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ABSTRACT

It is shown that a discretized version of Feynman1s path
integral provides a convenient tool for the numerical investiga-
tion of the properties of an electron solvated in molten KC1.
The binding energy and the pair correlation functions are cal-
culated. The local structure around the solute electron appears
to be different from that of an ? center in the solid.

I. INTRODUCTION

Solutions of alkali metals in their liquid halides (M-HX)
display an intriguing variety of behavior as a function of tem-
perature and concentration.(1 ,2) In the present investigation
we shall restrict our attention to extremely snail concentration
of metals. The most accepted picture in this dilute limit is
that the added metal atom dissociates into M+ and e~. Based on
a variety of different experiments a model has been proposed
which is known as the F center nodel.(3) The physical picture
underlying the model is that the e~ substitutionally accupies in
the liquid structure, the place of an X~. This, of course,
parallels what occurs in solid alkali-halides where the occur-
rence of F centers is a well known and well studied phenome-
non. (4) However, in the liquid state, particles are not only
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free to relax "but they can also diffuse and the local environ-
ment around the solute electron can be substantially different
from that in a solid. A theoretical approach to the problem
presents great difficulties since quantum mechanics and statis-
tical physics are here interwoven in a complicated way. However
a discretized version of Feynnan's path intergal formulation of
quantum statistical mechanics(5) may provide a convenient frame-
work for solving this problem. This approach has been pionerred
by Fosdick and coworkers(6) and more recently has attracted con-
siderable interest from the numerical and theoretical point of
view.(7-11) In this scheme the quantum problem is shown to be
isomorphic to an appropriate classical problem. In our case the
solvated electron is mapped onto a closed flexible polymer of ?
points. The isomorphism becomes more and more exact as P •> °».
Such a limit cannot be taken on the computer, thus the practical
applicability of the method relies heavily on the possibility of
achieving convergence with a manageable value for P. It is the
purpose of this note to report a preliminary study of the con-
vergence of the method when applied to a model for a single
electron in molten KC1. We have calculated the binding energy
of the electron as well as the pair correlation between the
electron and the ions in the molten solvent. In a more detailed
paper we shall present data related with the effect of the e~-K+

potential; there we will also present a compelling justification
for the F center model(3) of e" in molten salts by showing the
details of the hole digging process. We are also in the process
of calculating the diamagnetic susceptibility of the electron
and the behavior of 2 electrons in the molten salt system.

II. THE ISOMORPHISM

Let us first consider the case of a single electron in an
external potential <K_r)« The partition function for such a
system is:

Z = Tr e ~ e H , (1)

-fi2 JZ

where II = - -̂ — JT + <->(r) and 3 = 1/kRT is the inverse tempera-

ture. Eqn. (1) can be rewritten as:

Z = Tr ( e " S I / P ) P . (2)

Inserting P complete sets of states Eqn. (2) becomes:
Z= / d£l.. -d rp<£l | e~

 W / P | r2>. . .<rp | e-
 PH/P |£l >. (3)

Eqn- (3) is of course exact but impractical. To proceed further
one has to make the high temperature expansion:



where p (r ,r ; 3/P) is the free particle propagator relative to
the temperature 8/P:

PO(£1 , ^3 /P) = (Pm/2,h23)3/2 e ^ i " 1 ^ ^ . (5)

Inserting Eqn. (4) into Eqn. (3) one finds for Z the approximate
expression

Z - y t W f t 3 " 8 / «r,.. .drp e
W r f f ( X l ' * * > . (6)

with

In the above equation it is understood that in the first summa-
tion when i = P, r = r and a similar convention will be
adopted throughout the paper. This periodic condition reflects
the fact that the trace has to be taken in evaluating Z. Equa-
tion (6) and (7) establish an approximate isomorphism between
the original quantum problera and the classical problem defined
by Eqn. (7)• In this isomorphism the quantum particle is mapped
onto a flexible closed chain polyser or necklace. Each point on
the necklace interacts with its first neighbors in the chain
through a harmonic potential of spring constant Pm/-fi & and with
the external potential through the appropriately scaled poten-
tial <K)

The accuracy of the isonorphisn increases with the value of
P and in the limit one has:

Z = lin Z . (8)
P + co "

In practical applications of the isomorphism P is a finite
number such that

Z - Z p . (9)

At high temperature and/or for snooth potentials Eqn. (9) can be
satisfied with a manageable value for P.

Neglecting exchange, the isoaorphism is easily generalised
to the many particle case of !J quantum particles and the effec-
tive classical potential reads in this case:(12)



J, j,
'i i
V>Hi=1

N P (rV)/P

where r. is the i-th point of the necklace onto which the v-th
quantum particle has been napped, ty (r) is the interparticle
potential between the quantum particles v and p, and <J>v(r) is
the external potential felt by particle v.

Once the isomorphism has been established one has to find
ways of calculating the quantities of interest. Such quantities
are represented in quantum theory by operators and it is by no
means obvious how operators can be expressed in the classical
isomorphism.(9) Let us consider first the energy E. In princi-
ple it can be evaluated fron the exact relation:

E = --|p In Z . (11)

Substituting Zp for Z, this leads to:(4)

2 ^ 2
E = /

P (12)
+ I <<Kr.)>/P ,

1

vzhere the averages are taken over the Boltzman distribation
defined in Eqns. (6) and (7). The last term in Eqn. (12) can be
clearly identified with the average potential energy. Thus one
finds for the kinetic energy the following estimator:

p

K = 5P/2S - Pm< I (r± - T±+^)
2>/2fi2£ . (13)

This estimator for K, though formally exact for P •»• ra, has
two major numerical disadvantages. It gives K as the difference
between two large quantities and its variance grows with P. Tne
way out from this difficulty has been suggested in a paper by



Herman et al.,(9) where it is shown that by appropriate integra-
tion by parts Eqn. (13) can be reexpressed in the equivalent
form

K- 5/23 • < I -H- • rip>/2P
a = 1 — i (14)

= K. + K. . ,
free m t

where _r̂ p denotes _r_̂  -

Equation (14) is obtained from the equality:

which is a consequence of the integration by parts alluded to
above. Note that the identity

i
a
is used in the derivation of these results. Note also that in
Eqn. (14'), for the special case <[K) i.e., in the case of a free
particle the two large terras on the left side exactly cancel
each other. We will explicitly show in the following that Eqn.
(14) is numerically more convenient form to use.

III. MODEL CALCULATION

\!e now turn to the description of the calculation that we
have performed for a model of an electron solvated in KC1. In
the model the ions K+ and Cl~ that compose the melt are treated
purely classically and interact through a Born-Meyer potential

7 7 a

> * A "r/P Hu e l J + H - >
and the parameters of the potential are those fixed by Fumi and
Tosi-(12)

As to the interaction potential between the electron and
Cl" we have taken it to be purely Coulorabic at all distances:

• . (r) - -I- . (20)

Equation (20) neglects all corrections due to repulsion fron the



Cl core. Since an electron is already repelled by the
Coulornbic potential such corrections are expected to be of snail
consequence. In contrast core corrections are very important in
the e-K+ interactions. These will "be dealt with through the
following local pseudopotential(i3)

<{> (r) = - e2/R r < R
eK+ (21)

= - e2/r r > R ,

where quite tentatively we have taken R = 1 .96A. While non-
locality and other effects are of quantitative importance, the
potential in Eqn. (21) has the merit of "being slowly varying.
This is instrumental in obtaining a rapid convergence of the
isomorphism.

Summing up all the contributions the effective potential
for the problem at hand becomes:

Veff " j, 2 2 2

+ \ X v&i - v / p (22)

1=1 J=1
K N

+ 1/2 I I A (R - R ) ,
1=1 J=1 ±J ~l ~J

where the % are the ionic coordinates, <J> j and $JJ are defined
in Eqn. (2*0), (21) and (19) respectively, and N is the total
number of ions in the system. Statistical sampling of the
classical problem defined by the potential in Eqn. (22) can be
performed on a inicrocanonical ensemble. The numerical equi-
valence of the two procedures has been demonstrated in ref.
14> The inicrocanonical ensemble sampling is performed by aver-
aging over the trajectories generated by the classical
Hamiltonian

. \ \ ^ \ x e f f (25)

where Kj are the ionic masses and m* is some arbitrary mass
attributed to the points on the necklace. The trajectories
generated by H are obtained by employing the methods of constant
pressure molecular dynamics (MD).(15) Strictly speaking, the



time trajectories thus obtained have no real meaning and are a
mere computational device for exploring the properties of Veff
at various temperature density conditions. Furthermore, since
this part of the calculation is nerely classical the static
properties obtained will be independent of the values of Mj and
m*. In the present calculation we have taken for Mj the ionic
masses as it is natural to do, while fairly arbitrarily, we have
put m* = one atomic unit of mass.

The calculations have been performed at 1000 K and 10.4 kb
with 150 K+, 149 Cl~ and a varied number of P. As usual peri-
odic boundary conditions were imposed; the long range nature of
the Coulomb potential imposes consideration of the interaction
between different images of the l-W cell. This was handled by
the Ewald method of summation. Some care is needed here since
the isomorphism described in sec. II leads to preculiar rules
for the interaction between different points on the necklace;
see Eqn. (10). When these are taken into account we find for
the total Coulomb energy of the system:

Coulomb

(24)
P N

-I I I D2Z /?|r -E +v| + 1/2 l'e
2/|v|,

i=1 J=1 v ° 1 v*o

where _v runs over all the translations of the MD cell and the
prime in the summation over _v implies exclusion of the term
I = J if _v = 0.

For later purposes we introduce the Coulomb interaction for
the electron:

Vel " Coulomb " VII ' («)

where VJJ, the interionic Coulomb potential is given by the
first term in Eqn. (24), made convergent by the introduction of
a charged background of density -e/ft, ft being the MD cell
volume. This definition of V e I implies that we measure the
electronic energy relative to a state in which the electron is
uniforraely spread over the whole volume. In the language of
quantum mechanics this corresponds to a plane wave state of
infinite wavelength. The suns in Eqn. (24) and (25) have been
evaluated by the usual Ewald method.



IV. THE KINETIC ENERGY ESTIMATOR AND THE BINDING ENERGY OF THE
ELECTRON

As seen from Eq. (13)» î - the limit of large P the kinetic
energy of the electron is obtained by taking the difference
between two large numbers. In the special case of a free par-
ticle, by calculating the "necklace energy" i.e., the 2nd tern
on the right side of Eqn. (13) one learns that the condition of
the necklace closing on itself gives the value 3(P-i)/2£ to the
necklace energy and hence K = 3/2 3.

When an analytical solution of the type alluded to above is
not possible and Eqn. (13) is used in making numerical estimates
difficulties will arise because both terras in Eqn. (13) grow
with increasing P. This is obviously not the case when Eqn.
(14) is used for estimating K. !7ote that in Eqn. (14) we see a
separation of the kinetic energy into physically meaningful
parts. The first term is the free particle contribution and the
second due to the interaction of the electron viith the medium.

Table I. Value (variance) of e~ kinetic energy (Ryd. units)
estimator calculated according to Eq. (13) and Eq.
(14). 3/2 3= .0095 Hyd. The last three rows cor-
respond to 3 independent calculations with P=2O1.

12
25
50

100
201
201
201

.091

.100

.109

.120
.142
.118
• 113

(.003)
( .022)
(.034)
(.050)
(.031)
(.055)
(.071)

.077 (.024)

.103 (.026)

.108 (.024)

.111 (.029)

.095 (.027)

.099 (.028)

.095 (.029)

In Table I we shov? the values of K when it is calculated
using Eqn. (13) and also Kint appearing in Eqn. (14); in each
case we also show the variance. It is clear that the kinetic
energy estimator in Eqn. (14), i.e., Kint, has a variance inde-
pendent of P. This is not so for the variance of the kinetic
energy calculated from Eqn. (13).

From Eqns. (12) and (22) we see that in our model system
the potential energy of the electron is to be identified with
the average



P N
V. + = < I I P"1 $ T ( r . - ET)> , (26)

ant .j-. T^. el —i —I' '
where <{>ej depending on whether I i s K+ or Cl~ i s given "by Eqn.
(21) or Eqn. (20) respectively.

Table I I : Value (variance) of e~ kinetic and potential energy
(Ryd. uni ts ) . The sun is also shown.

p K • E P • 2 B • E

12
25
50

100
201
201
201

•087( .024)
.113(.O26)
.118(.O24)
.121(.O29)
.104(.027)
.108(.028)
.1O5(.O29)

-«549(.068)
-•417(.O54)
-.401 (.050)
-.396(.062)
-.413(-069)
-.428(.O32)
_.445(.O43)

-.462
-.304
-.283
-•275
-.309
-.320
-.340

In Table II is shown the kinetic energy 3/2 3 + Kint» the
itial energy V± ̂  of Eqn. (26V

we refer to as the binding energy
potential energy Vija+ of Eqn. (26), and the sura of the two which

b n "

We notice from Tables I and II that except for P=12 all
other values of P give a consistent set of values for the energy
of the electron. We therefore believe that calculations with
P=100 or 201 are reliable fron the point of view of the conver-
gence with respect to P. The uncertainties are statistical and
are related to the lengths of runs and other factors that are an
inherent part of all such computer simulations.

In this content the questions of the 'correct' estimator is
still open inspite of the data in Table I. As has been reported
by Jacucci(8) ia Lliis volume the persistence of correlations in
long Monte Carlo or molecular dynamics chains of configurations
can alter, in rather unexpected ways, the above apparently
obvious conclusions about estimators and their variances.

V. SOLVATION SHELL AROUHD e~ DESCRIBED THROUGH FAIR CORRELATIONS

For an F center in solid KC1, i.e., an e~ trapped at a Cl~
vacancy, the geometrical description of the surroundings of the
e~ presents neither any difficulty or challenge. The e~ is
surrounded by 6 K ions in an octahedral configuration and then
by 12 Cl~ etc. Of course the relaxation of the mean thermal
positions away from the ideal lattice sites of the surrounding
ions is an interesting problem, specially in its dependence on
temperature and on the assumed e~-K+ pseudopotential.



For an e in liquid KC1 hovrever one has to adopt procedures
borrowed from the well established methods of analysis in terras
of pair correlation functions to describe the solvation shell of
K+ ions around the e~ cloud.

The formal procedures, using functional derivations, has
been given by Chandler and Vfblynes.(iO) The pair correlation
between e~ and K , to.be written g - „+ (r) is simply a suitably
normalized average <n^> where n?-, in a given configuration, is
the number of K+ in a shell of radius r = (&-i)Ar and thickness
Ar around a prescribed point i on the electron necklace. < > of
course denotes averaging over configurations.

In fact since all the points on the necklace are statisti-
cally equivalent there is an enormous gain in efficiency in
averaging further over all points of the necklace. Thus we get

2.0 4.0 6.0

R(RNGSTROM)
10.0

Fig. 1. Solvation shell structure around the electron. The
core radius in e~-K+ pseudopotential is 1.96A. The
coordination number is estimated to be between 3 and 4«



(27)

where r = (£-1) Ar and H /ft is the number density of K ions in
the system. The coordination nunber up to distance s = aAr will
then be

N(s = cAr) = f <no> . (28)

The function g -
l

+ is shovn in Fig. 1. The values of K(s)

is also shown in a suitable manner. For comparison gp,- y+ i s

shown in Fig. 2. It is clear that the coordination number in
Fig. 2 is clearly 6 as is to oe expected in nolten KC1 but in
Fig. 1 it is definitely less than 6 and is closer to 4. Thus vre
conclude that (for the case of R = 1 -96A in the pseudopotential)
the coordination number is tetrahedral rather than octahedral.
However this average coordination number is itself an average of
a distribution of coordination nunbers. This is being studied
and it appears that in this distribution of coordination numbers
up to the distance 4A there nay very well be a peak at 3 and a
longish tail with larger values giving an average of 4.
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I
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0.0 2.0 4.0 6.0 8.0

R(RNGSTROM)
10.0

Fig. 2. Cation-anion pair correlation.



References

1. M. A. Bredig, "Molten Salt Chemistry", edited by M. Blander
(New York: Interscience), p. 567 (1964).

2. J. D. Corbett, "Fused Sal ts" , edited "by B. Sundheim (New
York: HcGrav-Hill) p. 341 (1964).

3. K. S. Pi tzer , J. Am. Cher. Soc _84, 2025 (i960).

4. \l. B. Fovrler, Physics of Color Centers (London: Academic
Press)

5. R. P. Feynnan and A. R. Ki"bbs, "Quantum Kechanics and Path
Intergrals" (New York: McGraw-Hill) (1965).

6. L. D. Fosdick, J. Math. Phys. 3_, 1251 (1962); L. D. Fosdick
and H. F. Jordai , Phys. Rev. 143, 58 (1966); L. D. Fosdick
and H. F. Jordan, Phys. Rev. 171, 128 (1968).

7. J. Barker, J. Chein. Phys. 7p_, 2914 (1979)-

8. G. Jacucci, This proceeding.

9. M. F. Herman, E. J. Bruskin and B. J. Berne, J. Chein. Phys.
76_, 10 (1982).

10. D. Chandler and P. G. Viblynes, J. Chem. Phys. ^ 4 , 7 (1931).

11. K. S. Schweitzer, R. H. Stra P. Chandler and P. G.
Volynes, J- Chem. Phys. _75, 1>47 (1981).

12. F. G. Fumi and M. P. Tosi, J. Phys. Chein. Sol. _25_, 31
(1964); 25, 45 (1964).

13. R. W. Shaw, Phys. Rev. JJ74_, 769 (1968).

14. D. Callaway and A. Rahnan, Phys- Rev. Letters 49, 613
(1982).

15. M. Parrinello and A. Rahnan, Phys. Rev. Letters _45_, 11Q6
(1980).


