

International Atomic Energy Agency

INDC(CCP)-196/GE

INTERNATIONAL NUCLEAR DATA COMMITTEE

HALF-LIVES OF LONG-LIVED ISOTOPES OF TRANSACTINIUM ELEMENTS

FROM 228_{Th} to 257_{Fm}

V.M. Surin and Eh.F. Fomushkin

Translated by the IAEA

September 1983

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Reproduced by the IAEA in Austria September 1983 83-4605 5

L83-21779 Translated from Russian

INDC (CCP) -196/GE

Translation from Voprosy atomnoj nauki i tekhniki. Seriya: Yadernye Konstanty No. 4(48) Nejtronnye konstanty i parametry

HALF-LIVES OF LONG-LIVED ISOTOPES OF TRANSACTINIUM ELEMENTS (from 228 Th to 257 Fm)

V.M. Surin, Eh.F. Fomushkin

ABSTRACT

THE LONG-LIVED ISOTOPE HALF-DECAY PERIODS OF TRANSACTINIUM ELEMENTS (from 228 Th to 257 Fm). The experimental measurements and critical evaluation results of the long-lived isotope half-decay periods of transactinium elements (from 228 Th to 257 Fm) are given on July 1981 to be published in open literature and related to the natural radioactive decay. From the massif of the known half-decay periods the most reliable data were selected, received or evaluated and recommended for practical use; the calculations of isotope specific activities were performed on this data.

0016E

INTRODUCTION

The half-life of a radioisotope is an extremely important constant which indicates the life-time of the isotope and determines its individual characteristics and behaviour in physical, chemical and technological processes. An exact knowledge of half-lives is especially important in reactor calculations. Since the discovery of the phenomena of the radioactivity, isotopism and isomerism of the chemical elements and the first experiments on the measurement of half-lives, a vast amount of material has been accumulated. Critical analysis of this material is by no means a simple $task^{*/}$. Of course, the first stage here is the selection of published data for subsequent analysis and processing. There is great interest in information about isotopes which are finding increasingly wide application in nuclear power production, the national economy and scientific research. As a rule, these are among the longest-lived isotopes of the element in guestion.

The reliability and accuracy of data on half-lives has increased with the improvement of measuring methods, the most important of which are the various techniques for the measurement of the rate of radioactive decay, calorimetry, mass spectrometry, alpha- and gamma-spectroscopy, the isotopic dilution method, techniques based on interaction with neutrons, and so forth. Much attention has been paid to the group of isotopes used in relative measurements of half-lives, such as 233 U, 238 Pu, 239 Pu, 241 Am, 244 Cm, 252 Cf. By now, acceptable accuracies have been obtained for these isotopes. This has made it possible to detect the sources of systematic errors in studies which were conducted earlier. A favourable effect on work connected with the measurement of half-lives was exerted by refinement of isotope decay schemes, more precise determination of radiation energies and intensities, and also the accumulation of materials enriched in a basic isotope.

- 1 -

^{*/} It is hard to imagine that, at least in specialized laboratories, there is no rigorous assessment and analysis of all communications but, to the best of our knowledge, there are no published surveys on this subject, although work of this kind is certainly being carried on [Ref. 2, p. 109].

During the past six years the International Atomic Energy Agency (IAEA), of which the Soviet Union is a member, has held two international advisory group meetings on the evaluation of nuclear data relating to transactinium isotopes, in particular data on half-lives. The first meeting was held at Karlsruhe (Federal Republic of Germany) in 1975 [1], the second at Cadarache (France) in 1979 [2]. The results of these meetings were summarized at the end of 1980 in a paper of A. Lorenz [3] containing a proposed recommended list of half-lives of isotopes from 228 Th to 253 Es^{*/}. Six organizations have been enlisted for the work initiated and directed by the Agency on more precise determination of the half-lives of transactinium isotopes: the Central Bureau for Nuclear Measurements (Geel, Belgium), the Laboratoire de Métrologie des Rayonnements Ionisants (France), the Bhabha Atomic Research Centre (Trombay, India), the Japan Atomic Energy Research Institute, the Atomic Energy Research Establishment (Harwell, United Kingdom), the National Technical Laboratory (Idaho, USA).

A good deal of attention is paid to these questions in the United States, where a committee for half-life evaluation has been set up and is represented by a number of laboratories: the Mound Laboratory, the Argonne National Laboratory, the Los Alamos National Laboratory, the Lawrence National Laboratory in Livermore, the National Bureau of Standards and the Rocky Flats Laboratory.

Owing to the discrepancies in the experimental data, the above-mentioned committee organized and carried out carefully prepared complex measurements of the half-life of ²³⁹Pu, drawing on all available mothodologies. A separate issue of the International Journal of Applied Radiation and Isotopes (vol. 29 No. 8 (1978)) is devoted to the results of these measurements. In 1978 the latest (seventh) edition of the Tables of Isotopes [4] appeared in the United States; this contained a selective compilation of data on half-lives, updating and supplementing the earlier edition [10]. In the Soviet literature the latest, far from complete, survey [5] of half-lives of transactinium isotopes contains data published up to 1974. In 1978 an analytical survey [6] was published on a number of nuclear contstants of

- 2 -

^{*/} On the basis of these data, the IAEA Nuclear Data Committee recommend half-life values for certain isotopes [298].

transactinium isotopes of the fuel cycle, with data for 19 isotopes (from ²³²Th to ²⁵²Cf). A handbook [7] which appeared recently in the Soviet Union gives (together with other characteristics) the half-lives, recommended by the State Service for Standard Reference Data, of 13 radionuclides related to the actinides.

In this paper the authors summarize all the data known to them on the half-lives of the 46 longest-lived isotopes of the transactinium elements (from ²²⁸Th to ²⁵⁷Fm) published up to 1 July 1981 in the Soviet and non-Soviet literature. The paper presents all the results of original studies, compendia and accepted and recommended half-lives. Doubtful or erroneous data, and also results lending themselves readily to "correction" at the present time were deliberately not excluded. Apart from its practical value, such a selection of material is of definite methodological interest, affording an opportunity to observe clearly changes in ideas concerning half-lives and to single out stable trends. For example, the following conclusions can be drawn from the data presented in the paper:

- There is a visible need to determine more accurately the half-lives of many important isotopes (²³²U, ²³⁷Np, ²⁴¹Pu, ²⁴⁴Pu, ²⁴²Am^m, ²⁴³Cm, ²⁴⁵Cm, ²⁴⁷Cm, ²⁴⁷Bk, ²⁴⁹Bk, the isotopes of californium with the exception of ²⁵²Cf, and others);
- The half-life of ²³²Th is observed to be stable with systematic reduction of error;
- The absolute half-life values of 233 U, 234 U, 239 Pu, 241 Am, 245 Cm, 249 Cf are lower;
- The half-lives of 238 U, 236 Np, 244 Pu, 244 Cm, 246 Cm, 249 Bk, and 257 Fm are higher;
- There is an observable decrease in the half-life measurement errors for 232 Th, 244 Cm, 245 Cm, 246 Cm, 248 Cm, 249 Bk, 249 Cf, 250 Cf, 252 Cm, etc.

The factual material is presented in the form of tables (1-11) of a single type, including the year of publication, the half-life value, the uncertainty δ in the half-life, given for purposes of clarity as a percentage (most often for a confidence level P = 0.68), the method of half-life measurement, comment and literature source.

- 3 -

The data for each isotope are in most cases listed in a separate table. All the tables are accompanied by brief comments. In the case of some isotopes (²²⁹Th, ²³⁵Np, ²³⁶Np^m, ²⁴³⁻²⁴⁷Cm, ²⁴⁷Bk), owing to the limited information available the half-life data are presented in an explanatory text. The most reliable half-lives are set off in the last line of each table. For the most part they are based on recommendations [1-3, 7, 36] and in individual cases they are taken from original studies or evaluated by the authors of the present survey. Data on spontaneous fission, a detailed analysis of which is beyond the scope of this paper, are presented in the form of a summary table (No. 12) compiled largely from data in studies [1-7, 256]. Table 13 gives the accepted nuclear constants of long-lived isotopes of transuranium elements. Lastly, on the basis of the half-life values adopted or recommended in the paper, Table 14 presents the results of calculations of the specific activities of radioactive decay, spontaneous fission and the neutron radiation associatited with the latter.

The paper makes no claims to exhaustiveness. The available publications are to be found in numerous editions and the possibility that some of them have been omitted is fairly large. The authors will be grateful for any comments.

BRIEF COMMENTS ON THE TABLES

<u>Isotopes of thorium (Z = 90)</u>. Since the publication of the survey in Ref. [5] there have been no communications concerning measurements of the half-lives of thorium isotopes, except for the paper of Meadows et. al. [18], in which the half-life of ²³⁰Th was measured with an uncertainty of 0.4%. The data recommended at Cadarache (France) in 1979 [2, p. 49] are based on earlier studies. The need for reducing measurement errors is considered for ²²⁹Th and ²³⁰Th. The half-life of ²³²Th is given with moderate accuracy. The only study of ²²⁹Th [12] gave T_{1/2} = 7340 (160) years. During the past 30 years, ²²⁹Th has not attracted the attention of scientists.

Isotopes of protactinium (Z = 91). This paper includes information about two isotopes of protactinium with relative atomic masses of 231 and 233. Although ²³³Pa cannot be considered long-lived in comparison with ²³¹Pa, it is of interest because it is often used as a tracer in radiochemistry

- 4 -

experiments. The measurement accuracies obtained for protactinium are fairly high, a fact which is apparently one of the reasons why there have been no new publications on the subject over the past 20 years.

Isotopes of uranium (Z = 92). Historically, these have formed the basis of nuclear power and have therefore been the subject of a large number of half-life measurements. ²³²U has been less satisfactorily studied than the others: the last recommended value for its half-life was given with an uncertainty of 2.8% [2]. Careful experimental measurements of S.K. Aggarwal et al., carried out in 1979 by two independent radiomentric methods with an uncertainty of 0.57%, gave a half-life 4.5% lower than the recommended one, which should of course serve as a warning. Additional measurements are essential for 232 U. Most work has been done on 233 U and 234 U. The most recent measurements fall reliably within the limits of error. The error recommended for ²³⁴U in Ref. [7] is somewhat on the low side, since it does not take into account all the known data satisfying the demands of mathematical statistics. The situation relating to the error in the half-life of 235 U is not fully clear, although all the latest recommendations converge on one and the same value: $T_{1/2} = 7.038 \times 10^5$ Y. The half-life of ²³⁶U was reduced during the period 1951-1972 by approximately 5%. It is planned to carry out more exact measurements in the United Kingdom and Japan [2, p. 47]. Despite the difficulties of measurement, the half-life of the longest-lived isotope (²³⁸) has been measured with satisfactory accuracy.

Isotopes of neptunium (Z = 93). Neptunium has three known long-lived isotopes, with atomic masses of 235, 236 and 237. The present study also presents data on the short-lived ²³⁹Np since this isotope, along with ²³³Pa, is a convenient beta-active label and is often used in radiochemistry research. ²³⁵Np, which disintegrates as a result of electron capture and alpha-decay, is an isotope that is not readily accessible. Its half-life needs to be determined accurately [98-101]. We have adopted a half-life of 403(4) h, based on the data in Refs [98, 101], and the ratio $a/E = 1.4(2) \times 10^{-5}$, taken as a mean arithmetic value from Refs [99, 100]. The first approximate evaluation of the half-life of ²³⁶Np^m (> 5000 Y) was made in 1955 [102]; the first experimental work on its measurement was

- 5 -

carried out in 1972; for beta-decay a partial half-life value of $1.29(^{+0.07}_{-0.05}) \times 10^{6}$ Y was obtained [103]. The proceedings of the two Advisory Group Meetings on Transactinium Isotope Nuclear Data [1, 2], and also the Tables of Isotopes [4], give $T_{1/2} = 1.15(12) \times 10^{5}$ Y (the effective period for beta decay and electron capture). It is difficult to understand the reason for the lack of interest in the exact determination of the half-life of 237 Np, which is readily accessible in the monoisotopic state. Up to now, the 20-year-old experimental value $T_{1/2} = 2.14(1) \times 10^{6}$ Y [107] has been passing on from one reference work to the next. Fresh measurements are planned at Harwell (United Kingdom) [2, p. 58].

<u>Isotopes of plutonium (Z = 94)</u>. The role of plutonium in the nuclear power production of the advanced countries is growing every year. This is due primarily to the solution of problems relating to industrial-scale fast-neutron reactors [113]. For this reason an accurate knowledge of the nuclear characteristics of plutonium is becoming increasingly important.

Of the plutonium isotopes, those with atomic masses 238-242 have received most attention. In the case of the first three, high accuracies have been obtained in half-life measurements. For example, the United States Committee for Half-Life Evaluation is not planning studies on the subject of ²³⁸Pu [126]. Under the IAEA programme [2, p. 47], however, work is planned in the United Kingdom, Belgium and Japan. It should be noted that the result of a carefully performed study which was published recently involves an error of 0.58%, which is ten times higher than that recommended in Ref. [2, ENSDF]. After the performance of complex measurements of ²³⁹Pu in the United States [126] it is hard to expect the appearance of qualitatively new findings in the years immediately ahead. A striking fact is the good agreement between the earliest [128] and the latest [141, 142] measurements of the half-life of ²³⁹ Pu based on the use of calorimetry. Although a very large number of studies have been devoted to 241 Pu, its half-lives (β and α -decay) are evaluated with an uncertainty of 1-1.5%, which is entirely inadequate, especially for correct reactor calculations. The extreme need for a more precise determination of the half-life of this isotope is

- 6 -

emphasized in the Review Report of C.W. Reich [2, p. 48], for which reason priority measurements were planned in the IAEA^{$\star/$}. At the moment, few data are available on the subject of ²⁴¹Pu. The reason for this would appear to be the difficulties in obtaining it in sufficient quantity with high isotopic purity.

Isotopes of americium (Z = 95). Interest in the transactinium elements, and particularly americium, is increasing as these elements begin to accumulate in research reactors [196]. Fully reliable half-life data are available only for ²⁴¹Am, which was used as a comparison isotope in many measurements of the half-life of ²⁴¹Pu (see Table 5.5). Special studies were carried out in connection with the international intercomparison of the specific activity of a dissolved sample of ²⁴¹Am [202]. In the case of $^{242}\text{Am}^{\text{m}},$ which exhibits a triple decay mechanism (isomeric transition, electron and alpha decay), little research has been carried on and as yet it is difficult to judge the reliability of the available data. Experimental determination of the half-lives of 242 Am [207] has been carried out with satisfactory accuracy but the results differ substantially from the data of preceding measurements. The situation with respect to $^{243}\mathrm{Am}$, for which the half-life error is estimated at 0.5%, is more or less favourable. All the measurements performed over the past 12 years yielded results coming within the limits of the indicated error.

Isotopes of curium (Z = 96). The bulk of the half-life measurement work is related to curium with atomic masses of 242 and 244. The required accuracies have been obtained for these two isotopes. Nevertheless, the Agency is planning studies with a view to more accurate determination of their half-lives [2, p. 48]. The remaining isotopes of curium, for which the errors in half-life determination are within the limits of 1-3%, require

- 7 -

^{*/} The results of measurements performed by a group of scientists from India $(T_{1/2} = 14.52 \pm 0.08 \text{ Y})$ were made known at the end of 1981 (see Aggarwal, S.K. et al., Radio Chem. Acta 29, 2/3 (1981) 65).

further research. For 243 Cm, only two studies have been carried out [215, 216]; the half-lives obtained were $32^{+\prime}$ and 29.0 ± 0.8 Y. The situation as regards 247 Cm is similar. The measurements of P.R. Fields et al. in 1963 [218] and 1971 [219] yielded half-lives of (1.64 \pm 0.24) x 10⁷ Y and (1.56 \pm 0.05) x 10⁷ Y. The latter study was carried out with enriched (99.4%) 247 Cm and hence this result would appear to be more reliable.

Isotopes of berkelium (Z = 97). Berkelium has two known long-lived isotopes, with atomic masses of 247 and 249. Of most interest in studies on the physico-chemical and other characteristics of berkelium is the longest-lived isotope, 247 Bk, but it is practically unavailable in significant quantities owing to the difficulties of obtaining it. When various starting materials (232 Th, 238 U, 239 Pu, etc.) are irradiated in a mixed beam of reactor neutrons, 247 Bk is not formed [5, p. 189]. There is only one study devoted to the measurement of its half-life [245]; in this, a value of 1380 \pm 250 Y was obtained. The need for performing further studies is obvious.

<u>Isotopes of californium (Z = 98)</u>. An analysis of data in the literature shows that the half-life of ²⁵²Cf is the one that has been most reliably and carefully measured, but not so much so that an accuracy entirely satisfactory to scientists and practical workers has been achieved [2, p. 48]. This isotope accumulates in reactors and is already available in amounts of the order of tens and even hundreds of milligrams. Its major scientific and practical value is determined by its use as a portable source of spontaneous fission neutrons. ²⁵²Cf was chosen as a standard with a recommended average number of neutrons per spontaneous fission event $\frac{v}{p}$ (1972) [256]. The half-lives of ²⁵¹Cf and ²⁵⁴Cf are quoted in the literature with very large errors. In many laboratories throughout the world work is being performed with a view to measuring and determining more precisely the value of $\frac{v}{v}$ for ²⁵²Cf [257, 258].

*/ Corrected by taking account of the data in Ref. [217].

- 8 -

<u>Isotopes of einsteinium (Z = 99)</u>. In the 25 years following the discovery of einsteinium and fermium, sophisticated and complex experiments were carried out for the purpose of obtaining their isotopes and singling out and investigating their nuclear characteristics [268]. Good agreement between the results of half-life measurements is observed first and foremost for 253 Es, and also for 255 Es. As a result of measurements in 1977 [272], the half-life of 252 Es proved to be 15-25% higher than shown by earlier data. Satisfactory agreement with respect to 254 Es is found in the final conclusions of recent studies [281, 282]. Thus it may be expected that there will be further improvements in the accuracy with which the half-lives of the longest-lived isotopes, 252 Es are consistent within the limits of error.

Isotopes of fermium (Z = 100). In this paper, data are given for two isotopes of fermium, 253 Fm and 257 Fm. The 1959-1967 measurement findings for 253 Fm lead to one and the same half-life value, namely 3.0 days, but the resulting errors are still too large. The half-life value for 257 Fm during the decade 1964-1973 was improved by 20%. The most recent measurement [294] needs to be confirmed. Further study of both isotopes is necessary.

<u>Spontaneous fission</u>. The accepted constants for the spontaneous fission of isotopes of transactinium elements (half-life and average number of prompt fission neutrons) which are required for calculating specific activities in terms of fragments and neutrons are given in Table 12. In the compilation of this table use was made mainly of the recommendations in Refs [1-3, 7], the material contained in surveys and evaluations [4-6] and data from some original studies.

Specific activities of the isotopes. For convenience in practical use, all the nuclear constants of isotopes of transactinium elements (status of July 1981) adopted in this paper are listed in Table 13. The calculations of the specific activities of the isotopes (see Table 14) were performed on the basis of these constants. This activity in terms of natural decay is linked to the decay constant λ and to the half-life by the relationship $A_{sp} = dN/dt = \lambda N (ln2/T_{1/2})N$, where N is the number of nuclei of the isotope. For a sample of a radioisotope of mass 1 mg for ln2, Avogadro's

- 9 -

number 6.022045 x 10^{23} mol⁻¹ and a duration of one year (365.2422 days = 3.1557 x 10^7 s), the expression given above is transformed into the following: $A_{sp} = 1.3227 \times 10^{13} 1/T_{1/2}$ M, where A_{sp} is in disintegrations/(s·mg); the half-life is in years; M is the atomic mass of the isotope on the ¹²C scale. The specific activity in terms of neutrons (A_{sp}^{n}) emitted by spontaneous fission is linked to the spontaneous fission activity (A_{sp}^{sf}) by the simple relationship $A_{sp}^{n} = A_{sp}^{sf} \bar{\nu}_{p}$.

The uncertainty in the specific activity of natural radioactive decay and spontaneous fission is determined only by the accepted uncertainty in half-life or the uncertainty in half-life of spontaneous fission. If the latter is calculated from the experimentally measured ratio of decay intensity and spontaneous fission for a known half-life, e.g. the ratio α/sf , the resulting uncertainty in specific activity is expressed by the sum $\Delta^2(A_{sp})_{res} = \delta_{T_{1/2}}^2 + \delta_{\alpha/sf}^2$. In the calculation of the specific activity uncertainty for neutrons a further terms is added: $\Delta^2(A_{sp}^n) = \delta_{T_{1/2}}^2 + \delta_{\alpha/sf}^2 + \delta_{p_{p}}^2$. - 11 -

. .

HALF-LIFE TABLES

. .

Legend: notation and abbreviations used in the tables

The following notation and abbreviations are used in the tables:

MSA	-	Measurement of specific activity
CM	-	Colorimetry
MS	-	Mass spectrometry
MID	-	Method of isotopic dilution
AS	-	Alpha spectrometry
GS	-	Gamma spectrometry
SCD	-	Semiconductor detector
LS	-	Liquid scintillator
PC .	-	Proportional counter
GFC	-	Gas-flow counter
IC	-	Ionization chamber
AGC	-	Alpha, gamma-coincidences
BGC	-	Beta, gamma-coincidences
MRA	-	Measurement of activity in relation to the activity of an isotope with a known half-life
Э	-	Solid angle of recording
MLS	-	Method of least squares
a	-	Alpha decay
ß	-	Beta decay
IT	-	Isomeric transition
SF	-	Spontaneous fission.

Half-life of 228 Th (Z = 90)

lable 1.1

Table 1.2

Year	T,(α), ž year	0,%	Measurement method	Conments	Litera-
1918 1956 1971 1975 1979 1980	I,906 I,910 I,91313 I,913 I,9131 I,9131 I,913	- 0,I0 0,046 0,IC 0,047 0,047 0,I0	- MSA Cm (0.5473 Ci ^{*/ 238} Th) - -	- Measurements over 2-yr period Measurements over 18-yr period Recommended -"- -"-	[8] [9] [1] [1] [2] [3]
1981	1,9131	0,047	-	Adopted from data of Ref. [2, ENSDF]	

 \star / The curie (Ci) = 3.7 x 10¹⁰ Bq.

Half-life of 230 Th (Z = 90)

7,7

7,53

3,9

I,0

Year

1924

I927

1930

1949

I962

I975

1979

I980

I980

198I

 $T_{\frac{1}{2}} \cdot 1C_{v}^{-4}(\alpha),$ Litera-ture 0,% , Measurement method Comments [137 [147 [157 [157 [167 [177 [17] II --_ 13 -By equilibrium ²²Rn з,0 - 230,232 Mixtures cf 8,23 Th02 MSA, MS 0,8 3,3 2,1 QM 7,52 7,7 3,9 Recommended [2,c.49] 3,9 -"-7,7 ²³⁰ = >99% /I87 /37 7,5381 0,40 MSA, SCD, MS

-

-

Mean arithmetic value taken from data of Refs [17, 18]

Recommended

- 12 -

TABLE 1.3

YEAR	=1/2·10-10(2)	ర,%	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1938	I,29	2,0	By absolute decay rate	-	<u>[197</u>
195,6	I,42	4,9	GS, by absolute rate of γ -radiation of 208T1 in equilibrium	Three aged samples	<u>/</u> 207
1956	I,45	3,4	MSA, IS, AS (for E_{α} peak = 3.98 MeV	-	EI7
I956	I,39	2,2	By absolute decay rate	Nuclear photoemulsions	[22]
1960	I,410	I,I	MSA, AS, 2m-IC	-	[237
1975	I,405	0,43	-	Recommended	[17
I978	I,405	0,64	-	Evaluation	[5]
1979	I,405	0,43	-	Recommended	[27
1980	I,405	0,43	-	- ¹¹ -	[3]
198I	I,405	0,43	•	Adopted from data of	

Refs [1-3]

HALF-LIFE OF 231 Pa (Z = 91)

YEAR	$\frac{\pi}{1/2}$, $\frac{10^{-4}}{2}$, 10^{-4	6,%	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
193I	3,2	-		│ │	[24]
1932	3,2	10	Comparison of ionization currents from Pa and U in an electroscope	Samples from 1 mg Pa_2C_5 and 1 mg U_3C_8	[25]7
1949	5,43	0,86	MSA, GFC	-	[267
1961	3,248	0,87	CM	Sample of 0.558 g Pa ₂ C ₅	[27]
1968	3,234	0,71	MSA	-	[28]
1969	3,2713	0,34	CY.	Sample of 193 mg Fa ₂ O ₂	(29,307
1975	3,276	0,34	-	Recommended	[1]
1979	3,276	0,34	-	- " - "	[2]
1980	3,276	0,34	-	" -	[3]
1981	3,276	C,34	-	Adopted from data of	-

•

Refs [1-3]

.

HALF-LIFE OF ²³³Pa (2 = 91)

. .

TABLE 2.2

YEAR	1/2(5), D	6,5	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1941	27,4	I,5	By decay curve	-	/317
1956	27,0	0,37	By decay curve, 47 y-IC, 5-PC	Measurements over period of 321 D	[327
I957	26,95	0,11	-	-	<u>/</u> 337
1975	27,0	U,37	-	Recommended	[17
I979	27,0	0,37	-	- " -	[2]
1980	27,0	0,37	-	- " -	<u> /</u> 37
1981	27,0	0,37	<u>,</u>	Adopted from data of Refs [1-3]	

TABLE 2.1

HALF-LIFE OF 232 (Z = 92)

YEAR	$f_{1/2}(\alpha), \gamma$	0,%	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
I954	73,6	Ι,4	MSA, Ar/CO ₂ -PC, MID, MS		[34]
I964	72,I 71,4 71,7	0,69 0,84 0,63	MSA ² CM -	$\begin{array}{c} 231_{P_{1}}(n, n), 232_{P_{1}}, \frac{P_{1}}{232_{U}}, \\ 232_{U}, 99, 24\% \\ Mean value (P = 0.68) \end{array}$	2357
1975	72	I,4	-	Recommended	[17
1976	72	2,8	-	Recommended	/367
1978	71,8	0,97	-	Evaluation	[6]
1979	72	2,8	-	Recommended	12. 9.497
1979	69,00 68,81 68,90	0,06 0,55 0,57	MSA, PC, LS, MID, MS MRA, AS, MS -	In relation to 233 Mean value	<u>[</u> 37]7
1980	72	I,4	-	Recommended	<i>[</i> 37
1981	72	I,4	- -	Adopted from data of Ref. [3]	

HALF-LIFE OF 233 U (Z = 92)

TABLE 3.2

YEAR	$= 1/2 \cdot 10^{-2} (\alpha),$. 0,5	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
I945	I,63	-	-	-	1/387
I949	I,620	0,62	MSA, 2T-IC, MS	-	239,1497
I955	I,6I5	0,25	MSA, 2-IC	-	Z407
I958	I,6II	0,5	MSA, 2m-IC		<u>/</u> 417
1959	I,626	0,49	MSA, IC, 0 ≠ const	No account taken of correc- cions for errors and absorption	Z=27
1961	I,6I5	0,56	MSA, PC, 3 = const	²³³ U 70.48(7)%	L#37
1967	I,62I	0,20	MSA, LS	-	<u>[447</u>
1967	I,540	0,065	CM	²³³ u 96.92%	<u>[</u> 45]7
1968	I,553	0,64	MSA, PC (9 = const), IC, MS	-	<u>[</u> 4 67
I969	I,588	0,44	MSA, PC (e << 1)	-	1427
I969	I,583	0,44	MSA, PC (9 << 1)	-	<u>[</u> 48]7
1969	I,593	I,5	-	Evaluation	[49]
1974	I,59II	0,094	MSA, 2π -PC, AS, SCD, MS	-	1507
1975	I,592	0,13	-	Recommended	EJ .
1976	I,5925	0,25	MSA, PC (9 << 1), LS	-	517
1976	I,592	0,19	-	Recommended	<i>L</i> \$67
1978	I,598	0,50	-	Evaluation	67
1979	I,592	0,13 -	-	Evaluation	<i>[</i> 52 <i>]</i>
1979	I,5 9 2	0,13	-	Recommended	Z.p.497
1979	I,5987	0,069	MSA, AS, 4maX-coincidences	$233_{\rm U}$, 98.11%, uncertainty for P = 0.68	<u>[</u> 53]7
1980	I,5885	0,47	MSA, PC, LS, AS, MS, MID	²³³ U 99.7%	<i>[</i> 547
1980	I,592	0,13	-	Recommended	<u>[</u> \$7
1981	I,592	0,13		Adopted from data of Refs [1-3]	

.

HALF-LIFE OF 234 U (Z = 92)

(EAR	$I_{1/2} \cdot 10^{-2} (\alpha),$	ర ,%	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
[930	3,4	-	-	-	1557
1932	~0,I	-	By a-particle path length	-	[567
[934	I,7	-	MSA	-	/577
939	2,7	-	MS, measurement of ²³⁸ U/ ²³⁴ U isotopic ratio	Natural U	2587
946	2,51	з,0	_	-	/597
946	2,29	6,I]	MS, measurement of ²³⁴ U/ ²³⁸ U	Natural U, enriched in 23^4 U,	1207
	2,35	6,0 }	isotopic ratio MSA, MS	Half-life of 238 U caken as = 4.51 x 10 ⁹ Y	209/
949	2,69	I,5 I,5 }	MSA, AS, MS	238 0 × 234 m 5 234 2 5 23	<u><u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> </u>
949	2,522	0,32	MSA, N ₂ -IC, MS	-	[62]
952	2,520	0,32	MSA, N ₂ -IC, MS	-	<u> </u>
952	2,475	0,65	MSA, IC, MS	²³⁴ U 95.99%	<u>_</u> 647
958	2,50	Ι,Ο	MID, AS	Enriched U	[4]]
965	2,47	I,2	MSA	Enriched 234U	<u> </u> [65]
836	2,433	0,20	-	-	<i>[</i> 667
969/ 971	2,444	0,49	• •	-	[67,7 <u>]</u>
969	2,488	0,64	-	Assumed	<u>[</u> 497
970	2,460	2,0	-	-	<u> </u> 687
970	2,439	0,57	-	-	<u>_</u> @97
970	2,444 -	0,57	-	-	<u> </u> 707
97I	2,444	0,49	MSA, CH ₂ -PC(9<<1), MID, MS	238. U Standard	_7I7
97I	2,4#6	0,29	MSA, PC (9<<1), LS, MID, MS	100 samples with contents of 0.168 - 99.87% 2349	[72]
974	2,446	0,29	-	tvaluation	/737
975	2,445	0,70	- ·	Assumed	[747
975	2,446	0,29	· •	Recommended	Ĩ.
976	2,446	0,29	-	- ^π - .	2367
978	2,444	0,20	-	Evaluation	/67
979	2,445	0,4I	-	Recommended	[27
980	2,445	0,20	-	_ ^R _	[27]
980	2,446	0,29	-	_ "_	/37

ADOPTED FROM DATA OF REF. [2]

HALF-LIFE OF 235U (Z = 92)

TABLE 3.4

YEAR	I _{1/2} -10-8(a),	۵,۶	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1929	4,2	- }			[75] .
1930	2,7	-			[75] =
1932, 1934	4	- (By content of stable lead in uranium ones	-	
1933, 1934	4,45	-	arguran ofea		2787
I937	7,0.25,3	-]			[79] -
1939	7,I3	-	MS, measurement of ²³⁸ U/ ²³⁵ U isotopic racio	Nacural U	<u></u> ∠587 <u></u> ≃
				4 - ¹	

YEAR	¹ 1/2 ⋅10 ⁻⁸ (∞)	0,%	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
I949	8,8	12,5	MSA, N-IC, MS		/627
I950	7,10	2,3	MSA	Entities 235	/807
1951	6,94	3,6	Comparison of the activities of 235, and 234,	Natural U	<i>[</i> 817
1952	7,13	2,2	MSA, IC, MS	235 _{0 99.94%}	/63.647
1957	5,84	2,2	Comparison of the activities of 234_{H} , 235_{H} and 238_{H} as	Natural U	[82]
1957	7,10	2,2	MSA	-	/837
1963	6,92	I,3	Analysis of a spectrum of natural U	: _	Z847
I965	6,97	I,0	MSA, SCD	Natural U	<u>/</u> 857
I965	7,I3	I,3	MSA	Enriched 235	[65]
1966	7,022	+I,0; -0,4	Measurement of Pb/U ratio in	-	<u> </u> [867
1969	7,10	I,5	-	Evaluation	/497
1971	7,0381	0,068	MSA, PC. AS. SCD. MS		1877
I974	6,35	I,3	MSA, PC (9<<1), AS, SCD	99.999% ²³⁵ 99.999% ²³⁵ U (see criticism	<u>/</u> 887
7974	7 038	0.068		IR REL. [09])	דברה/
1075	7,038			Evaluación	1219/
1975	7,038	0,10	-	Recommended	1247
1970	7,030	0,20	-	. –"–	[2002 [27]
1970	7,08	0,20	-	Evaluation	191
די דו בלים ד			-	-"-	1274
1980 1980	7,038	0,071	-	Recommended	[3]
1981	7,038	0,071	- Adopted	from data in Ref. 2, ENSDE	

HALF-LIFE OF 236 U (Z = 92)

. .

.

TABLE 3.5

۰.

YEAR	$T_{1/2} 10^{-7} (\alpha),$	0,%	MEASUREMENT METHOD	COMMENTS	LITERA TURE
1943	2		MRA, AS	In relation to 235U	Cited in 2907
1951	2,457	0,81	MSA, 2 -ar /CO ₂ -IC, MS	236 U 55-39%, "weighing" by thermal neutron fission relarive to 235	2907
1952	2,391	0,75	MSA, TC MS	236, 06 65	<u>[</u> 64]
1972	2,3415	0,060	MSA, GFC(0 < 1), AS, SCD	_	<u>[917</u>
1974	2,34	0,85	-	Evaluation	<u>[737</u>
I975	2,342	0,17	-	Recommended	<u>_</u> 17
I976	2,34	0,85	-	11 III	/367
I978	2,34I	0,30	-	Evaluation	67
I979	2,3416	0,17	-	Assumed	<u>/</u> 527
1979	2,3416	0,17	-	Recommended	[2]
1980	2,342	0,17	- ·	-"-	[3]
1981	2,3416	0,17	- Adopte	ed from data in Ref. 2, INSD	- 7
				¢	

- 16 -

• • •

HALF-LIFE OF 238 U (Z = 92)

YEAR	$T_{1/2} \cdot 10^{-9} (\alpha),$	۶,۶	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1932	4,508	0,40	MSA, IC	Natural U	/927
I935	4,46	I,I	MSA, IC	-"-	(937
I939	4,56	-	MSA, MS	-'' -	/587
I94I	4,514	0,20	MSA, 27 -IC	_''_	[347
1949 j	4,5II; 4,489	C,II; 0,22	MSA, N ₂ -IC, MS	-	[32]
1955	4,507	0,20	MSA, MS	Overestimate of data of Ref. [92] Natural U	<u> </u> 2957
I957	4,56	0,66	MSA, 2π -IC	-	<u>/</u> 967
I959	4,457	0.22	MSA, LS	-	1977
197I	4,4683	υ,05	MSA, PC(9<1), AS, SCD, MS	²³⁸ u> 99.98%	1237
I974	4,458	0,22	-	Evaluation	[73]
1975	4,468	0,090	-	Recommended	
1976	4,468	0,22	-	-''-	<u> </u>
I978	4,47	C,22	_	Evaluation	[5]
1979	4,468	0,067	-	_''_	2327
1979	4,468	0,067	-	Recommended	[2]
1980	4,468	0,090	-	-''-	137
1981	4,468	0,090		Adopted from data of Refs [1-3]	-

HALF-LIFE OF 237 Np (Z = 93)

LITERA-1/2·10-0(a), ć.% MEASUREMENT METHOD COMMENTS YEAR TURE 237 U/ 237 Np activities ratio 1942 ZI047 3 --1943 ő -MSA -4,5 <u>/</u>I067 I948 2,2 MSA First separation of pure 237 Np compounds . . [107] 0,47 1960 2,14 MSA, PC, LS Np concentration determined by coulometric titration 0,47 [1] [5] [2] [7] [3] 1975 2,14 Recommended -1978 2,14 0,47 -Assumed 2,14 1979 0,47 -Recommended I980 2,14 0,47 - ''---2,I4 1980 0,47 -2,14 0,47 1981 -_

Adopted from data of Refs [1+3, 6, 7]

HALF-LIFE OF 239 Np (Z = 93)

TABLE 4.2

YEAR	ر ,(تور) _{2/1}	0,7	MEASUREMENT METHOD	COMMENTS	LITERA-
1956	2,346	0,17	Decay curve and ²³⁹ Pu build-up	Assumed half-life of $239_{Pu} = 24,400 \text{ Y}$	<u>/</u> 1087
1959 1959	2,34 2,359	0,85 0,42	Decay curve, semiconductor counter	Measurement of 8-spectra Uncertainty for 2 = 0.99 Correlated with data of Ref. [108]	210 <u>9</u> 7 21107

TABLE 4.1

YEAR	I _{1/2} (3 ⁻), D	6,70	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1966	2,354	0,34	GS, NaI(Tl)-spectrometer, B ⁻ -decay, Geiger counter	Recording of E., of equiv. 225 and 280 key	LIIJ7
1969	2,346	0,17	Decay curve	Collection of 239 Np recoil atoms in electric field upon decay of 243 Am	[1127
1975	2,354	0,25	-	Becommended	Ē.J
I979	2,355	0,17	-	- " -	[2]
1980	2,347	0,I3	-		[77]
1980	2,354	0,25	-	- " -	[3]
198I	2,355	0,17	<u>-</u>	Adopted from data of Ref. [2]	-

HALF-LIFE OF 236 Pu (Z = 94)

TABLE 5.1

YEAR	$\mathbb{T}_{1/2}(\alpha), \Upsilon$	6,7	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1951	2,7	II	Decay curve	238 _{Pu and other impurities}	ZI147
1957	2,851	0,28	Decay rate measurement, CH ₄ -GFC	235 _{0(d,z)} 236 _{Np} <u>5</u> 236 _{pu}	<u>/</u> I157
1975 1978 1979 1980 1980	2,85I 2,86 2,85I 2,85 2,85 2,85I	0,28 0,70 0,28 0,35 0,28		Recommended Evaluation Recommended - " - "	[1] [5] [2] [7] [3]
1981	2,351	0,28		Adopted from data of Refs [1-3]	-

	05	238 _{P,1}	(7	-	94)
ت ت ت د با⊷ ت سب ۸۳.	U 2	C	مبد \	=	7-1

TABLE 5.2

YEAR	$\mathbb{T}_{1/2}(\alpha), \Upsilon$	ઈ,⊼	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1950	89,3 89,59	1,0 0,41 }	MSA, 2x-Ar/CU ₂ -IC	In relation to activity of standard samples of ²³⁹ Pu. Measurements over period of 2.6 Y	12157
1956	86	3,5	-	Calculated value	LI177
1957	86,4I	0,58	MID, AS, α -decay of ²⁴² Cm	Overestimate relative to 239pu	<u>/</u> II <u>8</u> 7
1965	87,60	0,068	CM	_	LĪ197
1969	87,75	0,057	CM	_	<u>/</u> 1207
1970	87,22	0,60	CM	Measurements over period of	<u>[</u> 12 1 7
1972	87,77	0,034	CH	_	<u>[</u> 1227
1974	87.77	0,023	CM	_	<u>[1237</u>
I974	87,8	0,91	-	Evaluation	[73]
1975	87,74	0,10	-	Recommended	[1]
1976	87,8	0,91	-	- " _	<u> </u>
1976	86,98	0,23	MSA, $4\pi\alpha$ -counter and measurements at $\theta \ll 1$	Uncertainty for $P = 0.67$	<u>/</u> 1247

.

TABLE 5.2 (continued)

YEAR	$T_{1/2}(\alpha), \gamma$	6.7	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1977	87,71	0,057	MSA, PC(f = const), AS, SCD	242 _{Cm} <u>2</u> 238 _{Pu} , label - ²⁴⁰ Pu	[I2 <u>5</u> 7
I978	87,77	0,068	-	Evaluation	/67
I978	87,74	0,046	-	Recommended	/1267
1979	87,7	0,23	-	Evaluation	12.p.747
1979	87,74	10,046	-	Recommended	12.p.497
I980	87,74	0,10	-	- " -	/37
I980	87,74	0.057	-	- " -	/77
1981	87,93	0,58	MRA (²³⁹ Pu), AS, SCD, MS	Mixtures of ²³⁸ Pu - ²³⁵ Pu. Assumed half-life of ²³⁹ Pu 24110 Y	<u>[</u> 1277
1981	87,74	0,10	-	Adopted from data of Ref. [3]	-

HALF-LIFE OF 239 Pu (Z = 94)

• •

TABLE 5.3

YEAR	$r_{1/2}(\alpha), y$	6.7	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1945	24400	2,0	MSA	-	Cited in 27,49, 2977
1947	24110	0,50	CM (metallic Pu)	Measurement of evaporation rate of liquid N; uncertainty reduced for $P = 0.68$	<u>/</u> 12 <u>8</u> 7
1949	24400	C,29	MSA. 2n-counting	Weighed samples of metallic Pu, PuCl ₃ , PuBr ₃	[129]
1949	24300	I,5	MSA		Cited in [13]7
1951	24360	0,4I	MSA, PC(ê << 1)	Weighed samples of PuF ₃ , 239 _{Pu} (57.6-100%)	- ⁿ -
I954	24400	2.0	MSA	-	/I307
1955	24100	0,24	MSA	-	<u>7</u> 407
1958	24400	0,33	-	Assumed	[4]]
1959	24390	0,12	MSA	²³⁹ Pu 91.26-99.11%	<u>/</u> I3]7
1959	244I3	0,12	MSA, PC (6 << 1)	Weighed samples of Pu(SO ₂) ₂ and PuCl ₃ , ²³⁹ Pu 99.9%	[[32]7
1965	24194	0,IC	CM (differential isothermal calorimeter)	1.5 kg sample metallic Pu, 239pu 93 and 94%	<u>/</u> I3 <u>3</u> 7
1966	24350	0,25	MSA, LS (in relation to 240pu)	Weighed samples of metallic Pu, ²³⁹ Pu 94.4 ⁷ / ₂	[1347
1967	24386	0,21	CM (differential isothermal calorimeter)	Overestimate of data of Ref. [133]	<u>[</u> 45]
1969	24380	0.21	-	Recommended	<u>[</u> 49]
1970	24065	0,33	CM (differential isothermal calorimeter)	Two pieces of metallic Pu, 1 kg each, with respective enrichments of 93 and 97%	<u>/</u> I35,I3 <u>6</u>
I974	24300	0,10	_	Evaluation	<u>[73</u>]
1975	24060	0,079	47aX-coincidences	239 Fu 99.978%, uncertainty corrected for P \approx 0.68	<u>/</u> I3 <u>7</u> /

- 19 -

Table 5.3 (ctd)

YEAR	$T_{1/2}(\alpha), \gamma$	0,7	MEASUREMENT METHOD	COMMENTS	LITERA-
1975	24II8	0,33	MSA, PC (0 << 1)	Weighed preparations of	<u>_</u> [1387
1975	24 TTO	0.72		$Cs_2PuCl_2, = Pu - 99.1\%$	77
1912	24173				12-5
12/0	24170	0,15 0 AT	MOA .		2132
1976	24100	0,71	-	Recommended	239/
1977	24131	0,060	MSA, PC(9=const), MID, MS	Labels for MID - 200,000 MS-measurements by daughter 235U, 239pu 99.98%	<u>/14</u>
1978	24101	σ,04Ι	CM	Uncertainty corrected for $P = 0.68$, $\frac{239}{9}Pu$ 99.26%	<u>/</u> 1417
1978	24102	0,083	CM	²³⁹ Pu 99.26%	<u>[</u> 1427
1978	24112	0,07 0,2I	MSA, SCD, LS	Uncertainty equal to standard deviation, uncertainty equal to the systematic error, 239Pu 99.26%	<u> </u>
1978	24124,2 24138,5 24131	0,056 0,057 0,066	MSA Mid, MS -	239pu 99.26% By daughter 235U Assumed average	<u>/</u> 1447
1978	24019 ^素 24089	- 0,087 0,095	MSA Mid, MS	²³⁹ 2u, 99.26%	<u>[</u> 1457
1978	24 [64	0,058 0,070 }	MID, MS, by daughter ²³⁵ U	Uncertainty equal to standard deviation, uncertainty correc- ted for P = 0.68, ²³⁹ Pu 99.26%	[145]
1978	24090	U.17	-	Evaluation	/67
1978	24119	0,108	All methods in use	Recommended, averaging of data of Refs [141-146], except those marked # in Ref. [145]	/1257
19 78	24133	0,058	-	Assumed	[47]
1979	24085- 24100 24100	0,12 0,12 0,12	MSA(0<<1). AS, MS MSA, LS, MID, MS	239pu 99.98%, average	<u>/</u>]487
1979	24115	0,33	-	Evaluation	12.0.747
1979	24110	0,042	<u> </u>	Becommender	12 497
1980	24110	0,12	-	_ " _	37
1980	24113	0,054	-	- " -	[1]
1980	24110	0,12	-	- " -	<u>/</u> 1497 - ⁻
1981	24088	0,21	MSA	Solutions of Cs ₂ ^{PuCl} ₆ , ²³⁹ Pu 99.03%	[297]
1981	24110	0,12	~	ADOPTED FROM DATA OF REFS 1, 3.	149]

ADOPTED FROM DATA OF REFS [1, 3, 149]

TABLE 5.4

.

HALF-LIFE OF 240 Pu (Z = 94)

YEAR	$T_{1/2}(\alpha), Y$	0,3	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1951	6580	0,61	Genetic equilibrium MS, by the iso- topic ratios 240pu/239pu and 236y/235y	-	<u> (1507</u>
1953	6300	9,5	MSA	-	[151]
I954	6240	I,9	MSA	-	Lar.3 (152)
1956	6600	I,5	MSA	-	[1527

YEAR	$T_{1/2}(\alpha), \gamma$	6,7	MEASUREMENT METHOD	COMMENTS	LITERA-
1958	6580	I	-	Assumed	<u>[</u> 4]7
1959	6620	0,75	MSA	- 240	<u>/</u> I3 <u>I</u> 7
I967	6524	0,15	CM (Calve microcalorimeter)	Experiment, Pu 95.7%	<u>[</u> 457
	6537	0,15	-	Assumed	
I974	6550	I,I	-	Evaluation	[73]
I974	6524	0,15	-	Assumed	<u>/</u> 1227
I975	6550	0,3I	-	Recommended	[1]
1976	6550	I,I	-	-"-	/367
1978	6569	0,091	MSA, PC, MS	Pu concentration determined by redox titration	[147]
1978	6540	0,15	-	Estimate	[5]
1979	6537	0,15	-	Recommended	(2,p.497
1980	6550	0,3I	-	-"-	[3]
1980	6560	0,15	-	-"-	[7]
1981	6537	0,15	Adopte	d from data in Ref. 2,ENSDE7	÷

MEASUREMENT METHOD

HALF-LIFE OF 241 Pu (Z = 94)

YEAR

1948

1950

1953

1956

I957

I960

I96I

I966

I966

1967

1967

I968

1963

I969

1970

I4,5

14,6

3,4

2,7

LITERA-±1/2 (,β), ≚ 0,% COMMENTS TURE ~10 Approximate evaluation <u>[153]</u> --3v 241 Am build-up <u>1</u>4 -<u> [1547</u> By 2^{41} Am build-up; assumed half-lives: 2^{41} Am 470 Y, 2^{40} Pu 5600 Y and 239 Pu 24360 Y; AS, MS I3.0 0,75 [1557 Uncertainty corrected for P=0.68. The uncertainties of the assumed half-lives do not enter into the uncertainty figure. GS (for $E_{\star} = 50$ keV for $\frac{241}{\text{Am}}$), Assumed half-life of $^{241}\mathrm{Am}$ [1567 . 12,77 :2,2 Xe-2C ≕ 470 Y Assumed half-life of $\frac{241}{\text{Am}}$ 0,98 13,29 By 241 Am build-up <u>[</u>157]7 458.1(5) Y 241 Pu 77%. Half-life of 241 Am PC, AS, ²⁴¹Am build-up 13,24 I.8 /1587 = 461.3 Y 2,3 <u>[</u>159]7 I3,3 From a/3 ratio Reactivity of 241 Pu <u>/</u>1607 13,63 2,5 [IGI] I3,59 3,4 MS I4.4 Ι,4 [162] Decay curve. Measurements over Relative to activity of Pu period of 2 Y. isotopic standard of US Bureau of Standards. Averaging of data of Refs [155, 156, 158] for I4,03 2,I <u>[162]</u> adjusted half-life of 241Am = 432.7 Y. Assumed half-life of 241 Am I4.0 2,I Radiochemical determination <u>/</u>I537 = 436(3) Y. Mixture of ²⁴⁰Pu - ²⁴¹Pu + ²⁴²Pu. MS, from changes in ²⁴¹Pu content I4,98 2,2 <u>[</u>164]

Evaluation

with time.

≾S

TABLE 5.5

[49]

/I657

- 21 -

YEAR	^T 1/2 ^(β⁻) , γ	ô,,%	MEASUREMENT METHOD	COMMENTS	LITERATURE
1969, 1970	I4,63	I,8	Changes in ²⁴¹ Pu reactivity with time	Measurements over period	_T66,1677
1970	I4.25; I4.3I	0,70	Measurement of 0/3 ratio	-	17587
1971	15,16	I,3	MS	Solution of linear decay equation by MLS	
1973 1973	I4,56 I4,89	I,0 0,74	By accumulation of ²⁴¹ Am MS	Measurements of the same samples of ²⁴¹ Pu by six labo- ratories over period of 5.5 Y	
1974	I4,355	0,049	СМ	Assumed half-lives of 239 Pu = 24065(50) Y, 240 Pu = 6524(10) Y, 241 Am = 432.7(7) Y	<u>(</u> 1227
	.				
1974	14,4	I,4	-	-	<u>/173</u> /
1974	14,5	3,4	-	Evaluation	<u>7</u> 37
1974/ 1975	15,02	1,0	M5	-	[<i>1</i> 747
1975	I4.44; I4.3I	0,97;0,84	Measurement of 2/3 ratios	-	/1757
1975, 1976	I4,7	2,7	-	Recommended	<u>/</u> I, 367
1978	14,50; 14,60	0,96;0,66	Measurement of a/5 ⁻ ratios, build-up of ²⁴¹ Am	-	<u>[</u> 1757
1978	I4,45	2,I	-	Evaluation	[177]
I973	<u>14</u> ,4	I,4	í -		[5]
I978	I4,7	2,7	-	Recommended	[177]
1979	I4,4	I,4	-	Evaluation	[52]
1979	I4,5	3,4	-	11	2,0.747
1979	14,30; 14,60	0,98; 0,68	MS Growth in 241 Am activity	-	[2,p.587
1979	I4,4	I,4	-	Recommended	(2, 0.497
1980	I4,7	2,7	-	••	237
1980	I4,54	0,82	-		127
1980 1981	I4,42 I4,44	0,52 0,42	Growth in ²⁴¹ Am accivity AS, SCD	-	<u>/</u> 1787
1980	I4 ,37 9	0,090	MS, decrease in $\frac{241}{Pu}$, $\frac{242}{Pu}$ isotopic ratio	Measurements up to 3.6 Y	[179]
198I	I4,4	I,4	-	Adopted from data of	-

Adopted from data of -Ref. [2, ENSDF]

HALF-LIFE OF 2^{41} Pu (Z = 94)

TABLE 5.6

YEAR	$\frac{\pi}{1/2} \cdot 10^{-7} (\alpha)$	ó, %	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1950 1955	~4 ~2,9	-	Race of a-decay Activity of ²³⁷ U in equilibrium		/1547 /1807
1956 1958 1960	3,8 6,42 \$,72; \$,72; \$,72; 10 ⁻⁵	I,5 5 I,7 2,6	Daughter ²³⁷ U - AS, PC, build-up of ²⁴¹ Am	Assumed half-lives: $239p_{u} = 24400 \text{ y}, 240p_{u} = 6600 \text{ y}, 241a_{m} = 461.3 \text{ y}, 241p_{u} 77\%$	[1527 [4]7 [1587
1963	3,9	IO	-	-	<u>/</u> 1817

Ň

YEAR	$T_{1/2} \cdot 10^{-5} (\alpha),$	Ĵ,,	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1966	5,3	I,7	CS, Ge/Li-SCD, by accumulation of $2^{2+1}Am$ ($\Xi_{\gamma} = 59$ keV) and $2^{23}7U$ ($\Xi_{\gamma} = 208$ keV). Method does not require high $2^{241}Pu$ enrichment	Calibrated SCD for pure 241 Am and 237 U . Assumed half-lives: $24 \text{ C}_{\text{Am}} = 453 \text{ Y}$ and $(241 \text{ Pu})_{3} = 13.2 \text{ Y}$	<u>[1827</u>
1968	a/p==2,45·I0 ⁻⁵	3,3	AS, SCD ($y = 2 \times 10^{-3}$), by growth of 241_{Am} peak	Assumed half-life of 2^{4} Am = 432.7(7) Y	<u> </u>
I975	$\alpha/\beta^{-}=2,45\cdot 10^{-5}$	3,3	-	Recommended	[1]
I978	6,0	з,з	-	Evaluation	[67
I979	6,04	Ι,0	-		(2,p.587
1980	$\alpha/\beta^{-2},45 \cdot 10^{-5}$	з,з	-	Recommended	[37
1980	a/p==2,45.10=5	I,0; 0,41	-	11	[7]
1981	6,04	I,0		Adopted from data of Refs	-

HALF-LIFE OF 242 Pu (Z = 94)

~

TABLE	5	•	7	
-------	---	---	---	--

•

YEAR	$T_{1/2}$, $\frac{10^{-5}(\alpha)}{2}$,	6,7	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1950	5	-		Approximate evaluation	<u>[</u> 1847
1950	9	-	MSA, AS	-	_I8 <u>5</u> 7
1954	3,3	-	-	Assumed	<u>[</u> 1867
1956	3,38	2,5	MRA (²⁴⁰ ?u), AS, MS	Assumed half-life of ²⁴⁰ Pu = 6580 Y	
I956	3,79	I,3	MSA		[152]
1956	3,73	I , 3	MRA (²³⁸ Pu), IC, AS, MS	Assumed half-life of ¹³⁸ Pu = 39.6 Y	<u>/</u> 1377
1958	3,79	I,3	-		[4]]
1969	3,869	0,4I	MSA, MID, MS, in relation to 239 ₅₁	Assumed half-life of ²³⁹ Pu = 24401.5(21.2) Y	<u>/</u> 1387
1970	3,66	Ι,4	MRA (²³⁸ Pu)	Assumed half-life of $238_{Pu} = 37.40(4) Y$	<u>[</u> 13 9 7
I974	3,87	I,3	-	Evaluation	[73]
1975	3,76	0,53	_	i Recommended -	[1]
I976	3,37	I,3	_		<u>/</u> 367
1976	3,763	0,23	CM (preparations of PuF3, PuF4, PuO2)	²⁴² Pu 99.91%	<u>[</u>]907
1976	3,702	0,18	MSA, 4#aX-coincidences	242 _{Pu} 95.9%. Pu concentration determined by coulometric titration	<u>[1917</u>
1977	3,763	0,78	MRA (²³⁸ Pu)	Assumed half-life of 239 24290(70) Y	<u>[</u> 1927
1978	3,76	0,53	-	Recommended	[[7]]
I978	3,76	I,ó	-	Evaluation	<i>[</i> 57
1979	3,763	0,53	-	11	[32]
1979	3,754	0,67	-	i _	<u>[</u> 1937
1979	3,76	0,80	!	Assumed	(2, p.75)
I979	3,763	0,53	_	Becommended	[2, = 49]
1980	3,76	0,53	[-	· · · · · · · · · · · · · · · · · · ·	/3/
1981	3,763	0,53		Adopted from data of Ref. [2. ENSDF]-	-

-

HALF-LIFE	OF	244 Pu	(Z	÷	94)

YEAR	$T_{1/2} \cdot 10^{-7}(\alpha),$	ð, %	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1956	7,6	26	 From y-radiation of ²⁴⁰Np after separation of caughter ²⁴⁰U from ²⁴⁴Pu, NaI(T1) From S -radiation of ²⁴⁰Np after separation from mixture of ²⁴⁰U + ²⁴⁰Np: PC, anticoincidences 	Calibration by ³² P and ⁹⁰ Y; assumed half-life of ²⁴² Pu 3 9(1) = 10 ⁵ v	<u>[1947</u>
			AS. MS		1
1956	7,5	27	By daughter 240 U	-	[1527
1966	8,18	3,2	AS, SCD, MS, $\frac{244}{Pu}$, $\frac{242}{Pu}$ and $\frac{244}{Pu}$, $\frac{240}{Pu}$ isotopic ratios	Samples of 54.3 and 68.1% 244Pu. For half-life of 242Pu 3.79(5) x 10 ³ Y, 240Pu 6580(40) Y	(1957
1969	8,23	I,2	MSA, MID, MS	Assumed half-life of 242_{Pu} 3.869(16) x 10 ⁵ Y and 239_{Pu} 24401.3(21.2) Y	<u>(</u> 1387
1975	8,2	1.2		Recommended	/17
1975	8,2	I,2	-		2367
I379	8,26	I,I	-	Evaluation	1527
I979	8,25	I,I	-	Recommended	/2]
I980	8,2	1,2	-	- " -	[3]
1981	8,26	I,I		ADOPTED FROM DATA OF REF. [2, ENSDF]	_

TABLE 6.I

HALF-LIFE OF 241 Am (Z = 95)

	-1/2	0, /0	MEASUREMENT METHOD	COMMENTS	TURE
I95I	498	5	MSA	AmP3 - AmO2 - microweights	/
1952	470	+I,I; -2.I	MSA	5 µg AmO ₂ samples	<u>/199</u> 7
1956	461,3	0,37	MSA (0<<1)	-	<u>[1997</u>
1957	458,I	0,11	MSA	_	<u>/</u> I577
1958	457,7	0,39	MSA	-	<u>/200</u> 7
1967	432,7	0,16	CM (differential isothermal calorimeter)	²⁴¹ Am 99.6 and 99.9%	(45.20 <u>1</u> 7
1968	433	I,6	CM, MS	-	<u>[203</u> 7
I968	436,6	0,69	Radiochemical determination	-	[1 63]
1974	432,8	0,36	MSA, 4#a-counter, AS	Uncertainty reduced for P = 0.58	<u>2047</u>
1974	432	0,93	-	Evaluation	[7 37
1974	4 32,5; 435,0	0,16; 0,16	CM	Assumed half-lives: ²³⁹ Pu 24065(50) Y, ²⁴⁰ Pu 6524(10) Y	<u>[</u> 12 <u>2</u> 7
1975	432,6	0,14	-	Recommended	/17
1975	432,0	0,046	CM (measured 5 times)	AmO ₂ +La+Am(77 mg)+sublimation	/2057
1976	432	0,93	~	Recommended	/357
1978	432,7	0,14 ·	-	Evaluation	[5]
1979	432,2	0,12	- .	- "	[52]
1979	432	0.46	-	Assumed	(2,p.757

TABLE 6.1 (continued)

YEAR	$r_{1/2}^{(\alpha)}, Y$	0,7	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1979	432,2	0,12	-	Recommended by ENSDF	Z, p. 497
1980	432,6	0,14	-	Recommended	[3]
1980	432,I	0,069	-	- " -	[7]
1981	432,2	0,12	-	Adopted from data of [2, ENSDF]	-

HALF-LIFE OF $242 \text{ Am}^{\text{m}}$ (Z = 95)

TABLE 6.2

YEAR	TYPE OF DECAY	T _{1/2} , Y	đ ,%	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1959	IT E a	152 960 32000	4,20	MS, build-up of ²⁴² Pu MS, build-up of ²³⁸ Np	In relation to half-life of 2^{43} Am = 7951 Y	<u>/2057</u>
1959	IT	I4I	5,0	MSA	-	Cited in /2067
1975	a/IT IT	4,76.10 ⁻³ 152	2,9 4,6]]	Recommended	
1979	IT	152	4,6	-	Evaluation	/527
1979	IT	I4I	I,4	MSA, 4m-PC, AS, SCD, build-up of ²⁴² Cm	Assumed half-life of 242 Cm + 162.3(4) D	
	a/IT a	4,5.10 ⁻³ 31200	2,2	-	Assumed half-life of ²⁴¹ Am - 432.6(6) Y	/207/
I979	IT	152	4.5	- ·)	Recommended	12. 2.497
1980	IT 2/IT	4,76.10 ⁻³	4,6 2,9	- }	- " -	/3/
1981	11	I42	I,7	-)	Assumed as weighted mean	
	a/IT a	4,59,10 ⁻³ 31300	3,5	-	value from data of Refs [206, 207], with allowance for Student's spefficient for P = 0.68	_
	Ξ	960	5,2	-	Adopted from data of Ref. [206]	-

HALF-LIFE OF 243 Am (Z = 95)

TABLE 6.3

YEAR	Ξ _{1/2} (α),	5, %	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1953	3800	6,3	AS, MS	-	<u>/</u> 2087
I954	7600	4,9	Magnetic a-spectrometer	-	<u>/209-211</u> 7
I958	795I	0,60	MS, MSA	-	<u>/</u> 2007
1959	7720	2,0	AS, MS	Assumed half-life of ²⁴¹ Am - 458.1(5) Y	/2067
1960	7650	0,63	AS, IC, MID, MS	Idem	<u>[</u> 212]7
1968	7390 7340	0,68 0.82	AS, SCD	Independent measurement In relation to half-life of ²⁴¹ Am - 433(7) Y	<u>/203</u> 7
	7370	0,54		Mean value	
1974	7380	0,23	MSA, 4πα-counter, AS, SCD, MS	Assumed half-life of $241 \text{ Am} = 432.7(7) \text{ Y}$, 17 measurements of a-spectra, uncertainty corrected for $P = 0.68$	<u> </u>
1975	7380	0,54	-	Recommended	<u>[</u>]]

TABLE 5.3 (continued)

YEAR	$r_{1/2}(\alpha), \gamma$	đ,%	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1978 1979 1980 1980 1980	7875 7380 7358 7350 7370	0,47 0,54 0,57 0,54 0,27	- - MSA, AS, SCD. MID, MS - -	Evaluación Recommended Mixtures of ²⁴¹ Am - ²⁴³ Am Recommended	237 227 22147 237 237 27
1981	7380	0,54	. •	Adopted from data of Refs [1-3]	-

TABLE 7.1

•

HALF-LIFE OF 242 Cm (Z = 96)

YEAR	I _{1/2} (α), Υ	đ ,%	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1948	~150	-	-	Prediczed	2207
1950	I62 , 5	I,2	MSA, PC, AS, relative to a-peaks of $^{241}\mathrm{Am}$ and $^{242}\mathrm{Cm}$	Measurements over period of one year	<u>[</u> 22 <u>1</u> 7
1954	162,46	0,09	MSA. PC ($\theta \approx consc$)	Measurements over period of	[222]7
I957	162,7	0,061	-	Cited in Ref [118]	[2247
1965	163 , I	0,25	MSA, 2π -flow counter	Measurements over period of	[225]7
1975	163,2	0,12	CM (two samples 5 mg each)	Measurements over period of 287 D	[225]
1975	162,8	0,25	-	Recommended	ΔV
197 7	162,76	0,025	By build-up of 238 Pu with half-life of $87.74(4)$ D	Measurements over period of 262 D	[1247 .
I978	163,2	0,13	-	Evaluacion	[57
I979	162,8	0,25	-		[52]
I979	163,28	0,99	MSA, PC, SCD, measurement of spon- taneous fission	Measurements over period of 120 D (work still coinc en)	<u>[</u> 22 <u>7</u> 7
I979	162,8	0,3I	-	Assumed	[2,p.75]
1979 -	162,8	0,25	_	Becommended by ENEDE	[2,2.49]
I980	162,8	0,25	-	Recommended	[37
1980	163,0	0,12	-	- "	[1]
1981	162,8	0,25	-	Adopted from data of Ref. [3]	

•

.

TABLE 7.2

RALF-LIFE OF $\frac{244}{Cm}(z = 96)$

• • •

۰.

YEAR	I1/2(02), Y	0,3	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1954 1954	17,9 18,4	2.8 2.7	MS, by daughter Pu -	Average of earlier data	228,2297
1954	19,2	3 , I	AS, MS	Calculated in relation to half-life of 2^{42} Cm = 162.5 D	<u>/</u> 23 <u>0</u> 7
1961 1964 1968	17,59 18,11 18,099	0,34 0,39 0,083	MSA, MS By decay curve By decay curve, IC, AS, MS	Cited in Ref. [233] Mixture of ²⁴² Cm 0.05%, measurement over period of 7M	[23]7 [2327 [2347

YEAR	T _{1/2} (α), Υ	6,%	MEASUREMENT	METHOD	COMMENTS	LITERA- TURE
1970	18,097	0,053	-		Assumed	/2357
1972	18,15 18,12	0,22 0,17	CM		Measurements over period of 2 X Assumed, taking into account Ref. [234], uncertainty for	LZ367
1975	I8,II	0,II	-		P = 0.68 Recommended	[1]
I978	IS,II	C,I7	-	ţ	Evaluation	167
I979	I8,II	C,II	-		Assumed	(2, p.757
1979	18,11	C,II	-		Recommended by ENSDF	/2, p.497
1980	I8,II	0,17	-		Recommended	177
1980	18,11	C,II	-	1 1 1	_ fi.,	137
1981	18,11	0,11	- <u></u>		Adopted from data of Refs [1-3]	<u></u>

HALF-LIFE OF 245 Cm (2 = 96)

TABLE 7.3

YEAR	$\mathbb{T}_{1/2}(\alpha)$, y	Ć ,%	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1954	II500	43	MSA	In relation to half-life of $244C_m = 17.6$ Y	<u>[</u> 2287
1955	14300	20	MSA, AS	-	[237]7
1957	7500	25	-	-	<u> </u> 23 <u>8</u> /
196I	9320	3,0	MSA, AS	-	<u> [</u> 23 1]
1969	8265	2,2	MSA, MS	In relation to half-life of 244 Cm = 18.099 (15) Y	[239]7
1971	8532	0,62	MSA, AS, MS	245 _{Cm} 65.8 and 76.5%, assumed half-life of 2^{44} Cm = 18.099 (15) Y	<u>/</u> 2407
1981	8532	C,62	_	Adopted from data of Ref. [240]	

HALF-LIFE	ØF	240 Cm	(2	=	96)

.

TABLE 7.4

HALP-i									
YEAR	$\mathbb{T}_{1/2}(\alpha), \mathbf{y}$	6,5	MEASUREMENT METHOD	COMMENTS	LITERA- TURE				
1954	4000	15	MSA	Assumed half-life of ²⁴⁻ Cm = 17.6 Y	<u>[</u> 22 <u>8</u> 7				
I955	2300	20	MSA, AS		/2377				
1956	6620	5,3	MRA (rel. to ²⁵⁰ Cf)	Assumed half-life of 250 Cf = 9.3 Y	Z24I7				
1961	5480	3,I	MSA, MS	Relative to half-life of 244 Cm = 17.6 Y	<u>/</u> 23 <u>1</u> 7				
1969	4711	0,46	MSA, MS	For half-life of 244 Cm = 18.099 (15) Y	<u>[</u> 2397				
1971	4820	0,41	MSA, AS, MS	246 Cm 94.7 and 95.6%, for half- life of 244 Cm \pm 18.099 (15) Y	<u>/</u> 24 <u>0</u> 7				

.

Table 7.4 (continued)

YEAR	$\mathbb{T}_{1/2}(\alpha), \mathbf{y}$	0,3	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1971 1975 1977	4655 4730 4852	0,86 2,I I,6	MSA - MSA, MS (rel, to ratios $\frac{244}{240}$ Cm/ $\frac{246}{240}$ Cm	Absolute measurements Recommended Assumed half-life of ²⁴⁴ Cm 18.099 Y	[2427 [17 [2437
1980	4730	2,I	-	Recommended	137
1981	4762	0,34	_	WEIGHTED MEAN VALUE BASED ON REFS [239, 240, 242, 243	-

HALF-LIFE OF 248 Cm (Z = 96)

 $T_{1/2} \cdot 10^{-5} (\alpha)$, 0,% LITERA-YEAR MEASUREMENT METHOD COMMENTS TURE <u>[2417</u> 4,7 8,5 1954 MRA-(rel. to ²⁵²Cf) Assumed half-life of 252Cf = 2.2 Y <u> [2447</u> 4,0 7,5 I968 For half-life of ²⁴⁴Cm = 18.099(15) Y $\left. \begin{array}{c} 4 \\ 1 \\ 0 \end{array} \right\}$ MS, MRA (rel. to 244 Cm) 3,52(eff) 3,84(partial) I969 /2397 For half-life of 244 Im = 18.099(15) Y, 248 Cm 95.2% 2407 3,61(eff_) 3,94(pertial) I97I $\left[\frac{1}{1}, \frac{7}{0}\right]$ MSA, AS, MS, SCD [242] 1971 3,703 0,86 MSA Absolute measurements 3,397(eff.) 3,703(partial) 0,94 I980 [3] Recommended 3,397(eff.) 3,703(partial) 0,94 I98I _ -

ADOPTED FROM DATA OF REF. [3]

HALF-LIFE OF 249 Bk (Z = 97)

TABLE 8.I

YEAR	TYPE OF DECAY	±1/2	0.%	HEASUREMENT METHOD	COMMENTS	LITERA- TURE
1954	β	~ 270 D	-	Decay curve	-	246,2477
I954	ß	~ I Y	-	Decay race	-	/2487
I954	a/B-	290 p ~10-5	6,9	Decay curve 249Cf build-up	• • •	<u>/</u> 24 <u>9</u> 7
1957	β- α/β- α	3I4 D - 2,2·IO ⁻⁵ 3,98·IO ⁴ Y	2,5 14 14	Decay rate 249Cf build-up	Measurement over period of ~ 1 T _L	<u>[</u> 25 <u>0</u> 7
1969	a/ 3 ⁻ a	I,45.10 ⁻⁵ 5,04.10 ⁴ y	5,5	Build-up of ²⁴⁹ Cf, LS, AS, measurement of S ⁻ activity (2 PC)	For $T_{\frac{1}{2}}^{3}$ (249 _{Bk}) = 314(8) D	[25]]
1974	-ھر	325 0	2,2	Decay curve, PC	Measurement over period of 1 Y; PC calibration by ¹⁴ C	[252]
1980	β ⁻ α/β ⁻ α	~ 323 5 I,45·10-5 6,04·10 ⁴ y	5,5 5,8	-	Recommended	[3]

TABLE 7.5

YEAR	TYPE OF DECAY	^T 1/2	0,5	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1980	جر ا	۵٫ 529	0,61	Decay curve	Measurements of 30 samples, uncertainty reduced for P = 0.67	2537
1981	్ర5 ~	528 _D 6,04.10 ⁴ y	0,9I 5,8	-	Weighted mean value based on data of Refs [249, 250, 252 and 253], error = esti- mated scatter. Adopted from data of Ref.[3]	

HALF-LIFE OF 249 Cf (Z = 98)

TABLE 9.1

YEAR	Τ.(α), Υ Έ	ε, %	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
I954	~ 400	-	By growth of e-activity of a 245Bk sample	-	<i>[</i> 247 <i>]</i> 7
1954	550	27	liem and by rate of 8-decay of 249 _{Bk}	Pure ²⁴⁹ 3k	[2487
1954	470	21	Build-up of ²⁴⁹ Cf in ²⁴⁹ Bk	$\frac{249}{Bk}$ sample: 2.5 x 10 ³	[249]
1957	360	II	MS, AS. IC, AGC, decay rate 249_{RL}	-	<u>/</u> 2507
1969	3 45	4,3	AS, PC, growth of q-activity	-	<u>[</u> 25]]7
1969	352	I,7	MSA, MS	Rel. to half-life of ²⁵² Cf 2.731(7) Y	<u>/</u> 2297
1973	350,6	0,60	MSA, 27-PC, AS, SCD, MS	Sample: 385 ug Cf, complexo- metric titration	<u>/</u> 2547
1977	366	I,6 0.60	MSA, absolute o-counting, MS	Isotopic label - ²⁵² Cf	[255] (37
1900 (TOCT	a, UCS	0,50		Recommended	12.92
1021	2,202	0,02	-	weighted mean value based on	

data of Refs [239, 250, 251, 254, 255]

HALF-LIFE OF 250 cf (Z = 98)

. ·

TABLE 9.2

YEAR	Τ.(α), Υ	ō, %	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1954	~12	-	α -decay rate of 250 G-decay rate of parent 250 Bk	-	[247]
1954	9,4	24	MSA, AS	_	<u>/</u> 24 <u>8</u> 7
1954	10,0	24	MSA, MS, AS, rel. to ²⁵² Cf	Assumed half-life of ²⁵² Cf = 2.2(2) Y	L2497
1957	10,9	7,3	MSA, MS, from ratio ²⁵⁰ Cf/ ²⁵² Cf	-	/2507
1965	13,2	3,8	Decay rate of ²⁵⁴ Fm and build-up of ²⁴⁶ Cm, MSA, IC, AS, SCD	²⁵⁴ Fm ≅ ²⁵⁰ Cf ♀ ²⁴⁶ Cm	<u>[</u> 23 <u>3</u> 7
1969	13,08	0,69	MSA, MS, by ref. to ²³² Cf	Assumed half-life of ²³² Cf - 2.731(7) Y	/2397

Table 9.2 (cont.)

YEAR	^π _{1/2} (α), γ	C ,%	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1980	13,08	0,69	-	Recommended	137
1981	13,08	0,69	-	Adopted from data of Refs [3, 239]	-

HALF-LIFE OF 251 Cf (Z = 98)

TABLE 9.3

YEAR	$r_{1/2}(\alpha), y$	· 0,7	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
1957	~800	-	MS, by isotopic ratio 240 Cm/ 24 Cm	-	[250]7
1961 1965 1969	1600 892 900	- 9,9 5,6	- MS, by isotopic ratios $250_{Cf}/251_{Cf}$ and $246_{Cm}/247_{Cm}$ MSA, MS	Cited in Ref. [211] Sample: 3 x 10^{-10} g pure Cf Assumed half-life of 252 Cf =	_259_7 _261,260_7 _239_7
1981	900	5,6		2.731(7) Y Adopted from data of Ref. [239]	-

HALF-LIFE OF 252 Cf (Z = 98)

• •

LITERA-I_{1/2}(~), y 6,% YEAR MEASUREMENT METHOD COMMENTS ture [217] I954 ~2 -Decay curve, measurements over Calculated evaluation period of several months [248] 1954 2,I 19 AS, decay rate measurements 2,2 12497 I354 9,I Decrease in spontaneous fission Measurements over period of 3 months race /2507 1957 2,55 5,9 MSA by a-decay and spontaneous Measurements over period of fission 700 D 2,646(eff.) 2,731(partial) 0,15 I965 /2337 MSA. IC, AS, SCD, MS -[252] 2,631 0,23 I969 Neutron measurements I969 2,621 0,23 [263] .. Requirement of data of Ref. [262] Samples of ²⁵²Cf, 47 and 52% [264] 0,38 1973 2,559 Analysis of decay curve /2657 Calibration by neutrops of Ra-Be source, three $^{252}{\rm Cf}$ 1974 2,628 0,38 Neutron measurements in graphite sphere (part of state standard unit of neutron flux) sources <u>/797</u> 0,76 1974 2,64 Estimate 0,27 Measurements over period [266] I974 2,638 Neutron measurements in Mn bath of - 4.5 Y [367 0,76 I976 2,64 Recommended 2,637 0,19 [267] 1976 Neutron measurements Mn bath method 0,15 } 2,638(eff.) 2,722(partial) 1978 <u>[6]</u> Escimate [2] 2,638 0,38 1979 _ Recommended 0,38 <u>(</u>97 2,64(eff.) 2,72(partial) 1980 ., -2,638 (eff.) 2,722 (partial) 0,38 _ 198I Adopted from data of

Refs [2, ENSDF] and [6]

TABLE 9.4

•

HALF-LIVES OF 252 Es AND 253 Es (Z = 99)

YEAR	$r_{1/2}(\alpha), D$	0,5	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
			252 _{Es}	··	
1956	-140	-	By decay of peak E _c = 6.64 MeV	²⁴⁷ Bk(0,xn) ²⁵² Es	(2697
1956	40I	5]	By decay of peak $E_{a} = 6.631$ MeV	$252_{Cf(d,2n)}^{252}$ Es	12707
1973	350	I4	252Es relative to peak, E _a = 6.49 MeV 254 Es	Mixtures of ²⁵³ Es and ²⁵⁴ Es	[271]
1977	471,7	0,40	GS, Ge/Li-SCD. By decay of peak $E_x = 785 \text{ keV } [E-capture 252Es for E/a = 22(2)%]$	Calibration of Ge/Li-SCD by 137Cs, measurements over period of 3Y	[272]
1981	408	IO	-	Assumed as weighted mean valu for data of Refs [270-272]	ie -
	<u>+</u>		253 Es		
I954	20	-)		Einsteinium from products of	1/2737
I954	19,3	I,6 }	By decay curve	thermonuclear explosion Mike	/274]
1956	20,03	0,050	Decay curve, CH ₄ -GFC, AS, $IC(\Delta E_{2} = 0.63\%)$, $PC(S^{-})$, $NaI/Tl(\gamma)$, $KI/Tl(\alpha)$, AGC, BGC	Measurements over period of 2 T.	[275]
1966	20,7	I,4	Decay curve, IC, Si-SCD, measurements over a period of $3-12$ T.	Einsteinium from products of Par and Barbel thermonuclear explosions	<u>/</u> 27 <u>6</u> 7
I966	20,47	0,098		-	277
I968	20,468	0,I3	-	-	[247
198C	20,47	0,098	-	Recommended	[3]
1981	20,47	0,098		Adopted from data of Refs [3, 277]	~~~~~

HALF-LIVES OF 254Es AND 255Es (2 = 99)

. .

YEAR	¹ 1/2 ^{, D}	J. 5	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
		<u></u>	²⁵⁴ Es (a-decay)		
1955	~2	-	-	-	2787
I955	272	-	_	-	[279]
1956	~ 320	-	AS, by decay of peak $E_{\alpha} = 6.42$ MeV, $IC(\Delta E_{\lambda} = 0.63\%)$, CH_{λ} -GFC, $PC(B^{-1})$, $Nal/Tl(\gamma)$, $Kl/Tl(\alpha)$, AGC, BGC	-	[275]
1958	480	15	A5, IC, by decay of peak $E_{n} = 6.42$ MeV	Measurement over period of 500 D	<u>[</u> 28 <u>0</u> 7
1966	272 280 276	0,37 0,54 2,2	By decay of daughter ²⁵⁰ Bk, calibrated Nal(T1)-detector By a-decay of ²⁵⁴ Es, AS	Mean value	[28]J
1975	276,0 275,4 275,7	C,I8 C,I8 C,I8 C,I8	Sy E _Y = 989.0 keV $)$ Peaks of By E _Y = 1028.6-1031.8 keV) daughter Mean value $)$ 2503k	²⁵⁴ Es 99.5%. Measurements over period of 2 Y	[282]
1981	276	2,0	· · ·	Adopted from data of Refs [281, 282]	-

TABLE 10.2

¢

YEAR	¹ 1/2 , ^D	6,%	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
		· · · ·	255_{Es} (β^{-} 91,5%, $\alpha = 8,5\%$)		4
1954	30	-	By decay curve	From products of thermo-	<u>[</u> 27 <u>3</u> 7
1966	38,3	0,78	-	-	[[77]
1966	9,9	3,0	AS, activity ratio ²⁵⁵ fm/ ²⁵³ Es	Einsteinium from products of thermonuclear explosions Par and Barbel. For half-life of 253 Es = 20.03(1) D	<u>/276</u> 7
1966	38	7,9	From decay curves of ²⁵⁵ Fm after separation from exposed ²⁵⁴ Es	Measurements over period of 7 D	<u>/</u> 28 <u>3</u> 7
1981	38,9	2,1		Adopted from data of Refs [276, 284]	-

HALF-LIVES OF 253 Fm and 257 Fm (Z = 100)

TABLE 11

YEAR	TYPE OF DECAY	T ₁ , D	÷, "•	MEASUREMENT METHOD	COMMENTS	LITERA- TURE
				253 _{Fm}		
1956 1957	E G/E	>IO 4,5 0,IU5	- 22 9,5	- AS, IC, by 253 Es build-up rate (E _a = 6.94 MeV)	252 _{Cf(a,3n)} 253 _{Fm} -	/2847 /2857
1959	E a/E	3,0 0,105	6,7 9,5	AS, by $\frac{253}{\text{Es}}$ build-up rate $(E_x = 6.95 \text{ MeV})$	-	<u>/</u> 2867
1963	E	3,0	33	-	-	/287, 2887
1967	Ε α/Ε	3,0 0,12	4,0 8,3	GS, by decay of photopeak (E _y = 271.8 keV) By ²⁵³ Es build-up		[259]
1981	a/E	3,0 0,12	4,0 8,3	-	Adopted from Cara of Ref. [289]	-
				257 _{Fm}		
1964	æ	79	IU,I	AS with incorporation of data on 255Es build-up	$\begin{array}{c} 257_{\text{Fm}} & 253_{\text{CE}} & \underline{=} 253_{\text{ES}} & \underline{=} 253_{\text{ES}} \\ \text{Measurements over period of} \end{array}$	2907
1965	æ	80	6,2	From variation in shape of g-spectrum	100 D	<u>[</u> 29 <u>1</u> 7
1966	α	94	10,6	From decay rate over 270 D (from products of thermo- nuclear explosions Par and Barbel)	For 253 Es half-life = 20.0 or 20.7 D and 253 Cf = 17.6 D	<u>[</u> 27 <u>6</u> 7
1966	α	97	10,3	-	Best value, reactor fermium	[292]
1967	æ	85	31	Measurement of spontaneous fission	Measurements over period of 4.5 months	<u>/</u> 2937
1973	ά	I00,5 (eff.)	0,20	MSA, IC	-	[294]
1981	æ	97,2	з,з		Adopted from data of	-

Adopted from data of Refs [276, 292, 294], S-evaluation of scattering

.

÷

ISOTOPE	I1/2, Y	$\overline{\nu}_p$, NEUTR./SF
230 m	I,5(I,5).I0 ¹ '[37	-
222 <u>m</u> n 221	>I·I0 ²¹ , <u>/</u> 47	2,13(20) [255]
272	≥I,I·IC ¹⁰ [4]	-
2220	8,0(6,2).1013 [37	-
272 _U 224	I,22(28)·IU ¹⁷ [37	I,5(calc.) [6]
22-U 27=	2,04(1,02)-1010 [37	I,8(calc.) [67
275 076	3,5(9)·IO ¹⁷ _[47	I.7(calc.) [67
حک محک	2,0(I,0)·IQ ¹⁶ /37	I,89(5) <u>/</u> 67
2250	8,20(9).1015 [37	1,99(3) [67
² Np	$> I \cdot 10^{18} / 47$	I,9(calc.) [57
255 Pu	3,5(1).109 277	2,11(13) [67
² ² Pu	4,77(14)·10 ¹⁰ /77	2,20(7) [67
297 Pu	5,5(5)·IO ¹⁵ /37	(2,3; 2,24) (calc.) [57
Pu	I,27(4).IO ^{II} [77	2,14(2) /67
24".Pu	~3.10 ¹⁵ [67]	2,3(calc.) [67
د بر کی ب	6,9(3)·IO ^{IC} [7]	2,I2(I) /67
2444 Pu	6,56(32)·IO ^{IO} /37	2,29(19) /2567
247 AE	I,I(2)·IO ^{I4} [7]	2,4(calc.) [57
242m	9,5(3,6)·IO ^{II} /37	_
43 am	3,35(3I)·IO ^{I3} /37	2.5(calc.) /67
242 Cr	6.I(2).IO ⁶ /77	2,50(6) /57
244 C=	1.344(4).107 /77	2.69(I) /57
246 Cm	1.809(38).107 /37	2,907(15) /2567
²⁴⁶ C۳	4.II2(4I)·IC ⁶ /37	3,173(25) /2957
49 Bk	I.36(I0)·10 ⁹ /37	3.395(26) (2967
2490 2	6.98(I4)·I0 ^{I0} /37	3.4(4)/2567
250 Cf	1.70(7).104 /37	3.52(9)/2567
52	85,38(39) /37	3.737(8) /6 2577
54°C2	0.1656(5) /47	3,89(5) /2557
53 3 B	6 44(22)·ID ⁵ /37	
254	$>25 \cdot 10^{7} / 57$	_
55	2 44(14).103 /37	}
257	130 7(2 7) /3947	4 01(TR) (2567
		T T T T T T T T T T T T T T T T T T T

CONSTANTS ADOPTED FOR THE SPONTANEOUS FISSION OF ISOTOPES OF TRANSURANIUM ELEMENTS

- 33 -

1

TABLE 13

.

SUMMARY TABLE OF ADOPTED NUCLEAR CONSTANTS OF LONG-LIVED ISOTOPES OF TRANSURANIUM ELEMENTS

. •

.

>

.

ISOTOPE	TYPE OF DECAY	HALF-LIFE, Y	$\overline{\nu}_{\rho}$, NEUTR./SF	LSOTOPE	TYPE OF DECAY	HALF-LIFE, Y	$\bar{\nu}_{p}$, NEUTR./SF
228 m	ά	I,913I(9)		233P8	β_	27,0(I) D	-
229 m	ά	7340(160)	-	2320	à	72(I)	-
230 _{Th}	ά	7,530(75).104	-	077	SF	8,0(6,2)·I0 ¹³	1 –
272	SŦ	I,5(I,5)·10 ¹⁷	-	U 299	æ	1,592(2).105	-
292m	ά	I,405(6)·I0 ^{ID}	-	070	SF	1,22(28).1017	I,5
	ST	>I.IC ²¹	2,13(20)	2240	α	2,445(I0)·I0 ⁵	-
231 Pe	æ	3,276(II)·I0 ⁴	-	0.75	SF	2,04(1,02).1016	I,8
	SF	≥I,I·I0 ¹⁶	-	U 200	ά	7,038(5).10 ⁸	-

ISOTOPE	TYPE OF DECAY	HALF-LIFE. Y	$\overline{\nu}_{\rho}$, neutr./sf	LSOTOPE	TYPE OF DECAY	HALF-LIFE, Y	$\bar{\nu}_{\rho}$, NEUTR./SF
235 ₁₁	SE	3.5(9).1017	T.7	242 _{Cm}	SF	5.I(2)·I0 ⁶	2,50(6)
236 _m		2 3415(29).107		-243 _{Cm}	~	29,0(8)	-
v	α. 	2 0(1 0).1016	T 89(5)	244	~		-
238,	57	$h h c P(h) \cdot T0^9$	1,00(0)		s =	$T_{2} = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$	2 (2(1)
U	æ	4,400(4) 10 9 20(9) 10 15	T 00(7)	245			2,07(1)
235	51	0,20(3)*10 hTD(TD) -D	1,35(3)	246	<i>~</i>		-
μp	E	410(10) -5	-	Car	α	+762(15)	-
23€≖	a/Ľ	1,4.10	-	247	SF		2,907(15)
, vb	<u>ع</u> + تعر	1,15(12)•10	-	248	ά		-
	هر ا	1,29(+0,07)*10*	-	CT CH	$\alpha + 5F$	$3,397(32) \cdot 10^{-10}(art.)$	
237	ĺ	(-0,09)	-		α	$3,703(35) \cdot 10^{-10}$ (partial	
- Np	α	2,14(1).10	-	247	SF	4,II2(4I)·I0	3,173(25)
270	SE	>1.1010	I,9	Er Br	æ	1380(250)	-
225 Np	ح_	2,355(4) D	-	249 Bk	_هر	328(3) D	-
لتتمده	α	2,851(8)	-		a/ 3 ⁻	I,45(8)·10 ⁻⁵	-
070	SF	3,5(I)·I0-	2,II(I3)		æ	6,04(35).10	-
520 ⁵⁰	æ	87,74(9)	-	0.00	57	I,86(I0)·IC ³	3,395(25)
070	SF	4,77(14).1010	2,20(7)	24901	æ	352,2(2,2)	-
22200	α	24IIO(30)	-		SF	6,98(I4)·IO ¹⁰	3,4(4)
250	SF	5,5(5)·IO-5	2,3	250 cf	æ	13,08(9)	-
240Pu	α	6537(IO)	-		SP	1,70(7).107	3,52(9)
	SF	I,27(4) · I0 ¹¹	2,14(2)	251 Cf	á	900(50)	-
247Pu	ຸຣີ	[14,4(2)	-	25202	α + sr	2,638(IO) (eff.)	-
1	æ.	6,04(6).105	-		æ	2,722(IO) (partiai)	-
	α/,β ⁻	2,46(I).10 ⁻⁵	-		SF	85,38(39)	3,737(8)
24-2	SF	~3.1072	2,3	254 CI	∝/sr	3,I(I,6)·I0 ⁻³	-
<u> </u>	α	3,763(20) 105	-	252	SF	60,5(2) D	3,89(5)
244	ST	6,9(3)·I0 ¹⁰	2,I2(I)	Es	œ	408(42) D	-
Pu	æ	8,26(9).10'		253 ₈₈	α .	20,47(2)	-
.	SF	6,56(32) • 1010	2,29(19)		SP	6,44(22).107	-
247 13	æ	432,2(5)	-	254 Sa	æ	276(6) ₂ 0 ·	-
	ST	I,I(2)·I0 ¹⁴	2,4	<u> </u>	SF	>2,5'IO'	-
2423	IT (?)	142(4)	-	255 ₂₈	<u>5</u>	38,9(8)	-
	×	3,13(9).104	-		α/β [−]	-9,3.10-2	-
1	Ξ	960(50)	-		SF	$2,44(14) \cdot 10^{3}$	-
	SF	9,5(3,6)·IO ¹¹	-	253 m	Ē	3,0(I) D	-
هد ²⁴³	æ	7380(40)	- '		α/E	0,I2(I)	-
	SF	3,35(3I)·IO ¹³	2,5	257 Ja	æ	97,2(3,2) D	-
242 _{Ca}	æ	162,8(4) D	-		SF	130,7(2,7)	4,0I(I3)
				1 1	ſ		

J - -

Comment. New data on the SF half-lives for U isotopes have been published by G. von Gunter, A. Gruyter et al. (Phys. Rev., 1981, 23 C, p. 1110). The method was based on the use of a spinner detector.

÷r

-

۰.

• •

.

	Rad	ioactive decay	Spontaneous fission			
isotope	Type of decay	Disintegrations/s	SF/s	Neutrons/s		
228 m	α	3.032(1).1010	-			
229 m	đ	7.87(17).106	_	· ·		
230	~	7 64(8) 105	4(4)·TO-7			
232	а. - ́	1,04(0)-10				
231	a	T 7/0(2)	< 5. 10-6	<1,3.10		
2335.	a	1,740(0)-10 7,770(00) TOIL	₹3•10	-		
232	ß	7,678(28)-10	-	-		
222	ά	7,92(11).105	7,1(5,5)•10	-		
	ά	$3,565(4) \cdot 10^{-5}$	$4,6(1,1)\cdot 10^{-1}$	~7.10		
	ά	2,3II(9)·IU	2,8(I,4)·10-0	~5.10		
122 ⁰	ά	79,96(6)	I,6(4).10 ⁻⁷	~3.10-7		
36 ⁰	α	$2,393(4) \cdot 10^{3}$	2,8(I,4)·I0 ⁻⁶	5,3(2,6).10-6		
38 ₀	α	I2,44(I)	6,8(7)·I0 ⁻⁶	I.35(3).IC ⁻⁵		
235 _{ND}	Ξ	5.01(12)·10 ¹⁰	-			
-`r	~	2.0.TO ⁵	-	-		
36ENp	a⁻+ F	4 87(51).105	_			
-	<u>م</u> + در	4,07(51),10	-			
	ŗ	(-I7)	-	-		
237 _{Np}	α	$2,607(12) \cdot 10^4$	<6.10 ₋₈	<1.10-7		
239 _{ND}	s -	8,58I(15)·10 ¹²	-	-		
أيوعو	í ex	I.966(6)·I0 ^{I0}	16.0(5)	33.8(2.3)		
38pu	~	$6.333(6) \cdot 10^8$	T.16(3)	2.55(TT)		
39	~	2 295(3) • 700	1.00(9).10-5	~2 3		
4C_	~	8 429(13).106	$0 \mu_{3}\mu(T\mu)$	() 929(21)		
241_	a -	D DT/EL TO		0,929(31)		
20	,5	$3,01(5)\cdot10^{4}$	~1+0,10	~ 4•10		
42	α	9,08(9).10				
1 <u>11</u>	ά	1,452(8).10-	0,792(34)	1,68(7)		
'Pu 41	ά	636(7)	0,825(40)	1,89(18)		
AE .	α	I,270(2).10	5,00(91).10			
	17	3,85(6)·I0°	5,8(2,2).10-2	-		
	α	I,75(5)·10°	-	-		
i	E	$5,69(30) \cdot 10^7$				
243 <u>am</u>	æ	7,374(40)·I0 ⁶	1,62(I5)·IO ⁻³	~4.10-3		
242 _{Cm}	α	I,226(3).IO ^{II}	9,0(3)·I0 ³	2,25(9).104		
43 _{Cm}	ά	1,876(52).10 ⁹	-	-		
244 Cm	æ	$2.993(3) \cdot 10^9$	4,032(12).10 ³	1,085(5).104		
245 _{Cm}	à	$6.326(39) \cdot 10^{6}$	-	-		
246 _{Cm}	æ	1.129(4).107	2,97(6)·10 ³	8,63(19).10 ³		
247	$\vec{\sigma}$	3.25(8) TO3		-		
.48		Τ μμη τμιντη5		4 12(5).104		
47 <u>-</u> .	α. «	1,740(77) 10	1,00(1)-10	Τ,ΤΣ(),ΤΟ		
49 <u>-</u>	a	5,00(70)*10				
BK	_څر	5,913(54).1010	28,6(1,>) 🌲	97,1(5,3)		
240	ά	8,79(51).10	-	-		
- ⁺ 701	ά	I,508(9) · 10°	0,761(15)	2,6(3)		
PD CT	à	4,044(28)·IQ ⁹	3,II(I3)·I0 ⁶	1,09(5).107		
25 ¹ C 2	ά	5,85(32)·10 ⁷	-	-		
252 _{Cf}	α	I,928(7)·10 ¹⁰	6,I45(28)·IU ⁸	2,297(12).109		
254,00	-	9 7/5 01.108	3 143(TO).TOII	1 22/21 1012		

.

. .

SPECIFIC ACTIVITIES OF LONG-LIVED TRANSACTINIUM ELEMENTS (MASS 1 mg)

- 35 -

. .	Rad	loactive decay	Spontaneous fission		
isotope	Type of decay	Disintegrations/s	SF/s	Neutrons/s	
252 _{Es}	α	4,70(47).10 ¹⁰	~	-	
253 _{Es}	d	9,325(9).10	8,12(28)·10 ⁴	-	
274 Es	a	6,89(15)·10 ¹⁰	<2,1·10 ³ 7	-	
255 Es	ß	4,9(1,0).1011	2,13(12).10	-	
057	α	~4,6.1010	-	-	
255 F m	Е	6,96(25).1012	-	-	
000	d	7,63(70).1011	-	-	
277 Fm	α	1,93(6).1011	8,94(8)·10 ⁸	1,58(6)·10 ⁹	
••••••			••••	·····	

.

Table No. 14 (cont.)

- 36 -

. 1

REFERENCES

- 1. Proceedings of the First IAEA Advisory Group Meeting on Transactinium Isotope Nuclear Data (Karlsruhe, PRG, November 3-7, 1975): IAEA-186. Vienna: IAEA, 1976, v. I-III.
- 2. Transactinium Isotope Nuclear Data-1979. Proceedings of the 2nd Advisory Group Meeting on Transactinium Isotope Nuclear Data (Cadarache, France, May 2-5, 1979): IAEA-TECDOC-232. Vienna: IAEA, 1980: a) Reich C.W. Bev. Report, N B1, p. 45-65; b) Nichols A.L. Ibid., N B2, p. 67-108.
- 3. Lorenz A. Proposed Recommended List of Transactinium Isotopes Decay Data. Pt I: Half-lives. Dec. 1980. INDC(NDS)-121/NE.
- 4. Tables of Isotopes. Ed. by Lederer C.M., Shirly V.S. s.a. 7th Edition. New York: Wiley J. and Sons, 1978.
- 5. Gorbachev, V.M., Zamyatin, Yu.S., Lbov, A.A., Osnovnoye kharakteristiki izotopov tyazhelykh ehlementov (Main characteristics of the isotopes of heavy elements). Moscow: Atomizdat (1975)
- 6. Shimanskaya, N.S., Yadernye konstanty transaktinevykh izotopov toplivnogo tsikla (Nuclear constants of transactinium isotopes of the fuel cycle), Preprint PI-70. Leningrad (1978).
- 7. Khol'nov, Yu.V., Chechev, V.P., Kamynov, Sh.V. et al., Kharakteristiki izluchenij radioaktivnykh nuklidov primenyaemykh v narodnom khozyajstve. Otsenennye dannye. Spravochnik (Radiation characteristics of the radionuclides used in the national economy. Evaluated data. Handbook). Moscow: Atomizdat (1980).
- 8. Meitner L. Z. Phys., 1918, Bd 19, S. 257.
- 9. Kirby H.S., Grove G.R., Timma D.L. Phys. Rev., 1956, v.102, p. 1140.
- 10. Lederer C.M., Hollander J.M., Perlman I. Table of Hsotopes. 6th Edition, 1967.
- 11. Jordan K.C., Otto G.W., Ratay R.P. J.Inorg. Mucl. Chem., 1971, v. 33, N 5, p. 1215.
- 12. Hugemann F. e.a. Phys. Rev., 1950, v. 79, p. 435.
- 13. Soddy H.A., Bitchins A.F.R. Phil. Mag., 1924, v. 47, p. 1148.
- 14. Meyer S., Schweidler E. Radioaktivität, 1927, p. 389.
- 15. Curie M., Cotelle S. Comp. rend., 1930, v. 190, p. 1289.
- 16. Hyde B.K. MNES-PPR, 19#9, v. 14B, p. 1435.
- 17. Attree R.W., Cabell M.J., Cushing R.L., Pieroni J.J. Canad. J. Phys., 1962, V. 40, p. 194.
- 18. Meadows J.W. e.a. Phys. Rev., 1980, v. 220, H 2, p. 750.
- 19. Kovarik A.F., Adams N.I. 1938. Cm. [23].
- 20. Senftly F.E., Farley T.A., Lazar N. Phys. Rev., 1956, v. 104, p. 1629.
- 21. Maklin R.L., Pomerance H.S. J. Nucl. Energy, 1956, V. 2, N 4, p. 243.
- 22. Picciotto E., Wilgain S. Nuovo cimento, 1956, v. 4, p. 1525.
- 23. Farley T.A. Canad. J. Phys., 1960, v. 38, N 8, p. 1059.
- 24. Intern. Radium Stand. Com. Rep. Rev. Mod. Phys., 1931, v. 3, p. 427.
- 25. Van Grosse A. Esturvissenschaften, 1932, Bd 20, S. 505.
- 26. Van Winkle Q., Larson R.G., Katzin L.I. J. Amer. Chem. Soc., 1949, v.71, p. 2585.
- 27. Kirby H.W. J. Inorg. Mucl. Chem., 1961, v. 18, p. 8.
- 28. Brown D., Dixon S.N., Glover K.M., Bogers F.Y.G. Ibid., 1968, v. 30, p. 19.
- 29. Robert J., Miranda C.F., Muxart R. Hadiochim. Acta, 1969, v. 11, N 2, p. 104.
- 30. Schmorak M.E. Nucl. Data, 1977, v. 21, p. 91.
- 31. Grosse A.V., Booth E., Dunning J.R. Phys. Rev., 1941, v. 59, p. 322.
- 32. McIsaac L., Frieling E. Mucleonics, 1956, v. 14, N 10, p. 65.
- 33. Wright H.W. e.a. Nucl. Sci. and Engng, 1957, v. 2, p. 427.
- 34. Sellers P.A., Stevens C.M., Studier M.H. Phys. Rev., 1954, v. 94, p. 952.
- 35. Chilton J.M., Gilbert R.A., Leuze R.E., Lyon W.S. J. Inorg. Nucl. Chem., 1964, v. 26, p. 395.

36. Baranov, S.A., Zelenkov, A.G., Kulakov, V.M., At. Ehnerg. 41, 5 (1976) 342 (in Russian). 37. Aggarwal S.K. e.a. Phys. Rev., 1979, v. 200, N 4, p. 1533. 38. Lineneberger G.A. Plutonium Project Report LAMS-256. 1945, p. 10. 39. Hyde E.I. 1949, TID-5223, 1952, p. 16. Cu. /1537, Paper 19.15, p. 1431. 40. Sellers P.A., Bentley E.C., Studier M.E. Report ANL-5411, 1955, p.10. CM. /50/. 41. Bigham C.B., Hanna G.C., Tunnicliffe P.R. e.a. Second Internat. Conf. Peaceful Uses Atomic Energy (Proc. Conf., Geneva, 1958), New York: UN, 1959, v. 16, p. 125. 42. Dokuchaev, Ya.P., Osipov. I.S., At. Ehnerg. 6, 1 (1959) 73 (in Russian). 43. Popplewell D.S. J. Nucl. Energy, 1961, v. A/B14, N 1, p. 50. 44. Ihle H.R., Langenscheidt B., Murrenhoff A.P. Ber.Kernforschungsanlage (Julich), 1967, Bd 491, S. 57.-45. Oetting F.L. Proc. Symp. Thermodyn. Nucl. Mater. with Emphasis on Solution Syst. (Vienna, 1967). Vienna: LAEA, 1968, p. 55. 46. Keith R.L.G. J. Nucl. Energy, 1968, v. 22, p. 471. 47. Durham R.W. 1969.CM. /497. 48. Durham R.W. RANDC (Can.)-40L, INDC(Can.)-6E, 1969. 49. Hanna G.C., Westcott C.H., Lemmel H.D. e.a. Atomic Energy Rev., 1969, v. 7, N 4, p. 3. 50. Jaffey A.E., Flynn K.F., Bentley W.C., Karttumen J.C. Phys. Rev., 1974, v. 90, N 5, p.1991. 51. Vaninbrouky R., De Bievre P., Le Duigou J. e.a. Phys. Rev., 1976, v. 130, p. 315. 52. Ewbanck W.B., Ellis T.L., Schmorak M.G. Nucl. Data Sheets, 1979, v. 26, p. 1. 53. Gejdel'man, A.M., Egorov, Yu.S., Libovskij, A.A., Izv. Akad. Nauk SSSR. Ser. Fiz. 43, 5 (1979) 928 (in Russian). 54. Aggarwal S.K. e.a. Radiochem. Radioanal. Letters, 1980, v.42, N 1, p.45. 55. Walling E. Z. phys. Chem., 1930, Bd 10, S. 467. 56. Kurie F.N.D. Phys. Rev., 1932, v. 41, p. 701. 57. Gratias 0.1. Phil. Mag., 1934, v. 17, p. 491. 58. Nier A.O. Phys. Rev., 1939, v. 55, p. 150. 59. For M. e.s. Carbide and Carbon Chem. Corp. - Report A-3828, 1946. 60. Chamberlain 0., Williams D., Juster P. Phys. Rev., 1946, v. 70, p. 580. 61. Goldin A.S., Knight G.B., Maklin P.A., Maklin R.L. Toid., 1949, v. 76, p. 336. 62. Kienberger C.A. Ibid., 1949, v. 76, p. 1561. 63. Kienberger C.A. Ibid., 1952, v.87, p.520. 64. Fleming E.H., Ghiorso A., Cunningham B.B. Ibid., 1952, v. 88, p. 642. 65. White P.H., Wall G.J., Pontet F.R. J. Mucl. Energy, 1965, v. 4/B19, p. 33. 66. Spernol A., Lauer K.F. 1968.Cx. [49]. 67. EANDC(Can)-44L, LEDC(Can)-9L, 1969. 68. Figgins P.E. USAEC Report ANL-7610, 1970, p. 11. 69. Meadows J.W. Ibid., p. 44. 70. De Bievre P., Lauer K.F., Le Duigou J. e.a. BOMN Report IANDC(E)-133-AL, 1970. 71. Lounsbury M., Durham R.W. Chem. Nucl. Data Meas. and Appl. Proc. Int. Conf. (Canterbury, 1971). London, 1971, p. 215. 72. De Bievre P., Lauer K.F., Le Duigou J. e.a. Ibid., p. 221. 73. Vaninbroukr R. EUR-5194-E, 1974. 74. De Bievre, P. et al., Neitronnye standarty (Neutron standards), Moscow: Atomizdat (1975), No. 6 (in Russian). 75. Butherford E. Nature, 1929, v. 123, p. 313. 76. Kovarik A.F. Phys. Rev., 1930, v. 35, p. 1432. 77. Grosse A.V. Ibid., 1932, v. 42, p. 565; J. Chem. Phys., 1934, v. 38, p. 487. 78. Western F., Ruark A.E. Ibid., 1933, v.44, p.675; 1934, v.45, p.628. 79. Meyer S. Vien Ber.IIa, 1937, v.146, p.175; 1937, v.146, p.581. 80. Knight G.B. OHNL Rep. N K-663, 1950. CM. /837.

- ĉ1. Sayag G.J., C.E.Acad.Sci.(Paris), 1951, v.232, p.2090.
- 82. Wurger B., Meyer K.P., Huber P. Helv. Phys. Acta, 1957, v.30, p.157.
- 83. Knight G.B. Nucl.Sci.Absts., 1957, v.10, p.7360.
- 84. Deruytter A.J., Schröeder L.G., Moore J.A. J.Phys. (Paris), 1963, v.24, p.939.

- 39 -

85. Deruytter A.J., Schröeder L.G., Moore J.A. Hucl. Sci. and Engng, 1965, v.21, p.325. 86. Banks P.C., Silver L.T., J.Geophys.Res., 1966, v.71, p.4037. 87. Jaffey A.H., Plynn K.F., Glendenin L.E. e. a. Phys. Rev., 1971, v.40, N 5, p.1889. 88. Deruytter A.J., Wegener-Penning G. Ibid., 1974, v.100, N 1, p.383. 89. Jaffey A.H. Ibid., p.386. 90. Jaffey A.H. Diamond H., Hirsch A., Mech J. Ibid., 1951, v.84, N 4, p.785. 91. Flynn K.F., Jaffey A.H., Bentley W.C., Essling A.M. J.Inorg. Nucl.Chem., 1972, v. 34, N 4, p. 1121. 92. Kovarik A.F., Adams H.I. Jr. Phys. Rev., 1932, v.40, p.718. 93. Schiedt R. Sitz. Acad. Wiss. Wien (Math.-Naturw.Klasse), Abt.IIa, 1935, Bd 144, S.191. 94. Curtiss L.F., Stockman L.L., Brown B.W. USNES Report N A-80 (U.S. GPO, Washington, D.C., 1941). 95. Kovarik A.F., Adams N.A. Phys. Rev., 1955, V.98, p.46. 96. Leachman R.B., Schmitt E.W. J.Nucl. Energy, 1957, v.4, p.38. 97. Steyn J., Strelow F.N. 1959. Metrol. Radionuclides. Vienna: IARA, 1960. 98. James R.A., Ghiorso A., Orth D.A. Phys. Rev., 1952, v.85, p.369. 99. Thomas T.D., Thesis Ph. D. University of California, UCEL-3791, 1957, CM. /279/. 100. Gindler J.E., Euizenga J.R., Engelkemeir D.W. Phys. Rev., 1958, v.109, p.1263. 101. Landrum J.H. J. Inorg. Nucl. Chem., 1970, v.32, p.2131. 102. Studier M.H., Gindler J.E., Stevens C.K. Phys. Rev., 1955, v.97, N 1, p.88. 103. Engelkemeir D.W., Gindler L. E. J. Inorg. Nucl. Chem., 1972, v,34, N 6, p.1799. 104. Whal A.C., Seaborg G.T., 1942. Cm. [98]. 105. Cunningham B.B., Manhattan Project Report CN-991, 1943. CM./98/. 106. Magnusson L.B., La Chapelle T.J. J. Amer. Chem. Soc., 1948, v.70, p.3534. 107. Brauer F.P., Stromatt R.W., Ludwick J.D. e. a. J.Inorg. Sucl.Chem., 1960, v.12,p.234. 108. Wish I. Nucleonics, 1956, v.14, N 5, p.102. 109. Connor R.D., Fairweather J.L. Proc. Phys. Soc., 1959, v.74, p.161. 110. Cohen D., Sullivan J.C., Zielen A.J. J.Inorg.Rucl.Chem., 1959, v.11, p.159. 111. Qaim S.M. Rucl. Phys., 1966, v.84, p.411. 112. Bigham C.B. e. a. Canad.J.Phys., 1969, v.47, p.1317. 113.Kazachovskij, C.D., Priroda, 1980, No. 2, p. 16 (in Russian). 114. James B.A., Florin A.E., Hopkins H.H., Ghiorso A. The Transuranium Elements. (Ed.Seaborg G.T., Katz J.J., Manning W.K.) New York: McGrow-Hill, 1951. Paper N 22.8, Nat.Nucl.En.Ser., Plutonium Project Record, Div.IV, Vol.14B, Part II, p.1604. 115. Hoffman D.C., Forde G.F., Lawrence F.O. J.Inorg.Nucl.Chem., 1957, v.4, N 3/4, p.143. 116. Jaffey A.E., Lerner J. Report ANL-4411, 1950 (un publ.). 117. Mech J.F., Diamond H, Studier M.H. e. a. Phys. Rev., 1956, v.103, N 2, p.340. 118. Hoffman D.C., Forde G.P., Lawrence F.O. J.Inorg.Nucl.Chem., 1957, v.5, p.6. 119. Richelberger J.F., Grove G.R., Jones L.V. MIM-1238, 1965. 120. Benson R.A. 1969. CM. Ellis J.A. Nucl.Data Sheets, 1970, v.B4, N 6, p.635. 121. Jordan K.C. Canad. J. Phys., 1970, v.48, p.716; Bep. K. MIM-1443, 1967, p.11. 122. Hastings J.D. a. e. J.Inorg. Nucl. Chem., 1972, V.34, N 1, p.25. 123. Strohm W.W., Jordan K.C. Trans.Amer.Nucl.Soc., 1974, v.18, p.185. 124.Polyvkhov, V.G., Timofeev, G.A., Privalova, P.A. et al., At. Ehnerg. 40, 1 (1976) 61 (in Russian). 125. Diamond H., Bentley W.C., Jaffey A.H., Flynn K.F. Phys.Rev., 1977, v.15C, H 3, p.1034. 126. Strohm W.W. Intern.J.Appl.Radiat. and Isotopes, 1978, v.29, N 8, p.481. 127. Aggarwal S.K., Jadhav A.V., Chitamber S.A. e. a. Radiochem. Radioanal.Letters, 1981, v.46, N 1-2, p.69. 128. Stout J.W., Jones W.H. Phys. Rev., 1947, v.71, p.582. 129. Westrum R.F., Jr., Hindman J.C., Greenless R. MMES-PPR, 1949, v.4B, p.1717. 130. Farwell G.W., Boberts J.E., Whal A.C. Phys.Rev., 1954, v.94, p.363. 131. Dokuchaev, Ya.P., At. Ehnerg. 6 (1959) 74 (in Russian). 132. Markin T.L. J.Inorg.Hucl.Chem., 1959, 7.9, p.320. 133. Oetting F.L. Ibid., 1965, v.27, p.2151. 134. Ihle H.R., Karayanis M., Murrenhoff A.P., Standard. of Radionuclides. Proc.Symp. (Vienna, 1966). Vienna: IARA, 1967, p.69. 135. Oetting P.L. Dow Chemical Co., 1970, 12p; CM.: 73.19.74.41 Ф (EN.72.4089). 136. Oetting F.L. Proc. Fourth Int.Conf. on Plutonium and Other Actinides. Santa-Fe, 1970, p. 154.

- 40 -

137. Aleksandrov, B.M., Antsiferov, V.I., Bulyanitsa, I.S. et al., Izv. Akad. Nauk SSSR. Ser. Fiz.39, 3 (1979) 482 (in Russian). 138. Glover K.K., Wiltshire R.A.P., Rogers F.J.G., King K. Report No. UERDC(75)P71, 1975.p.55; HEARDC(E)-162/L.139. Vaninbrooks R. e. a. NE ANDC(B)172"U", 1976, p.25; CENX-EN/11, 1975, p.30. 140. Jaffey A.H., Diamond H., Bentley W.C. e. a. Phys. Rev., 1977, v.16C, H 1, p.354. 141. Seabaugh F.W., Jordan K.C. Intern. J. Appl. Radiat. and Isotopes, 1978, v. 29, N 8, p.489. 142. Gumn S.R. Ibid., p.497. 143. Lucas L.L., Noyce J.R., Coursey B.M. Toid., p.501." 144. Jaffey L.H., Diamond H., Bentley W.C. e. a. Ibid., p.505. 145. Prindle A., Evans J., Dubryk R. e. a. Ibid., p.517. 146. March S.F., Abernathey R.M., Beckman R.J. e. a. Ibid., p.509. 147. Jaffey A.H., Diamond H., Bentley W.C. e. a. Phys.Rev., 1978, v.C18, N 2, p.969. 148. Vaninbroukx R. CENM/EN 40-79. 149. Lemmel H., Lorenz A. INDC/REANDC Fucl.Data Pile, 1978 Version; INDC-30/L+Sp. 1980, p.64. 150. Inghram M.G. e. a. Phys. Rev., 1951, V.83, p.1250. 151. Hollander J.K., Perlman I., Seaborg G.T. Rev. Mod. Phys., 1953, v.25, p.469. Cu. /130/. 152. Butler J.F., Eastwood, T.A., Collins T.L. e. a. Phys. Rev., 1956, v.103, H 3, p.634. 153. The Transuranium Elements. Ed. by Seaborg G.T., Katz J.J., Manning W.M. New-Nork: McGrow-Hill, 1951. Nat.Nucl.En.Ser., Plutonium Project Record, Div.IV, v.14B, Part II. 154. Thompson S.G. e. a. Phys. Rev., v.80, 1950, p.1108. 155. Mackenzie D.R., Lounsbury M., Boyd A.W. Phys. Bev., 1953, v.90, N 2, p.327. 156. Rose B., Milsted J. J.Nucl.Energy, 1956, v.2, E 4, p.264. 157. Hall G.R., Markin T.L. J.Inorg.Rucl.Chem., 1957, V.4, p.137. 158. Brown F., George G.G., Green D.S., Watt D.E. Ibid., v.13, 1960, N 3/4, p.192. 159. Smith H.L. Ibid., 1961, v.17, p.178. 160. Stepan I.E., Miske R.G. Trans. Amer. Bucl. Soc., 1966, v.9, p.451. 161. French, 1966. CM. [149, p.67]. 162. Shields W.R., 1967.CM. - [191]. 163. Stone R.E., Bulet E.K. J.Inorg. Bucl. Chem., 1968, v.30, H 8, p.2003. 164. Cabell M.J. Ibid., 1968, v.30, p.2583. 165. Shields W.R., 1970, CM. [149,p.67]. 166. Miske E.G., Stepan I.E. WASE-1136,1969. 167. Stepan I.E., Niske R.G. Bucl.Sci. and Engng, 1970, v.39, p.257. 168. Lounsbury M., Hall G.R., 1970. CH. [149.p.67]. 169. Cabell M.J. Chem.Nucl.Data Meas. and Appl.Proc.Int.Conf. (Canterbury, 1971). London, 1971, p.189. p.235. 170. Cabell M.J., Wilkins M. J.Inorg.Bucl.Chem., 1971, v.33, p.903. 171. Whitehead, 1973. CH. [149, p.67]. 172. Ziegler R.K., Ferris I. J.Inorg. Rucl. Chem., 1973, v. 35, 5 10, p. 3417. 173. McKeam I.C. e. s. UKHDC(76)P80, 1975, p.41. 174. Wilkins M. ARHE-R-7906, 1974; UKEDC (75)-P71, 1975, p.56, Cm. [149, p.67]. 175. Crench, 1976, Cu. [149, p.67]. 176. Vaninbreukx, 1978. Cm. [149, p.67]. 177. Vaninbrouks R. Summary Rep. of the First Coord.Meet. on Meas. of Transactinium Isotope Nucl. Data, INDC (NDS)-96/n. Vienna, 1978. 178. Aggarwel S.K., Jain H.C. Phys.Rev., 1980, v.21C, N 5, p.2033; 1981,v.23, N 4, p.1748. 179. Marsh P.S., Abernathey R.M., Beckman R.J., Rein J.E. Internat. Appl. Radiat. and Isotopes. 1980, v.31, X 10, p.629. 180. Butler J.P. e. a. KAPL-1378, 1955. 181. Shuman E.P. IDO 16827, Reports of Phillips Petrol.Co., Idaho Falls, 1962, p.23. 182. Bertolini G., Mannone F., Ostidich A., Restelli G. Rucl. Phys., 1966, v.83, N 2, p.413. 183. Ahmad I., Fridmane A.M., Unik J.P. Rucl. Phys., 1968, v. 119, p.27. 184. Thompson S.G., Street K., Ghiosor A., Reynolds F.L. Phys.Rev., v.80, 1950, p.790. 185. ABaro F. Report N 2180, UCRL, 1950. 186. Hech J.P. Cm. Studier M.E., Huizenga J.R. Phys. Rev., 1954, v.96, p.545.

187. Butler J.B., Lounsbury K., Merritt J.S. Canad. J.Chem., 1956, v.34, p.253. 188. Bemis C.E., Ealperin J., Eby R. J.Inorg.Nucl.Chem., 1969, v.31, p.599. 109. Durham E.W., Molson P. Canad. J. Phys., 1970, v.48, p.716. 190. Osborne D.W. e. a. Phys.Rev., 1976, v.16, p.1174. 191. Bulyanitsa, L.S. et al., Izv. Akad. Nauk SSSR. Ser. Fiz. 40, 10 (1976) (in Russian). 192. Meadows J.W. Report MDM-38, Argonne, 1977. 193. Asserval S.E. e. a. Phys. Rev., 1979, v.200, N 3, p.1135. 194. Diamond E., Barnes R.P. Ibid., 1956, v.101, N 3, p.1064. 195. Fields F.R., Frieden A.V., Milsted J. e. a. Nature (London), 1966, V.212, M5058, p.131. 196. Zamyatnin, Yu.S., Klinov, A.V., Rykov, A.G., Radiokhimiya 19, 4 (1977) 421 (in Russian). 197. Cunningham B.B. NNES, 1951, v.14B, Paper 19.2. Cm. [153]. 198. Hervey B.G. Phys. Rev., 1952, v.85, p.482. 199. Hall G.R., Markin T.L. J.Inorg.Nucl.Chem., 1956, v.2, p.202. 200. Wallmann J.C., Craf P., Gold L. Ibid., 1958, V.7, p.199. 201. Oetting F., Gunn S. Ibid., 1967, v.29, p.2659. 202. Konstantinov, A.A., Alekseev, V.Ya., At. Ehnerg. 27, 1 (1969) 73 (in Russian). 203. Brown L., Propst H. J.Inorg.Nucl.Chem., 1968, v.30, p.2591. 204. Polyukhov, V.G., Timofeev, G.A., Privalova, P.A., Balkanova, P.F., At. Ehnerg. 36, 4 (1974) 319 (in Russian). 205. Rathurm H. Muller W. Internat.J.Appl.Radiat. and Isotopes, 1975, V.26, N 10, p.589. 206. Barnes R.F. J.Inorg.Nucl.Chem., 1959, v.9, N 2, p.105. 207. Zelenkov, A.G., Pchelin, V.A., Rodionov, Yu.F.etal., At. Ehnerg. 47, 6 (1979) 405 (in Russian). 208. Diamond H. e. a. Phys. Rev., 1953, v.92, p.1490. 209. Asaro F., Perlman I. Ibid., 1954, v.93, p.1423. 210. Butler J.P., Eastwood T.A., Jackson H.G. e.a. Knolls Atom. Power Lab.Rep.No KAPL-1781, 1957. 211. Hide, E., Perlman, I., Seaborg, G., Yadernye svojstva tyazhelykh ehlementov, (Nuclear characteristics of heavy elements). Moscow: Atomizdat, 1967, No. 1 (in Russian). 212. Beadle A., Dance D.F., Glover K.M., Milsted J. J.Inorg.Nucl.Chem., 1960, v.12, p.359. 213 Polyukhov, V.G., Timofeev, G.A., Privalova, P.A., At. Ehnerg. 37, 4 (1974) 357 (in Russian). 214. Aggarwal S.K., Parad A.R., Jain H.C. Phys. Rev., 1980, v.22C, N 2, p.767. 215. Asaro F., Thesis Ph.D. Report UCEI-218C, 1953. 216. Choppin G.R., Thompson S.G. J.Inorg. Rucl. Chem., 1958, v.7, p.197. 217. Asaro F. e.a. Bull.Amer.Phys.Soc., 1957, v.2, p.393. 218. Fields P.E. e.a. Phys.Rev., 1963, v.131, p.1249. 219. Fields P.R., Ahmad I., Friedman A.M. e. a. Nucl. Phys., 1971, v. 160, p.460. 220. Seaborg G.T., Perlman I. Rev.Mod.Phys., 1948, v.20, p. 639. 221. Hanna G.C., Earvey B.G., Moss N. Phys. Rev., 1950, v. 78, p.617. Cm. [226]. 222. Glover K.N., Milsted J. Nature, 1954, v.173, p.1238. Cm. [226]. 223. Hutchinson W.P., White A.G. Ibid., p.1238, CM. (226). 224. Treiman L.H., Penneman R.A., Bevan B. (un publ.), CM./II8/. 225. Flynn K.F., Glendenin L.E., Steinberg E.P. Nucl.Sci. and Engng, 1965, v.22, p.416. Cm. /226/. 226. Kerrigan W.J., Banick C.J. J.Inorg.Nucl.Chem., 1975, v.37, N 3, p.641. 227. Umezawa H. e. a. LAEA Progress Report, 1979, CM. /2, p. 59/. 228. Friedman A.M., Earkness A.L., Fields P.E. e. a. Phys. Rev., 1954, v.95, p.1501. 229. Friedman A.M., e. a. Ibid., 1954, v.102, p.585. 230. Stevens C.M., Sutdier M.H., Fields P.R. e. a. Phys. Rev., 1964, v.94, N 4, p.974. 231. Carmall W.T., Fried S., Harkness A.L. J.Inorg.Nucl.Chem., 1961, v.17, p.12. 232. Bentley W.C., 1964. CM. (233/. 233. Metta D.N., Diamond H., Barnes B.F. J.Inorg.Nucl.Chem., 1965, v.27, p.33. 234. Bentley W.C. Ibid., 1968, v.30, N 8, p.2007. 235. Barton D.M., Koontz P.G. Ibid., 1970, v.32, N3, p.769. 236. Kerrigan W.J., Dorsett R.S. Ibid., 1972, v.34, H 12, p.3603. 237. Browne C.I., Hoffman D.C., Crane W.T. e. a. Ibid., 1955, v.1, N 4/5, p.254.

238. Huizenga J.R., Diamond H. Phys. Rev., 1957, v.107, p.1087. 239. Metta D.R., Diamond H., Kelley F.R. J.Inorg. Rucl. Chem., 1969, v.31, N 5, p.1245. 240. MacMurdo K.W., Harbour R.M., Benjamin P.W. Ibid., 1971, v.33, N 5, p.1241. 241. Butler J.P., Eastwood T.A., Jackson H.G., Huizenga J.R. Phys. Rev., 1956, v.103, p.965. 242. McCracker J.E., Stokely J.R., Baybarz R.D. e. a. J.Inorg.Nucl.Chem., 1971, v. 33, N 10, p. 3251. 243. Polyukhov, V.G., Timofeev, G.A., Privalova, P.A. et al., Radiokhimiya 19. 4 (1977) 507 (in Russian). 244. Schuman R.P. USAEC Report No. IN-1218, 1968, p.139. 245. Milsted J., Friedman A.W., Stevens C.W. Nucl. Phys., 1965, v.71, p.299. 246. Thompson S.G., Chiorso A., Harvey B.G., Choppin G.R. Phys. Rev., 1954, v.93, p.908. 247. Thompson S.G., Ghiorso L., Harvey B.G., Choppin G.R. Ibid., 1954, V.94, p.1081. 248. Diamond H., Magnusson L.B., Mech J.F. e.a. Ibid., p.1083. 249. Magnusson L.B., Studier M.H., Fields F.R. e. a. Ibid., v.96, p.1576. 250. Eastwood T.A., Butler J.P., Cabell M.J. e. a. Ibid., 1957, v.107, p.1635. 251. Milsted J., Horwitz E.P., Priedman A.K., Metta D.N. J.Inorg.Nucl.Chem., 1969, v.31, N 6. p.1561. 252. Glazov, V.M., Borisova, R.M., Shafiev, A.I., At. Ehnerg. 37, 1 (1974) 78 (in Russian). 253. Polyukhov, V.G., Timofeev, G.A., Levakov, B.I., Preprint NIIAR-28 (436). Dimitrovgrad, 1980. 254. Stokely J.R., Bemis C.E., Jr., Baybarz R.D., Eby R. J.Inorg.Nucl.Chem., 1973, v.35, N 9, ъ.3369. 255. Polyukhov, V.G., Timofeev, G.A., Privalova, P.A. et al., Radiokhimiya 19, 4 (1977) 460. 256. Gorbachev, V.M., Zamyatin, Yu.S., Lbov, A.A., Vzaimodejctvie izluchenij s yadrami tyazhelykh ehlementov i gelenie yader. (Spravochnik) (The interaction of radiation and the nuclei of heavy elements; nuclear fission (Handbook)), Moscow: Atomizdat (1976) 395 (in Russian). 257. Lemmel H.D. INDC/NEANDC Nucl. Data File, 1978 Version; INDC-30/L+Sp, 1980, p.59. 258. Smith J.R. Neutron Cross-Sections for Technology (Proc.Int.Conf., Knorville, Tenn., Oct. 22-26, 1979), 1980, x 594, p.738. 259. Asaro F. e. a. 9961. Cm. [211]. 260. Ann. Report ORNL, 1965, p.29. CM. [261]. 261. Chetham-Strode A.Jr., Silva R.J., Tarrant J.R., Williams I.R. Nucl. Phys., 1968, v. A107. N 3, p.645. 262. De Volpi A., Porges K. J.Inorg.Nucl.Chem.Letters, 1969, N 5, N 2, p.111. 263. De Volpi A., Porges K. Ibid., N 8, p.699. 264. Mijnheer B.J., Van den Hauten-Zuidema E. Internat.J.Appl.Radiat. and Isotopes, 1973, v.24, N 3, p.185. 265. Shchebolev, V.T., Ramendik, Z.A., Shlyamin, En. A., At. Ehnerg. 36, 5 (1974) 399. 266. Spiegel V. Nucl.Sci. and Engng, 1974, v.53, N 3, p.326. 267. Mozhaev, V.K., At. Ehnerg. 40, 2 (1975) 174. 268. Huizenga J.R. Nucl. Prop. of Kinsteinium and Fermium.Ed. by Seaborg G.T., Webb C, Calif. Univ., Berkley (USA). Lawrence Berk.Lab. Symposium Commemorat the 25th Anniversary of Elements 99 and 100. LBI-7701, Apr.1979. 269. Harvey G.G., Chetham-Strode A., Jr., Ghiorso A. e. a. Phys.Rev., 1956, v.104, p.1315. 270. McHarris Wm.C., Stephens F.C., Asaro F., Perlman I. Private comm. CM. [271, 272]. 271. Fields P.G., Ahmad I., Barnes R.F. e. a. Nucl-Phys., 1973, v.A208, p.269. 272. Ahmad L., Wagner F. J.Inorg.Nucl.Chem., 1977, v.39., p.1509. 273. Choppin G.R., Thompson S.G. e. a. Phys. Rev., 1954, v.94, p.1080. 274. Fields P.R., Studier M.E., Mech J.P. e. a. Ibid., 1954, v.94, N 4, p.209. 275. Jones M., Schuman R.O., Butler J.P. e. a. Ibid., 1956, v.102, p.203. 276. Combined Radiochemistry Group. (Baily C.P., Barton G.W., Coleman G.E. e. a.) - Phys. Rev., 1966, v.148, N 3, p.1192. 277. Ealvorsen S.E. e. a. 1966. CM. [4, 10].

278. Harvey B.G., Thompson S.G. e. a. Phys.Rev., 1955, v.99., p.337.

279. Harvey B.G. e. a. quoted by [289]. 280. Schuman R.P., Eestwood T.A., Jackson H.G., Butler J.P. J.Inorg. Nucl. Chem., 1958, v.6, p.1. 281. Unik J.P., 1955. Private comm. Cm. (282). 282. ihmad I., Unik J.P. J.Inorg. Nucl. Chem., 1975, v.37, N 9, p.1851. 283. McHarris W.C. e.a. Phys. Rev., 1966, v.144, p.1031. 284. Priedman A.M., Gindler J.E., Barnes R.P. e.a. Ibid., 1956, v.102, p.585. 285. Amiel S. Ibid., 1957, v.105, p.1412. 286. Sikkeland T., Amiel S., Thompson S.G. J. Inorg. Nucl. Chem., 1959, v.11, p.261. 287. CLIOIRO A., 1963. Cm./2897. 288. Hyde E.K., Perlman I., Seaborg G.T. The Nuclear Properies of the Heavy Elements. V.II. Prentice-Hall, Englewood Cliffs, New Jersey, 1964. 289. Ahmad I., Friedman A.M., Barnes R.F. e.a. Phys. Rev., 1967, v.164, N 4, p.1537. 290. Hulet E.K. e.a. Phys. Rev. Letters, 1964, v.13, p.343. 291. Sikkeland T., Ghiorso A., Latimer R., Larsh A.E. Phys. Rev., 1965, v.140, p.B277. 292. Hulet E.K., Hoff R.F., 1966. Cm. [4,276]. 293. Asaro F., Perlman I. Phys. Rev., 1967, v.158, p.1073. 294. Wild J.F., Hulet E.E., Lougheed R.W. J.Inirg.Nucl.Chem., 1973, v.35, N 4, p.1063. 295. Kholkhov, Yu.A., Savin, M.V., Ludin, V.N., in the book Nejtronnaya fizika (Materialy 3-j Vsecoyvznoj konferentsii po nejtronnoj fizike, Kiev, 9-13 iyunya 1975) (Neutron Physics. Proceedings of the Third All-Union Conference on Neutron Physics, Kiev, 9-13 June 1975). Moscow, Tsentral'nyj Nauchno-Issiedovatel'skij Inst. Atominform (1976), part 5, p. 15ô (in Russian) 296. Kosyakov, V.N., Nesterov, V.G., Nurpeisov, E., At. Ehnerg. 33, 3 (1972) 788.

297. Brown D., Glover K.M., King M. e.a. J.Radioanal.Chem., 1981, V.64, N 1-2, p.181.

298. Lorenz A., Lenmel H. Nucl. Standards File. 1980 Version, INDC-36/LN, May 1981.

Paper submitted to editors on 3 June 1982