * 2)-q.p. states. More generally, aubspace O (k) is built 

up from H-q.p. states with N ranging from V to V + 2k. 

This mixing ensures that subspaces O (k) are non-spurious in 

the sense that the number projection of VJ (k) is simply O (k) 

-by construction 1- i.e. the number-projectiqn, (or its inverse 

the exponentiation procédure) establishes a one-to-one correspon­

dance between |^PfcJ;p) " ^ j M c ^ ^ f t ^ f ) -



3 . Application 

3.1 Determination of the unknown quant i t i e s U|A,1 '<f *(} K) b ) 

Let 5 be any p-independent operator* I t s act ion 

on both s ides of eq-{34) leads to 

Ô K H V J O ="à&[Ô|^)] (42 J 

Thus, similarly to what' is obtained in BPH, O^cOy] 

is simply related to then easy to establish 

the equivalent in QFS of eq.(8). Applying the "exponentiation 
IÇ— OP 

procedure" Z - M s o \fV& t o both s ides of e q . ( I . S 2 ) + 

and remembering that* for f ixed k, only terms with n ^ k are 

non-aero in the r . h - s . - a s required by the c o e £ f i c i e n t ( ! M - one 

obtains 

itf. x(Vk!)<4(Xk!.^)[U) l«> «*> 

In practice, the infinite summation over k is strongly limited 

by vanishing valu .-. ef I ̂ J^j 



13. 

or, using successively cqs•(34,31,10) and (X.56) 

X ^Vl(^;k;p) w> 

Since the >!•* -q.p. states V^/Ojp) are pure senio­

rity-^ states.eq.(45) can be used to deduce from standard 

q .p. calculations the coefficients MJ^.,1 (•('<*/ ">p) which are 

needed in BPM (see eq. 8 ) . This can be done by considering the 

matrix element 

^o;£|OK;A;£> - Ç ^ M K I ^ T S I W" °EiW*»jr> <«> 

where the quantities 

are connected to the k • 0 c(-atate norm 

= (^l^I^hp,)^) (48.b) 

From*seniority c o n s i d e r a t i o n s , I HvĈM 1 - > do not con* 

nec t s t a t e s ^ ^ and \df\ such tha t oC j* of . 



through the differential relation (with p^ -si-fa^'<^ ) 

?iW) - te (7k* i-n.O]fw c«) 
The last relation follows fron the definition (10) 

and from the identity 

(X-nï)exp(2Çn}fcifu-)|»{;o)=0-

Making use of the obvious recursion relation 

(50) 

«i^-^i-riOC^ (51) 

nd of the expression (30) for 77 (ôf/f>) » o n e gets 

or equivalently, using normalized q.p. states 



Having expressed Û in terns of q.p« operators with 

the help of the inverse Bogoliubov-Valatin transformation (25), 

the l.h.s. of eq.(46) Is evaluated using standard Q.P.S. algebra 

and rewritten in terms of quantities (S3) (care has to be taken 

of the fact that the q.p. states are unnormalized ) . Then a direct 

identification of that result with the r.h.s. of eq.(46) provides 
j. (Ut) 

the unknown quantities ^3-ûil (̂ '̂ /̂ j P/ • Comparison of 

eq.(46) with eq.(I,57) + 

(^';fli£|8|M;0;El.t>!/«*,-)k̂ 1 O ^ S ^ ) 

shows that the matrix elements of & in 6(0) can be deduced from 

the corresponding matrix elements in 0(0) simply by replacing 

y$trfJii) w i t h ^ n ! / n ' ! ) rfn (**>& • t h u s geocra~ 
lizing the results of the seniority zero case (see eqs.(I.l) and 

(I.6)).This comparison also provides the effective q.p. operator 

sucht that 

(«i,;0;pUl«i;«;i»)- K-o;£lW£)K-0/£) • w 

* From our general convention, ^ftl 1 (,"*"'(*) * s defined 

by eq.(47> with |c(;0Jb) simply replaced »ith \ M ; 0 ; p ) . 
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3.2 Results for some operators 

tfe now present results for the most frequently used 
operators -the Hamiltonian operator and the one-body transition 
operators- in the seniority v • 0, 1 and 2 suba^aces. Only opera­
tors which do not change the number of particles are considered 
here. In eq.(8), the summation indexes k and kf are related to 
the seniorities V and V according to relation (1.53) with 
r - 0 

k'Wk + t ^ - ^ * ' ) (57) 

and the constraint k'^0. From he roi city and complex conjugation 
considerationstit is sufficient to only consider the case of 
states \d\ and ld'\ such that N * \ V . . Stafcea \«t̂  with 
seniority V ». 0,1,2 are written as 

|<t><l«<> * U*{<vw«)(0> , X*~l ( 5 a ) 

In the following use is made of the notations 
1/2 

= (US»0 * ' <£bl * <-) ia + Jfc" J + 1 Fab »nd 5 - <2J * I) 

3.2.1 The one-body operators 

Let Tfl be the most general (particle number con-
serving) one-body operator 
The coupling convention is that of I-
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Î Q . Z l T^tK^ [a,(a)« 5 ( t ^ ( S 9 ) 

with 

fox which the summation index k in eq.(8) tafcïs the values 0 and 

1. This operator cannot connect states ŝtS and \4'\ such that 

iM*-^* l^ 2. The unknown quantities are denoted by S^',1 {*'*ifyp) 

a) the case Jt(^ - |<*'> = | 0 ^ 

E V ^ P ) =0 (6..a) 

£'>•<; «,-£) - S t o 0 Q 0 <-)fe*'(20*)* T(«o) ( 6 I . b ) 

' « the case |rf> s | o> , |d'^ 5 \ ' o b ï M ^ 

c) the case {c*^ - \o.m^ } [n'y s (bw^ 

C(«'«; l;p) = k , i^S.. </'* W Tdvo) 
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d) the case |<t> = |abTM> , K > = \ c i 3 ' M " > 

3.2.2. The Hamiltonian operator 

For a subspace with gi.ven seniority v, one has 

k' • k = 0, 1,2 and the matrix elements of interest are given 

•by relation. (1.60). The Hamiltonian operator tfor spherical 

systems of identical particles) writes 

•t *• abeitT 

^(b)»a.fc0] T«[ &W»5fc1j|*£ ( 6 5 ) 

with (W is the two-body part of H) 

U ^ a ^ . t r * fa\\&*t î<«bJM\w\c<t3M> < 6 6 ) 
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For practical convenience, all the results are 

expressed in terms of quantities U j (at>,£A;b) which i) are 

linear combinations of the quantities (66) and ii) depend upon 

the model parameters p£. All these quantities are defined in 

Appendix together with their properties. 

a) the case \t(> - \ * ' } s |0> 

T6*V*;jf)-0 (67. a) 

«SOrtçjg) « « w ' ( p ^ * U 0

U W > £ ) C67.C 

b) the case Jcl) B ^ i n N , l<<'^=lk*") 

"36 (*'<>£) r S ^ . f . (68.a) 

«Se*'-») = tu « ^ ( W uîWfi ) 



(69.a) 

c) the case \.T> = JafeTtf) ,\<^ = \ t 4 3 « " ) 

t «ft «ft (U &w*X«* ftiJ^lLui'CcA^t; pj] 

* ^ CNF*/*!*)* «#«# (H«Wi)(U «Us) 
t 

• Z ^ U ^ ' t a ^ U ? («*$)] (69.0 

Note the extreme s i m p l i c i t y of the results which 

r e f l e c t nothing but the s impl ic i ty of the quas i -par t i c l e scheme. 



21. 

4. Discussion and conclusion 

As shown above» the properties of the '"exponential 

procedure" are threefold : 

i) it preserves the differential structure of BPH or, in 

other terms, the factorization of the model parameters in an 

exponential term exp pj ). This ensures that the effec 

tive operators acting in 0 ( 0 ) and ) are the same 

(apart from the trivial coefficient "AÏ /ft '. ) -see eq&.(55) and 

(1.58)- ii) in practice, it enables to take advantage in a 

straightforward way of the existence of a vacuum (the q.p. one) 

rv(fe) . . 

i n ) it gives simple expressions f>r the mean values Vi/.t («f.'p ) 

-see eq.(53)- so that the identification of the coefficients 

htforward. We stress out that in 

many cases, because of"the large amount of work done ia the past 

with QPS, the only thing one has to do is to rewrite matrix 

elements of operators in the form (46) using results (53). 

Needless to say, number proji^tion techniques )'jould lead to 

the same result. However, from practical point of view, it 

appears simpler to use the "exponential procedure" than the 

various number-projection techniques. As a conclusion, it should 

be clear now that it is as easy to work with BPM as with QPS. 

Acknowledgments : This work has been done with the financial 

support of the Accords QuÉbec-Belgique. 
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Appendix 

Ihe symmetry properties of the quantities 
directly follow from their definition (66) 

Then, from the antisymmetry of the two-particle 
states and the hermiticity of W (with ô(ofa3)-a H ) 

(A. 2b) 

= «FtCU%XcA,*.b)* <A.2c) 

In practice, the quantities are 
real quantities and W commutes with the parity operator so that 

(r\ • 1> Quantities \Ay [&.*>, wtjj>) vhich depend upon the 
model parameters pj are introduced by considering the parameter 
dependent operator 

with ') 
T{») = i*f TJ^ibn^i <A.4) 

The definition of the quantities L v 3 (<xl»#cJl • pj 



is simply obtained by replacing in éd.. (A. I) the operttoe û 

with the operator ft(p) 

(A.6) 

Obviously, symmetry r e l a t i o n s similar to (A.2a) and (A.2b) arc 

s t i l l va l id «ben replacing U<j (a.b,£«Q with U Ç (d.b,c4}{?) 

but re la t ion (A.2c) has to be replaced with 

U , tafc,«i;^ * (pcp^yp»»t) U y (tA,o.b;i^) (A.7) 

Quantities LA* (pJ»tcAjr

,j are then defined 

according to 

with 

R»(«l»«4>P) = Z (A. 9) 

vhere the square 9-5 are related to the usual 9-j 

« ? « * m <A.IO) 
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For these quantities U , (o^cd-jb) , only symmetry 
relation similar to (A.2a) is valid Hith, in addition 

T. 
•y 

Ut 3'] -
•Sao 
\l 1^' ^V (Ao-'^ll) - ~ U 3 (K **}?) (A.1D 

Replacing in eqs.(A.8> and (A.9), IA 3 (ab,eAjj>) 
with the symmetrized quantities 

one finally defines quantities U T (alt), C4 } p J for which 
symmetry relations similar to (A.2) and (A*II) are valid. 
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