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ABSTRACT

It is shown that a discretized version of Feynman's path
integral provides a convenient tool for the numerical investiga-
tion of the properties of an electiron solvated in molten KCl.
The binding energy and the pair correlation functions are cal-
culated. The local structure around the solute electron appears
to be different from that of an F cenier in the solid.

Y. INTRODUCTION

Solutions of alkali metals in their liquid halides (M-1%)
display an intriguing variety oI behavior as a function of ten-
perature and concentration.(1,2) 1In the present investigation
we shall restrict our attention to extremely small concentration
of metals. The most accepted picture in this dilute limit is
that the added metal atom dissociates into M' and e”. Based on
a variety of different experirments a model has been proposed
which is known as the F center model.(3) The physical picture
underlying the model is that the e” substitutionally accupies in
the liquid structure, the place of an X~ This, of course,
parallels what occurs in solid alkali-halides where the occur-
rence of F centers is a well Xrown and well studied phenome-
non.(4) However, in the liquid state, particles are not only

FWork supported in part by the U.S. Department of Fnergy and by
the Italian Ministry for Public Education.



free to relax but they can also diffuse and the local environ-
ment around the solute electron can be substantially different
from that in a solid. A theoretical approach to the problem
presents great difficulties since quantum mechanics and statis-
tical physics are here interwoven in a complicated way. However
a discretized version of Feynnan's path intergal formulation of
quantum statistical mechanics(5) may provide a convenient frame-
work for solving this problem. This approach has been pionerred
by Fosdick and covorkers{6) and more recently has attracted con-
siderable interest from the numerical and theoretical point of
view.(7-11) 1In this scheme the quantum problen is shown to be
isomorphic to an appropriate classical problem. 1In our case the
solvated electron is mapped onto a closed flexible polymer of P
points. The isomorphism becomes more and more exact as P + o,
Such a limit cannot be taken on the computer, thus the practical
applicability of the method relies heavily on the possibility of
achieving convergence with a2 manageable value for P. It is the
purpose of this note to report a preliminary study of the con-
vergence of the method when applied to a model) for a single
electron in molten KCl. Ve have calculated the binding energy
of the electron as well as the pair correlation between the
electron and the ions in the rolten solvent. 1In a more detailed
paper we shall present data related with the effect of the e -K*
potential; there we will also present a compelling justification
for the F center model(3) of e~ in molten salts by showing the
details of the hole digging process. Ve are also in the process
of calculating the diamagnetic susceptibility of the electron
and the behavior of 2 electrons in the molten salt systea.

II. THE ISOQ!IIORPHISH
Let us first consider the case of a single electron in an

external potential ¢r). The partition function for such =z
system is:

z =1 ¢ BH | (1)
ﬁ2
vhere H = - 3Efj£ + ¢(r) and B = 1/kgT is the inverse tempera-
ture. Eqn. (1) can be rewritten as:
7 = TI‘ (Q-E{/P)P . (2)
Inserting P complete sets of states Eqn. (2) hecomes:
_ -f/P -BH/P
Z= [ QE1...QEP<£4{e |1é>"'<£Ple 'Eh>' (3)

Egn. (3) is of course exact but impractical. To proceed further
one has to make the high tempsrature expansion:



BH/PIr >= Py (r B/P) e—B{¢(£1)+¢(£2)]/2P, (4)

<..I; Ie 1,1'2,
where p (r 5T, ; B/P) is the free particle propagator relative 1o
the temperatufe B/P:

. 2 52
0, (zyoEpi B/P) = (Bmj2m?g)/? o Polzy - 2)°/2008 (5)

Inserting Eqn. (4) into Eqn. (3) one finds for Z the approximate
expression

~-BY yooeTD)
2 = a=(Pn/2n’ € )°F2 [ar, .4z, e ers(zseezp) (€)
with
1
veff(£1""!_£P) ): { ?'_" 1 1 +1) + 'P ¢(£i) }’ (7)

In the above eguation it is understood that in the first summa-
tion vhen i = P, r r and 2 similar convention will be
adopted throughout %%e paper. mis periodic condition reflects
the fact that the trace has to te taken in evaluating Z. Equa-
tion (6) and (7) establish an aprproximate isomorphism between
the original quantum problen and the classical problem defined
by Eqn. (7). In this isomorphisa the quantum particle is mapped
onto a flexible closed chain polymer or necklace. Each point on
the necklace interacts with its first neighbors in the chaln
through a harmonic potential of sprlng constant Pm/i B and with
the external potential through the appropriately scaled poten-
tial ¢(x)/P.

The accuracy of the isormorzhism increases with the value of
P and in the limit one has:
Z= 1lin Zp .o (8)
Pre
In practicel applications of the isomorphism P is a finite
number such that

2 =3 . (9)

At high temperature and/or for szooth potentials Eqn. (9) can be
satisfied with a manageable value for P.

Neglecting exchange, the isonorphism is easily generalized
‘to the many particle case of I quantum particles and the effec-
tive classical potential reads in this case:(12)
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_ v v 2 2.2
Verr = X _Z Polr;- r;,,)7/20°8

v=1 i=1 .

N P

, ) v (10)
SRR G 3%

wu i=1

N P y
= L1 e, (r)/e,

v=1 i=1

vhere r’ is the i-th point of the necklace onto which the w-th
quantum particle has been mevred, ¢ (r) is the interparticle
potential between the quantux partiéTéE v and 4, and ¢,(r) is
the external potential felt tr perticle v. -

Once the isomorphism has teen established one has to find
ways of calculating the quantities of interest. Such quantities
are represented in quantun theorr by operators and it is by no
means obvious how operators can be expressed in the classical
isomorphism.(9) Iet us consider first the energy E. In princi-
ple it can be evaluated from the exact relation:

B=-5inz . (11)
Substituting Zp for Z, this leads to:(4)
P

E=3P/28- Pn < ] (r; -
i=1

2 2.2
£i+1) >/2%" 8

(12)

+ ) <¢(r.)>/P ,
—i
i=1
vwhere the averages are taken over the Boltzman distribution
defined in Egns. (6) and (7). Tre last term in Eqn. (12) can be
clearly identified with the averazge potential energy. Thus one
finds for the kinetic energy the following estimator:

P 2. ,.,.2.2
K = 3P/28 ~ Pn< | (r; - r )7/ (13)
i=1

This estimator for K, thouzh formally exact for P + =, has
two major nunerical disadvantages. It gives K as the difference
between two large quantities and its variance grows with P. The
way out from this difficulty has been suggested in a paper by



Herman et al.,(9) where it is shown that by appropriate integra-
tion by parts Egn. (13) can be reexpressed in the equivalent
form

o
K=3/28+< )] 22 .r >/op
i=1 %3 (14)
= Xrree * Kint ?

where I;p denotes_zi - Tp-

Equation (14) is obtained from the equality:

P

3 _Pm 2, _ 1 KL ‘s

7 (F-1) o2 (2 <-_X (£; - 23,07 = 5p<L Zgp * 5 (147)
h B i=t i

which is a conseguence of the integration by parts alluded to
above. Note that the identity

I = 2
g (Eiffp) (Eif£i+1iiii£i—1) - EQEi.£i+1)

is used in the derivation of these results. Note also that in
Egqn. (14'), for the special case ¢=0 i.e., in the case of a free
particle the two large terms on the left side exactly cancel
each other. Ve will explicitly show in the following that Egn.
(14) is numerically more convenient form to use.

ITII. MODEL CALCULATION

Ve nov turn to the description of the calculation that we
have performed for a medel of an electron solvated in KCl. 1In

the model the ions K' and C1~ that compose the melt are treated
purely classically and interact through a Born-Meyer potential

-r/p ZIZJe2
L R S e e (19)
and the parameters of the potential are those fixed by Fumi and

Tosi.(12)

As to the interaction potential between the electron and
C1™ we have taken it to be purely Coulombic at all distances:

e? '
¢ . (r) = T (20)
e

Equation (20) neglects all corrections due to repulsion from the



C1™ core. Since an electron is already repelled by the
Coulombic potential such corrections are expected to be of spall
consequence. In contrast core corrections are very important in
the e-K' interactions. These will be dealt with through the

following local pseudopotential(13)

+(r) = - ez/R r <R
ek (21)

= - e2/r r >R,

where quite tentatively we have taken R = 1.96A. Vhile non-
locality and other effects are of quantitative importance, the
potential in Eqn. (21) has the merit of being slowly varying.
This is instrumental in obtaining a rapid convergence of the
isomorphism.

Summing up all the contributions the effective potential
for the problem at hand becones:

P
) 2,22
Verr ~ 1211 Pnlry - x5,)7/260°8
PN
+ 1) ¢, -R)/P (22)
i=1 J=1
i)
+ 1/2 ) (H - R ) ’
=1 g -t =S

where the Ry are the ionic coordinates, ¢eJ and ¢IJ are defined
in Eqn. (26%, (21) and (19) respectively, and N is the total
nunber of ions in the system. Statistical sampling of the
classical problem defined by the potential in Egn. (22) can be
performed on a microcanonical ensemble. The numerical equi-
valence of the two procedures has been demonstrated in ref.

14. The microcanonical ensemble sampling is performed by aver-
aging over the trajJectories generated by the classical
Hamiltonian

+ v ) (23)

P N
_ 1% 2 1. =2
He= L ogm ozt 25”1}21 eff

1

where MI are the ionic masses and m® is some arbitrary mass
attributed to the points on the necklace. Tne trajectories
generated by H are obtained by employing the methods of constant
pressure molecular dynamics (MD).(15) Strictly speaking, the



time trajectories thus obtzined have no real meaning and are &
mere computational device for exploring the properties of Veff
at various temperature density conditions. Furthermore, since
this part of the calculation is nerely classical the static
properties obtained will be independent of the values of My and
m¥. In the present calculation we have taken for M7 the ionic
nasses as it is natural to do, while fairly arbitrarily, we have
put m¥* = one atomic unit of nzss.

The calculations have been performed at 1000 K and 10.4 kb
with 150 K+, 149 C1” and a varied number of P. As usual peri-
odic boundary conditions were imposed; the long range nature of
the Coulomb potential imposes consideration of the interaction
between different images of the MD cell. This was handled by
the Ewald method of summation. Some care is needed here since
the isomorphism described in sec. II leads to preculiar rules
for the interaction between different points on the necklace;
see Egn. (10). Vhen these are taken into account we find for
the total Coulonb energy of the system:

NN, R
Veouroms = 1/2 121 J21 g Zy25e"/IRy - Ry + v
- (24)
Pow ,
- L I Lefzyplz -moevl v 72 TP/,
i=1 J=1 v T vio

where V runs over all the iranslations of the MD cell and the
prime in the summation over V implies exclusion of the term
I=Jif v=0.

For later purposes we introduce the Coulomb interaction for
the electron:

Vo1 7 Yeoutomb = V11 (25)
where Vyy, the interionic Coulomb potential is given by the
first term in Eqn. (24), made convergent by the introduction of
a charged background of density -e/92, R being the ND cell
volume. This definition of Vg7 implies that we measure the
electronic energy relative to a state in which the eleciron is
uniformely spread over the whole volume. In the language of
quantum mechanics this correspords to a2 plane wave state of
infinite wavelength. The suzs in Egn. (24) and (25) have been
evaluated by the usual Ewald nsthod.



IV. THE KINETIC ENERGY ESTINATOR AND THE BINDING ENERGY OF THE
ELECTRON

As seen frow Eq. (13), in %the 1imit of large P the kinetic
energy of the electron is obtained by taking the difference
between two large numbers. In the special case of a free par-
ticle, by calculating the "reckliace energy” i.e., the 2nd term
on the right side of Egqn. (13) one learns that the condition of
the necklace closing on itsel? gives the value 3{(P-1)/28 to the

necklace energy and hence K = 3/28.

When an analytical solution of the type alluded to above is
not possible and Egn. (13) is used in making numerical estinates
difficulties will arise beczuse both terms in Eqn. (13) grov
with increasing P. This is obviously not the case vhen Egn.
(14) is used for estimating ¥. Tote that in Egn. (14) we see &
separation of the kinetic erergy into physically meaningful
parts. The first term is the frese particle contribution and tks
second due to the interacticn of the electron with the medius.

Table I. Value (variance) of e kinetic energy (Ryd. units)
estimator calculated according to Eq. (13) and Eg.
(14). 3/2B= .0025 Pyd. The last three rows cor-
respond to 3 indererdent calculations with P=201.

1 3

P P(3/28 - <B>] 5 <% ?E: o
12 .091 (.oC8) 077 (.024)
25 100 (.022) . 103 (.026)
50 109 (.032) .108 (.024)
100 .120 (.c50) 11 (.029)
201 142 (.021%) 095 (.027)
201 .118 (.055) 099 (.028)
201 13 (.071) 095 (.029)

In Table I we show the values of K when it is calculated
using Eqn. (13) and also K;,. appearing in Eqn. (14); in each
case we also show the variance. It is clear that the kinetic
energy estimator in Egn. (14), i.e., Kipts has a variance inde-
pendent of P. This is not so for the variance of the kinetic
energy calculated from Eqn. {13).

From Eqns. (12) and (22) we see that in our model systen
the potential energy of the electron is to be identified with

the average



N
_ —1
Vint = <.j 2 P70 gy (25 - B> (26)
i=1 I=1
where ¢_r depending on whether I is XK' or C1~ is given by Egn.
(21) or Egn. (20) respectively.

Table II: Value (variance) of e kinetic and potential energy
(Ryd. units). The sum is also shown.

P K - B P+ B B + E
12 .087(.024) -.549(.068) -.462
25 .113(.026) -.417(.054) -.304
50 .118(.024) ~-.401( .050) -.283
100 .121(.029) -.396( .062) -.275
201 .104( .027) -.41%( .069) -.300
201 .108( .028) -.428(.032) -.320
201 .105(.029) -.445(.043) -.340

In Table II is shown the kinetic energy 3/28 + Kint’ the
potential energy V5 % of Egn. (26), and the sum of the two which
ve refer to as the glnding energy .

Ve notice from Tables I and II that except for P=12 all
other values of P give a consistent set of values for the energy
of the electron. Ve therefore believe that calculations with
P=100 or 201 are reliable from the point of view of the conver-
gence with respect to P. The uncertainties are statistical and
are related to the lengths of runs and other factors that are an
inherent part of all such computer simulations.

In this content the questions of the 'correct' estimator is
still open inspite of the data in Table I. As has been reported
by Jacucci(8) in ihis volume the persistence of correlations in
long Monte Carlo or molecular dynamics chains of configurations
can alter, in rather unexpected ways, the above apparently
obvious conclusions about estimators and their variances.

V. SOLVATION SHELL AROUND e~ DESCRIBED THROUGH FAIR CORRELATION

For an F center in solid XCl, i.e., an e  trapped at a C1”
vacancy, the geometrical description of the surroundings of the
e~ presents neithgr any difficulty or challenge. The e” is
surrounded by 6 K ions in an octahedral configuration and then
by 12 €1~ etc. Of course the relaxation of the mean thermal
positions away from the ideal lattice sites of the surrounding
ions is an interesting problem, specially in its dependence on
temperature and on the assured e”-K' pseudopotential.



For an €~ in liquid KCl however one has to adopt procedures
borroved from the well established methods of analysis in terms

of pair correlation functions to describe the solvation shell of
K* ions around the e~ cloud.

The formal procedures, using functional derivations, has
been given by Chandler and Volynes.(10) The pair correlation
between e~ and K, to.be written g - c (r) is simply a suitably
normalized average <n™> where nt, Iin d given configuration, is
the number of X* in a shell of radius r = (2-1) Ar and thickness
f&r around a prescribed point i on the electron necklace. < > of
course denotes averaging over configurations-

In fact since all the points on the necklace are statisti-
cally equivalent there is an enormous gain in efficiency in
averaging further over all points of the necklace. Thus we get
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Fig. 1. Solvation shell structure around the electron. The
core radius in e K" pseudopotential is 1.96A. ¥The
coordination number is estimated to be between 3 z2nd 4.



-1 i, 2. w/n
np=3 §<nz> 4arSAr W /9 ge-—,K"-(r), (27
where r = { &1) Ar and N+/9 ig *ne numher density of ¥t ions in
the system. The coordinatior nutber up to distance s = ofr will
then be

g
N(s = ofr) = ) @ . (28)
=1
The function 8o~ + is shown in PFig. 1. The values of N(s)
is also shown in a sui%able ranrer. For comparison g, - V+ is
shown in Fig. 2. It is clezr {hat the coordination numbédr in
Fig. 2 is clearly 6 as is to oe expected in molten KC1 but in
Fig. 1 it is definitely less than 6 and is closer to 4. Thus we
conclude that (for the case of R = 1.96A in the pseudopotential)
the coordination number is ietrshedral rather than octahedral.
However this average coordinztion number is itself an average of
a distribution of coordinaticn nunbers. This is being studied
and it appears that in this distribution of coordination pumbers
up to the distance A A there pary very well be a peak at 3 and a
longish tail with larger values giving an average of 4.
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Fig. 2. Cation-anion palr correlation.
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