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We discuss some properties of the W- boson using spectral function 
sun rules within the framework of constituent models of quantum 
haplo-dynamics (QHD). 
Contraints on the W- decay amplitude and so on its mass and totaj. 
width have been derived. The results may give a test on possible 
aspects of this model of electroweak interactions. 
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I. INTRODUCTION TO THE MODEL 

Recent intetests on models where leptons, quark and weak bosons are com

posite particles have been considered in the literature [see e.g ref.l for a re

view] . In some of these models [the haplon model], the weak interactions can be 

interpreted as effective interactions of the Van Der Vaals type [2] like the 

nuclear forces in quantum chromodynamics (QCD). At the subconstituent level, the 

dynamic is described by the gauge symmetry group Ufl)™ x SU(3)„ x G-, «hers 

G„ is the hypercolor grcup responsible for the binding of subconstituents im 'e 

fermions and weak bosons. For simplicity, G_ is taken to be SU(N)„. Within tlu 

framework, the W- boson can be taken to be a bound state of elementary spin 

1/2 fermions (a, B><>>) where the latter are hypercolored N-plets and can be co 

lored or color singlets. In the following, we shall consider the simplest case, 

where a, 0 are color singlets and so the W-boson can be represented as : 

H + = a6 

W_ = -J- (oâ - 66) 
3 SI 

W" = £6 (1) 

a representation similar to the case of the P-meson in the quark model. H, is 

the isovector component of the W- boson which is responsible of the most part 

of the observed neutral current. The massless photon and gluons are supposed 

to be elementary; so their interactions with the subconstituents occur in a point

like way. 

In this model, the masses of the W- bosons are generated dynamically in 

the much same way the P-meson mass is generated in QCD. In the absence of elec

tromagnet ism the W~ and W, masses are degenerated [weak isospin SU(2) symmetry] 

as in the case of the O , for the strong SU{2) symmetry. The breaking of the 

SU(2)„ is, therefore, due the W»-bosonand the photon mixing via Fig.], and leads 

to a non-diagonal W- mass matrix with the eigenvalues \\ ,2\ 

My -X g 123 GeV (2) 

- U 2 (3) 

representing the observed W-boson masses; g is the strength of the W- fermion 

vertex which is related to the Fermi coupling G p as usual (G_/*̂ 2T= g2/ SHy ) ; 

yt is the mixing parameter related to the effective value of the weak angle 



Using a B- dominance to the spectral function associated to the weak current 
JV.' S c t V^"~"1'-5^ * o n e c a n introduce the decay amplitude F in the similar way as 
for the P - meson : 

< » I Jjj I r > " e" <*» F „ • (5) 

•Assuming the W dominance to the form factors of the weak-current, 
i . e to the matrix elements between lepton or quark s ta tes and using the 
normalization of the form factor at aero-momentum transfer , i t can be 
easily shown that [Y) : 

FW _ ) . (6) 
«W J 

However, the relation in eq (6) comes strongly from the above 
assumption fo the W- dominance. * 
A more weaker constraint can be obtained relating the W- decay amplitude to . 
the mixing parameter./^. Following ref. la, one can deduce : 

"^ - e. r£ . (7) 

Note that eqs (4) and (7) show that the resu l t in eq (6) i s the 
par t icu lar case where 3 • e / s i n P H , i . e where the model reduces to the 
standard electroweak SU(2). x U(l) theory. The re la t ion in eq (7) suggests 
tha t , once, one has an information on IY,, one can t r ans la te this information 
on other parameters of the model via V\ and eqs (2) to (4) . 

2. SPECTRAL FUNCTION SUM RULES FOR_F„ 
• • • - • w 

In the following, we shall use the idea of spectral function sum rules in 
order to derive bound on the W- decay amplitude in such a model. Our approach is 
similar to that'-used in QCD for light mesons system (IT, p,...) and is based on the 
Laplace transform sum rule of SV2 £3!] : 

n J0 

(8) 

where Im Il(t) i s the spectral function associated to the two-point function : 

with J„ s ex Y-.O'^Q Bf being the charged weak current; M is the Laplace t r ans it y — 
form sum rule scale . 
In f a c t , t he L a p l a c e t r a n s f o r m sum rule i s the improved version of the 
dispersion re la t ion : . 

•I -t+<? £ " 



and is obtained after applying to both sides of eq. (10) the Laplace operator 

î H A. c-if ± ffZ f 

The main attraction on the Laplace transform SUD rule is the role of the 

exponential factor which improves the contribution of the low mass resonance to 

the spectral function for a reasonable value of M. In QCD, the optimal value 

of M 2 is around 1 ~ 2. • GeV 2 where we have a balance between the non-perturba-

tive contributions to the two—point function and the continuum contribution to 

the spectral function [3, 4J . On the other hand, because we work with various 

derivatives of the two^point function, we can avoid a possible dependence of the 

sua rule on the external subtraction point. 

The left-hand side of the sua rule is determined by the hypercolor theory 

(QKD) and the lowest order contribution to F (M") cones from the Feynoan diagram 

in Fig. 2 [for SU <N) a s G J : 

24TT 2 } 
F( H 2) = — - I 1 + 'corrections' ( (12) 

24TT2 { ) 

The ,! correction-terms" can be due to gluon exhange as well as to the 

possible contributions of operators of higher dimensions which have a non-zero 

vacuum expectation valves. These operators are mainly the hap Ion-condensate 

m < o| S S |o >, < o| â T BSTajo >• ( r is any Dirac matrices). The gluon 

condensate < o\ ct3 G
2|o > contribution is expected to be suppressed, . rom our 

knowledge of the QCD estimate of that quantity, at the energy scale where the sLi-

constituent nature of the W shows up. 

The right-hand side of the sum rule is estimated using a narrow width 

approximation to the W- contribution to the spectral function and adding the 

"continuum" contribution : 

L [Ate i I M Î Ï > ) V i F S " + * Criviinuum.** 03) 

M l J r t w 

We use the positivity Df the continuum contribution to the sum rule and we neglect 

to a first approximation the QHD corrections provided that H » A „ ( A u is the 

OHD scale analogous to (\ of QCD). Then eqs. (12) and (13) give : 



«w 

MA/2M2 N H I / 2 

3. OPTIMIZATION OF THE SUM RULE AND THE NATURE OF THE W- BOSON 

The optimization of the constraint in. eq. (14) can be obtained using a 

direct analogy between QCD and QHD. In fact, as we mentioned earlier, the Laplace 

transform sum rules applied to light mesons system, bound states of light quarks, 

are optimized for M 2 = 1 - 2, GeV 2, i.e. for M of the order of (8 - 10) A 

where A r is the QCD scale which has a value of the .order of m . Really, at 

this optimization point, we have a balance between the non-perturbative effects 

to the sum rule and the continuum one. 

It is interesting to use this observation for the optimization of the QHD 

sum rule. In fact, if the analogy idea between QHD and QCD is correct, we expect 

to have a replica of the light quark condensate m < o | d d | o > of QCD in the 

theory of composite models. As from current algebra m < o| d d jo > = 

- •*• f. m = - — A we ejcpect that the value of n < D | § B | O > 
t TT 7T j . | C j b < i Ct 

is of the order of - y • A ., in QHD. So, because of the simple structure of 

the weak charged current, we can have a rough order of magnitude of the contribu

tion of the haplon condensate to the QHD sua rule translating the QCD result of 

the contribution of these non-perturbative terns to the sum rule associated to the 

vector and axial-vector current of light quarks £3] . As the optimal H- value 

is a partial manifestation of the non-perturbative contributions, we expect to 

optimize the QED sum rule at the M- value : 

H = (8 • 10) A u (15) 

as the QCD sum rules are optimizsc* at M = (8 - 10) A _ . In fact, at this value 

of M, the corrections terns to the leading order one, are less than 20Z in QCD 

and the continuum contribution to the sum rule is less than 302 of the resonance 

one if the QCD model is used for the continuum . We expect to have a similar si

tuation in QHD for the choice of the M- value in eq. (15). Also, as in QCD, the 

optimal M- value is of the order of the typical hadronic scale 1 p-eV, i.e. of the 

order of the P - meson œass, we can identify the value of M in eq. (15) as the 

typical scale of QED- Then, we can relate, to the M- value in .eq. (15), the 

nature of the K- boson. In fact, we have to understand if the size of the W- '• 

boson is analogous to the P - meson or to the IT- meson? As we shall see, in the 

following, the -cwo possibilities Tor the si2e of the V- boson will lead to two 

completely different physical situations : 



a ) IbË^SÊEUSEHgÊ.EiÊ.E^gJ*" boson is. similar to the J - one. 

In that case, the idea of analogy between QCD and QHD suggests that the 

sum rule in eq. (13) is optimized for M around the W- mass. In order that the 

QHD result remains valid, the corrections term in eq. (12) have to be small and 

so a low value of the QHD scale A „ becomes necessary as is suggested by eq. (IS). 

Within such a condition, one deduces from eq. (14) : 

». 1/2 
r w ; <-r> ° - 1 8 "w • ( 1 6 > 

This result combined whîth eqs. (4) and (7) gives 

K I/2 

0.08 

N_ 1/2 

(17) 

(18) 

£q. O S ) shows that if the W has the same structure as the ? - meson, its mass 

is relatively light unless N„is anomalously large. Also eq. (15) would suggest 

that the QHD scale A H is relatively small and so, the sub constituent structure o'f 

the Wean show up at ordinary energies. .The above scenario seems to be impossible 

for the present knowledge of low energy data. Alternative approach based on the 

value of the W- wave function at the origin does not also favour the possibility 

of analogy in size between the W and the P £2] . 

£b£-gSÊl£S2H£-£ÊEH£ Çggg• 

In that case, the value of the QHD scale can be of the order of My as the 

QCD scale A c is of the order of m . We expect the QHD sum rule, to be optimized 

for <*) 

M = (8-10) ^ (19) 

The fact, that the W- contribution to the sum rule is optimized at a higher value 

of M can also suggest, that the possible radial excitations of the W (analogous 

to if ....) stand at the M value bigger than (8- 10) R,. Using our optimal value 

of M in eq. (19), we get from eq. (14) : 
N_ 1/2 

F < (8-10) (—5-) M„ (20) 
W ~ 24TT2 

(•) Note that for the M- value of the order of (8-10) m ̂  , the QCD sum rules 

applied to the ir- meson reproduces with a good accuracy the pion decay amplitude 

fiT pta2- We expect that a similar accuracy can be obtained for the K- decay 

amplitude F„, using QHD sum rules. 



This constraint in eq. (20) together witheqs. (7) and (2) leads to the bound : 

N„ 1/2 
g < (-3^) (0.4 ~ 0.5) . (21) 

Then, the W- mass is constrained to be : 

N„ 1/2 

"w Î t-y 1' < 4 5 ~ 5 6 ) G e V • ( Z 2 > 

i.e. for a small value of N„ s 3,4 the model discussed previously in its simplest 

version predicts a lower value of the W- mass than usually expected from the stand

ard SU(2). x U(l) electroweak theory of ialam and Weinberg. Again for such a 

low value of N_, it can be deduced from eq. (3), the bound on the s- mass : 

M £ < (47 - 60) GeV 

The prediction of the H- mass in the minimal haplon model is lower than 

the one of SU(2) x U(l). However, it seems that the present data on the analysis 
L + _ 

of frontback asyraetry from e e is not accurate enough to rule out the above 

possibility [5]. 

In fact, in order that the haplo-.t model reproduces correctly the masses of 

the W and E of SU(2). x D(l), or in other word, the so called "unification 

condition" ( \ z = sin 2 6„ Q ,2J) to be satisfied» one needs for color singlet 

hapIons to be at least a 8 — plet of hypercolor : 

N H > 8 . (24) 

However, the haplon models with color triplet subconstituents can reproduce 

for N_ * 3, 4, the SU(2). x 0(1) prediction of the U and 2 masses. In this case, 

our result in eq. (12) has to be multiplied by the color factor n » 3. So, the 

bounds in eqs. (22) and (23) become -/n~ times weaker. 

Finally, let's mention that in these composite models, the W anc: Z can 

decay into multifermion pairs, nultiphotons and multigluons. However, these 

anomalous decay modes seem to be of the order of the correction terms to the 

conventional decay modes, i.e. the decay of W and 2 into pair of feraion - anti-

femions [o],* For instance, we expect, to a first approximation, that the total 

width of the W is given by the standard electroweak relation [?] : 

rw - «u ' ^ * ! "» « V C25> 

in the case where fere ra* are much lighter than the W and where N. is the 

total number of ferxiou generations (£_ • 3 for the usual electroweak scheme). 



Then, with the help of our results in eqs. (21) and (22), we deduce from eq. (25) 
the upper bound : 

N 3/2 
T w _ a l l < N G (-jS.) (0.2 - 0.4) GeV (26) 

Clearly, the total width of the W can be smaller than the one in the stand
ard electroweak model if the number of hypercolor is taken to be small. Again, 
we can recover the electroweak prediction for L > 8 or working with a haplon-
model where the haplons are color triplet and having a hypercolor number N-, of 
the order 3 to 4. Note that eq. (26) suggests that treating the W within a nar
row width approximation is a good approximation. 

He have extended the idea of the Laplace transform sum rules, which have 
been successful to describe within quantum chromodynamics (QCD) the properties 
of light mesons system [3, 4], into the theory where the W- boson of weak inter
actions is a composite object. He have, therefore, derived an upper bound on 
the W- decay amplitude and so on other parameters of the model. He have seen 
that the assumption where the W has the same structure as the P - meson seems 
to be impossible for the present knowledge of the low-energy data. The other 
assumption where the W has the same structure as the pion is more attractive. 
In that case, and provided that the idea of analogy between QCD hadrons and QHD 
bosons is valid, the QHD model in its simplest version, (W- bason is a bound 
state of spin 1/2 fennion with color singlet and hypercolor triplet or quartet), 
predicts a lower value of the W and 2 masses and total width than the standard 
electroweak SU(2) x U(l) theory. We have also shown that the so-called "unifi
cation condition" (X 2- sin 2 9„ - (e/g) ) i.e. the prediction of SU(2)_ x U(l) 
can be recovered by the haplon-models provided that the haplons are color singlet 
and have a hypercolor number N„ at least equal to 87 orxhe haplons are color triplet 
and have a hypercolor number Î7„ around 3 to 4. 

It is interesting to have experimental measurement of the masses and width 
of these bosons In the future generation of accelerators (LEP, Isabelle,....). 
That can help for a better understanding of the nature of the W and will clarify 
our confusion on the present models of electroweak interactions. 
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FIGURES CAPTIONS 

Fig. 1 Y"W„ mixing amplitude in composite models 

t 'ig. 2 Two-point function for the weak current j[( = a y (I - y 5 ) B-
(JO denotes the weak current inser t ion. 2 
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Fig.2 


