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ABSTRACT

We discuss some properties of the W- boson using spectrazl funetior
sum rules within the framework of comstituent models of quantum
haplo-dynamics (QHD).

Contraints on the W~ decay amplitude and so om its mass and totas
width have been derived. The results may give a test on possible

aspects of this model of electroweak interactions.
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1. INTRODUCTION TG THE MODEL

Receat interests on models where leptons, quark and weak bosons are com~
posite particles have been considered in the literature [see e.g ref.l for a re-
View]. In some of these models [the haplon mudel], the weak interactions can be
interpreted as effective interactions of the Van Der Vamls type [2] like the
nuclear £oreces in guantun chromodynamics (QCD). At the subconstituent level, the
dynamic is described by the gauge symmetry group U“)EM x SD(B)C x GH where
GH is the hypercolor giuap responsible for the binding of subconstituents in: ‘e
fermions and weak bosons. For simplicity, GH is taken to be SU(N)H. Within the
framework, the W- boson can be taken to be & bound state of elementary spin
1/2 fermions (a, B,...} where the latter are hypercolored N-plets and can be co

lored or epior singlets. In the following, we shall comsider the simplest case,

where a, 8,.... are color singlets and so the W-boson can be represented as :

W =

aB
L (- g8)
vz

= (€3]

a representation similar to the case of the f—meson in the quark model. 93 is

the isovector component of the W- boson which is respomsible of the most part

of the observed neutral current. The massless photon and gluons are supposed

to be elementary; so their interactions with the subconstituents occur in a point-
like way. ’

Io this model, the masses of the W- bosons are generated dynamically in
the much same way the f—mescn mass is generated in QCD. In the absence >uf elec—
tromagnetism che W and Ws masses are degemerated [ueak isospin SU(2) syma:ry]
as in the cAse of the )f', for the strong SU(2) symmetry. The breaking of the
SU(Z)H is, therefore, due the Ws-busnn and the photon mixing via Fig.], and leads

%0 a pon-diagonal W- mass matrix with the aigenvalues [1,2]

M, = g 123 GeV (2)
323172

My > M, (1-3%) (3)

representing the observed W-bnson masses; g is the strength of the W~ fermion

vertex which is related to the Fermi coupling Gy as usual (GF/»/Z—'.E gy BHHZ);

A is the mixing parameter related to the effective value of the weak angle

sin? §; = 0.22 via :

0.2 1
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Using a W- dominance to the spectral function associated to the weak current
U=

JLpEo Yu(l-Ys)B. one can introduce the decay amplitude FH in the similar way as
for :hef - meson !

B s o g .
<o [_vw{v> e My Ry (5}
‘Assuming the W dominance to the form factors of the weak-current,
i.e to tne marrix elements between lepton or quark states and using the
normalization of the form factor at zero-momentum transfer, it can be

easily shown that [1] :

P
QY-

However, the relation in eq (6) comes strongly from the above
.

assumption fo the W- dominance.

A more weaker constraint can be obtained relating the W~ decay amplitude to .

'che mixing parmer.er.)\.. Following ref. la, one can deduce :

- Fy
A'e'ﬁ,

Noce that eqs (4) and (7) show that the result in eq (6) is the

. (&)

particular case v‘hereg = e/sin eu, i.e where the model reduces to the
standard electroweak SU(Z)L % U(1) theory. The relation in eg (7) suggests
that, once, one has an information on Fy, one can translate this information

on other parameters of the model via A and eqs (2) to (4).

2. SPECTRAL FUNCTION SUM RULES FOR F,,

In the following, we shall use the idea of spectral function sum rules in
order to derive bound on the ¥- decay amplitude in such a model. Our approach is
sigilar to thatwwsed in QCD for light mesons system (%, p,...) and is based on the
Laplace transform sum rule of SVE [3] :

th o
Fmz) = L fdt e M 4 T ) ®
n? ™
) (~]
vwhere Im NI(t) is the spectral function associated to the EHD-PD:'L;:C function :
ie) , D)
T (-4 0) .’:fd"wz e‘qzﬂlTJ‘:h)@w“’)) 1o
3 ~ v
= -(gpqz- 9" ) Wia?) + g" D (ﬂ‘),

wvith J‘l; =aqa YU(I-YE) B, being the charged weak current; M is the Laplace trans-—

9

form sum rule scalﬁ.
In fact, the Laplace tramsform sum rule is the improved version of the

dispersion relation : 2o

Tr(@z) = J’%E‘ é I’\'ILTT(‘L-) L ou“‘ha:h‘nm» (10)
e -



and is obzained after applying to both sides of eq. (10) the Laplace operator

A ~
! 2 A ¥ L (2.)
Fre v-4)! 5o
2
N =d

2
2 m .
) an

The main actracrion on the Laplace transform sum rule is the vole of the
exponential factor which improves the contribution of the low mass resonance to
the spectral functicn for a reasonable value of M. Ia GCD, the optimal value
of 2 is around 1 ~ 2. GeV? where we have a balance between the non-perturba-
tive contributions to the two-point function and the ;on:inuu:: contribution to
the spectral function [3, Aj. On the other hand, because we work with various
derivatives of the two~point function, we can avoid a possible dependence of the
sum rule on the external subtraction point.

The left-hand side of the sum rule is determined by the hkypercolor theory
(QKD) and the lovest order contribution to F (.‘12) comes frow the Feynmar diagram
in Fig. 2 [f.or st (N)H = GH] H

Fey2y = My + tepr Lons '
(¥ = — b+ corrections (12)

242

The " correction-terms" can be due to gluon exhange as well as to the
possible ontributions of operacors of higher dimemsions which have a non-zero
vacuuw expectation valves. These oparators are mainly the haplon-condensate
my < o] B8 le>, <o|laTl 88Talo > (T is any Dirac mattices). The gluon
condensate < o] a, Gz|u > contribution is expected to be suppressed, .rom our
knowledge of the QCD estimate of that quanfity, at the energy scale where the su>-—
constituent nature of the W shows up.

The right-hand side of the sum rule is estimated wsing a marrow width
zpproximation to the W~ contribution to the spectral function and adding che
Yeontinuum" contribution : ’

ad 2 Maz// z
2— Jﬂ“‘ C.t/n i IMTr(t') = i FL e. " 4+ & CI-ML.'\MU.M» (13)
M* ) ™ M hd .

We use the positivity of the continuum contribution to the sum rule and we neglect
to a first approximation the QHD corrections provided that M » Af‘ (I\H is the
QHD scale analogous to AC of QCD). Then eqs. (12) and (13) give !
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3. OPTIMIZATION OF THE SUM RULE AND THE NATURE OF THE W~ BOSON

The optimization of the constraint in eq. (14) can be obtained using a
direct analogy betweem QCD and QWD. In fact, as we mentioned earlier, the Laplace
transform sum rules applied to light wmesons system, bound sctates of light quarks,
are optimized for M? = | - 2. GeV?, i.e: for M of the order of (8 ~ 10) A
vwhere AC is the QCD scale which has & value of the.,order of o Really, at
this optimization poinmt, we have a balance between the non-percturbative effects
to the sum rule and the continuum one.

It is interesting to use this abservationm for the optimization of the QHD
suw rule. In fact, if the analogy idea between QHD and QCD is coérrect, we expect
to have a replica of the light quark condensate m, < ol dd |o > of QCD in the

thecty of composite models. A4s from current algebra m, < a‘ dd ]o > =
2 2 L

LU

] = -
7 homy s 1 €3
is of the order of - 7 . AH in QHD. So, because of the simple structure of

the weak charged current, we cam have a rough order of magnitude of the contribu-
tion of the haplom condensate to the QWD sum rule translating the QCD resulc of

the contribution of these mon-perturbative terms to the sum rule associated to the

ve expect that the value of o <ol B8 & o>
.

vector and axial-vector curreat of light quarks [3] - As the optimal M- value
is 2 partial manifestation of the non—perturbative contributions, we expect to

optizize the QHD sum rule at the M- value :

¥ o= e-1mA, as)
as the QCD sum rules are optimizzd at M= (8~ 10) AC' In fact, at this value
of M, the corrections terms to the leading order ome, are less than 20% in (CD
and the continuunm contribution to the sum rule is less than 30% of the resonance
one if the QCD model is used for the continuum . We expect to have a similar si-
tuation in QHD for the choice of the M- value in eq. (15). Also, as in QCD, the
optimal Y- value is of the order of tbe typical hadromic scale] %eV, i.e. of the
order of the f - weson wass, we can identify the value of M in eq. (15) as the
typical scale of QED- Then, we can relace, to the M- value in .eq. (15), the
nature of the W- boson. In fact, we have to understaand if the size of the W-'
boson is analogous to the f- wesop or to the T- meson? As we shall see, in che
following, the uwo possibilities {or the size of the W= boson will lead to two

compietely differeat physical situations



a) The_structure of the W= boson is_similar to thef - one.

In that case, the idea of analogy between QCD and QHD suggests that the
sum rule in eq. {13) is optimized for M around the W~ mass. In order that the
QUD result remains valid, the corrections term in eq. (i2) have to be swmall and
so a low value of the QHD scale AH hecomes necessary as is suggested by eq. (15).

Within such a condition, one deduces from eq. (14) :

Ny 12
By, <) o.18 M, . (16)
This result combined whith eqs. (4) and (7) gives :
N, 1/2 :
g < (—3—H) 0.08 . un
i.e.
: 1/2
M, < (TNH) 9 Gev (8

Eq. (18) shows that if the W has rhe same structure 2s the f ~ meson, its mass

is relatively light unless NHi.s anomalously large. Also eq. (15) would suggest

that the QHD scale AH is relatively small and so, the subconstituent structure of
the Wcan show up at ordinary energies. The above scenario seems to be impossible
for the present knowledge of low emergy data. Altermative approach based on the
value of the W- wave function at the origin does not also favour the possibility

of analogy in size between the W and the § [2].

In that case, the value of the QHD scale can be of the order of H“ as the
QCD scale AC is of the order of m . We expect the QHD sum rule, to be optimized
¢ :

for H
Moo= (8-10) M, (19)

The fact, that the W- contribution to the sum rule is optimized at a higher value
of M can also suggest, that the possible radial excitatioms of the W (analogous
to m’....) stand at the M value bigger than (8 ~10) M. Using our optimal value
of M in eq. (19), we get from eq. {14} :

Ny 1/2
F, € (8~10) (—2) @0
v~ 2472 i

(%) ©Note that for the M- value of the order of (8 ~10) my, the QCD sum rules
applied to the T~ meson reproduces with a good accuracy the pion decay amplitude
fn Elnal. We expect that a similar accuracy can be obtained for the W- decay

amplitude F". using QED sum rules.



This constraint in eq. (20) together withegs. (7) and (2) leads to the bound :

NH 1/2
g < =) (0.4 ~ 0.5) . n

Then, the W- mass is constraimed to be :

By 112
o, <55 (45 ~ 56) GeV , (22)

. i.e. for a small value of Nll = 3,4 the model discussed previously inm its simplest
version predicts a lower value of the W~ mass chan usually expected from the stand-
ard SU(2)L x U(l) electroweak theory of ‘alam and Weinberg. Again for such &

low value of NH’ it can be deduced from eq. (3), the bound on the - mass :

M, < (47 - 60) GeV

2 (23)

The prediction of the #— mass in the minimal haplon medel is lower than
the ome of SU(Z)L % U(1). However, it seems that the present data on the analysis
of froutback asymetry from e'e”™ is mot aceurate enough to rule out the above
possibility [5].

In fact, in order that the haplou model reproduces correctly the masses of
the W and E of 5“(2)L % U(1), or in other word, the so ecalled "unification
condition” ( A% = sin® 9w D,ZI) to be satisfied, one needs for color singlet

haplons to be at least a B ~ plet of hypereolor :
N, > 8 . (24)

However, the haplom rodels with color triplet subcomstituents can reproduce
for NH = 3, 4, the 5[](2)L % U(1) prediction of the W and E masses, In this case,
our result in eq. (12) has to be multiplied by the color factor L 3. So, the
hounds in eqs. (22) and (23) becowe /n—: times weaker.

Finally, let’s mention that in these composite models, the W anc & can
decay into multifermion pairs, wultiphotons and multigluoms. However, these
anomalous decay modes seem to be of the order of the correction terms to the
conventional decay modes, i.e. the decay of W and & into pair of fermion - anti-
fernions [61. For instance, we expect, to a first approximatiom, that the total
width of the W is given by the standard electroveak relation [71 :

1

T,

1
W = all g, 4Ny @5

48m

in the case where ferr ms are wuch lighter than the W and vhere Ng is the

total nunber of ferrion gemerationms (NG = 3 for the usual electroweak scheme).



Then, with the help of our results in eqs. (21) and (22), we deduce from eq. (25)
the upper bound :

NH 3/2
T < “L‘. (-—3—-) (0.2 ~ 0.4) GeV (26)

W + all
Clearly, the total width of the W can be smaller than the ome in the stand=-
ard electroweak model if the number of hypercolor is taken to be small. Again,
we can reccver the electroweak prediction for NH % 8 or working with a haplon~
model where the haplons are color triplet and having a hypercolor number NH of
the order 3 to 4. Note that eq. (26) suggests that treating the W within a par-

row width approximation is a good approximationm.

4. CONCLUSION

We have extended the idea of the Laplace transform sum rules, which have
been successful to describe within quantum chromodynamics (QCD) the properties
of light mesons system [3, loJ, into the theory where the W- boson of weak inter~
actions is a composite object. We have, therefore, derived an upper bound on
the W~ decay amplitude and so on other parameters of the model. We have seen
that the assumption where the W has the same structure as the f - meson Seems
to be impossible for the present knowledge of the low-energy data. The other
assumption where the W has the same structure as the pion is more attractive.

In that case, and provided that the idea of analogy between QCD hadrons and QHD
bosons is valid, the QHD model in its simplest versiom, (W- boson is a bound
state of spin 1/2 fermion with color singlet and hypercolor triplet or quartet),
predicts a lower value of the W and % masses and total width than the standard
electroweak SU(Z)L x U(1) theory. We have also shown that the so-called ™unifi~
cation condition" (A= sin? O, = (e/@)') i.e. the prediction of SU(Z), x V()
can be recovered by the haplon-models provided that the haplons are color simglet
and have 2 hypercolor number NH at least equal to 87 or:the haplons are color triplet
and have a hypercolor number Z‘ZH around 3 to 4.

It is interesting to have experimental measurement of the masses and width
of these bosons in the future generation of accelerators (LEP, Isabelle;....).
That can help for a better understanding of the natvre of the W and will clarify

our confusion on the present models of electroweak interactions.
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FIGURES CAPTIONS
Fig. 1 Y-WS mizing amplitude in composite models

Fig. 2 Two-point funmction for the weak current
{X) denctes the weak current insertion.
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