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Abstract : The non-linear beam-beam interaction can excite
coupling resonances that enlarge vertical beam dimensions
in flat-beam operated machines and are hence harmful to
luminosity achievements. Two such resonances are examined
here using a first order averaging procedure :

2 0y - 4 0x = integer and 4 Qy - 2 QO = integer. The effect
on vertical amplitudes, when frequency split falls within
predicted resonance band limits, is investigated, Effective
resonance bands, taking into account amplitude distribu-
tions, are indicated and the limitations of the method are
discussed.

1. INTRODUCTION

Charged particles circulating in a storage ring, experience, at
each interaction point, sharp non-linear impulses caused by the oppo-
gitely circulating charged bunches. These kicks may, under certain
conditions, add up to increase amplitudes of particle oscillations.

C 1y, t erse beam dimensions are enlarged and the luminosi-
ty drops. Even mote, particles can hit the vacuum chamber walls with a
curresponding short lifetime. 'The per of any st ring and

in particular the achievements in integrated luminosity are thus ultima-~




tely limited by these strongly non-linear beam-beam interactions.

No clear explanation of the observed beam-beam limit and beam blow

up is so far established. Isolated non-tinear r are, .
believed to play an important role, according to experimental data

and to computer simulations. In particular, the beam-beam force can
excite coupling resonances when operating point is such that :

P QY -q Qx = integer ; p, q positive integer

In the case of a flat beam, such a difference res~nance produces an
exchange of oscillation energy between vertical and radial directions,

which sign.ficantly increases the vertical beam dimeansion.

The lowest, i.e. dth-order non-linear difference resonance excited

by the beam-beam force :
2 Q{ - 2 @, = integer

has been studied by B. Montague”, using a first order averaging method,
as developed by A. Schoch!) . computer simulationsfs7) show its excita-

tion and are in qualitative agreement with the predictiona”.

Here, we study the Gth—order resonances :
2 Qy -4 Qx = integer
amd
4 -2 integer
Qy Qx = g
in the same way. The use of this first order procedure is believed to
be valid provided the following assumptions are made :

The charge distribution of the oppositely circulating bunches is

a}
assumed to remain unaffected by the studied beam-beam interactions ;
this is quite true if the incoming beam is much weaker than the
~iverse

b) Tne resonance studied is supposed to be isolated enough so that no

other resonance is sufficiently excited to be taken into account in
a first order scheme. Furthermore, pushing the averaging method to

higher orders yields terms proportional to A Qi/b qi, where



a Q:. i =1,.. are the excitation widths of nearby low order resonances
and Aq', 1 = 1,.. their respective dist to ing point. We here

agssume that the ratios : A Q:/A qi, i =",.. are small enough. This is
true as long as the resonances studied are well isolated, and as long
as the strong beam current is not too high. Resonance widths are effec-
tively proportional to the strength of the beam-beam interaction :

L

2 +
ny ux,y(qx uy)

where I 1s the number of particles per bunch in the strong beam
r the classical electron rac¢ius
the Lorentz enerqy factor
the betatron amplitudes at interaction point

the r.m.s. values of the strong beam particle distribution

Assumption a) allows one to account for the succession of kicks by
only adding the potential created by the opposite beam to the weak beam
particle hamiltonian :

'
Heoxtuyoy's® = Ho+ H Gy
where H' £ beam potential expamsion

The method of variation of constants with the Floquet solution for
the unperturbed problewm is then used te derive an action-phase hamilto-
nian. As made possible assuming b), the latter is treated in perturba-
tion theory to the first order with the beam-beam strength as an expan-
sion parameter. From this approximated hamiltonian, two invariants are
derived, one of which allows a reduction of the number of degrees of
freedom from two to one. Further on, a condition for resonance to occur
is derived, which yields resonance band limits for the two resonances
studied. The second invariant is then used to investigate beating ranges.
Finally, the limitations of the method and its possible further impro-

are di .



2. PERTURBATION THECRY TO THE FIRST ORDER

The perturbation hamiltonian A* is the potential deriving from
the charge distribution in the opposite bunch. This distribution is
assumed to be gaussian as expacted from natural behaviour and is not

distorted by the interaction with the ker beam, ding to a). An
expansion of it is given in Appendix. Further multiplying it by a
series of §-functions to account for the kicks belng very localised
and equally spaced by the superperiod 2n/S enables one to write

¢+
k

k
H* tx v, 9 = z V. x 1 v 2 Z -ingbd
k. k e m
kk 172 n=-o
172
Following Schoch! , we get an action-phase hamiltonian using the

Floquet functions as zero-order solutions

k1 k2
oy 8 9,8 = nkyky Vli“‘a M, a"z "y ’ )
Ry#myky
l.2+m2=k2
. ei[(ll—.ml) (Qxe+@x)+u.2-m2) (Qy0+¢y]—n39}

v - ("1*"‘1) ( 22""2)w"1 M 2y
2ymEym, m N A

where
\'2 are given in Appendix

ki¥s

(3)

and where the Floquet factors (wl, “1)' defined by the Floquet functions

x = axl/z (“l @) e“QxM‘x) + ;1 ()} e-i(Qx°+¢x)}

4)

vy - 3Y1/2 {“1 (6 e"' (de+¢y) . ‘_'1 ©) e—i(QyB+¢y)}
- Bx
"l “l_ 3R

are written . (5)
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von Zeipel's pmcedure") provides a perturbative averaging proce-
dure which is developed to the first order, according to b). It is then
equivalent to the usual neglecting of fast oscillating terms. Thus,

Keeping only zero and low freguency terms in (2),i.e terms satisfying :
(lll—m‘)Qx + (lz—mz)Qy -n§ ~ 0 {6)

one gets, in the cases of the two 6th-order resonances studied :

ZQY - 4Qx = qu + 2l\q1 {7

40 - 20 = 2q., + 2Aq 8

Qy K 02 n 2

Hl=h1(ax'ay)+H1(ax,ay'¢x’¢y'8) 9
2

13 ea) = Vigen, + Vooudy * szoo % * Voo2o?y

a3
* Vi 22 * V300 % *+ Vooss %

2 2
+Voory % a + Vinzz 2% ay

with H(a o ¢ 8)=2V

2
X y, %% 4002 %x ay C°S|‘2Aq19 + 4¢x - 2¢y] (10)

in the case of (7)
N 2
H (axrayr¢x1¢y 9) =2 V0240 a, a, cos[-Mq o+ 26 - 4¢y1 (11)

in the case of (8)

The two resonances are excited by the beam-beam force and are
isolated, as discussed in ). This weans, in terms of (7) and (8), that

_ ns
9y and Aqi should satisfy 95 5 and Aq1 or qu small.

The coefficient, calculated from the Vk & potential coefficients
given in Appendix and from (3,5), are 2

8
V. ==y X 2
1100 0 2R a_(o_ + 0 )
X X y

= - X ___2_
Voou v0 2R o (o, +0)
y % y
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v v ( ) 20 + g
= —_— ¥y
2200 2R 20 (o, + o )2
V V ( 20+ 0
= __y___ {12)
0022 R 20 (o, + 0 )z
1111 2R o, S (0, +a )2
v v (ﬂx}al 30, +Ba:—7ay oi-7aiv;+3ox:;
3300 O\ 3 6202 - oi)2(a, + a)
x b3 Yy
v V(El’.sl 3a:+aa;—7uxo;—7u:a;+30 ui
0033 0 2 3 05(02 - az)z(o +0)
Y Y
[} +3u3+o a;« Su:a
Vo == Yo\ 70 ( (a - 0920+ a.)
x x y
V ( )( o +Jai+oyuz-50§ax
1122 - 7 2 2
2R ("x - oy) (ox + oy)
1
Voz110 17 Vnzz
1
V4002 12 vzzu

It can be seen that constant terms from the potential expansion
given in [A] have been included up to the order of the resonance [here

€]. This is sufficient since that expansion converges fast enough for

not to large amplitudes (see Appendix).



3. TRANSFORMATION OF THE HAMILTONIAN. REDUCTION TO A ONE-DIMENSIONAL

PROBLEM

The perturbation Hamiltonian Hl is transformed, £irat by a scaling
operation, 2 by a ical transformation which will reduce it to
a one-dimensional Hamiltonian, and third by ancther scaling operacion.

Writing H1 in terms of A_ = ; a A, = % a, and then multiplying

it by an appropriate % factor to preserve hamiltonian scaling gives :

~

HZ = hZ U\x "hY) + HZ u\x rny -Ox roy '6) 13

2 2
hy 'Ay)= Kyg By + Kgp A, + Kyo A+ Koy A

3 3
zz By Ay + Kgo Ay * Kpg By

2 2
42 A Ay + Kyq By Ay

2 .
with H2 By » x,¢y,6>= g X2 M Ay cos(-28q,8 + 44 - 2¢y] (14)
in the case of (7)
e 2
e, a5, .0, ¢, 0= s Kyq A R, cos[-28q,0 + 24, ~ 44 ] (15)
in the case of (B)
ky + ky -
and with [ =(-“} 2 Vemen ae)
1'%z 2 1™ 52"

The scaled hamiltonian we have obtained is two-dimensional. The
use of an invariant typical of the coupled motion we are investigating
will permit us to reduce it to a one dimensional hamiltonian.

H2 has two invariants. In the case of {7), they are :

€4 = Ax +2 l\y an

ns, ns.
c2=|-12+(Qx-?)}\x+(oy—T)ny (18)



an EL:)
€4 is simply derived equating -2 . -2 and using Hamilton's equations
a b
X 4
)| dn 352 an
—2 .2 2. X, onegets :
%, ae a¢y ae
38 9H,
—242-2.9
a¢x 3¢y
dn =0
consequently, - -X_. X
ae ae

which yields (17)

c, is obtain similarly calculating :

A
i Y
a2
My, 2, ®
—= ==K,A A —cos[4(Q 0 + ¢ ) - 2(08 + - ns@
5y o cos[a(Q ¢ (Qy ¢y) ns8]
dH, ns 9H ns.aﬂ
- -—)—2+riq-—) -2
a8 6 B 6
dﬂz ng daA ns da
=g -—)—E-qo -—)F
de 6 do Y g ae

which yields (18)

Invariant C can be used to carry through a canunical transfor-

1
mation with the gemerating function :

n n
Gx‘¢x4’y“1°119’ =4 T {1-2a,) + ¢y T (1420,
[
+a AL aq,0 (19)
2
The two canonical momenta [Ax 'Ay) are then replaced by (Cll' ul) where

Cll is the invariant and where




2A - Ax
o =—X X (20)
11

The physical range of «, is [-.5, +.5]. From (19), we get

1

0, c
a = b Qi 1§ (1-20,)
, 2
21
T
Az — et i)
Y " e !
Y
G c = c
1 ‘i 11
— ey - 26 +af e ==y
aul 2 ¥ x 1 4 1
(22)
aG ¢ A +¢_ A a
o Ixx Ty vy L 8q,0 % ¢
3%, T 2

where we put - “'1 E -2Aqle + 4¢x - 20y. The hamiltonian is transformed
into '

<
Hytay ¢, P Yoy =l +a -l—mz1 (23)

Here, one clearly sees how the number cf degrees of freedom has

been reduced since

H dc
3. 11 -0
3¢ de
°n
Consequently, |'|3 depends only on {o;, —= ¥,).
4

C
At last, scaling A "1 into *1' we get
4

4 4 €y
Hytagep = Hs‘“n' vy =—, r o, 17, bq,) {24)
11 11

In the case of resonance (8), invariant C2 still holds, but c11

has vo be rewritten :
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[+

12 = 2R+ Ay (25)

Carrying through similar transformations, H2 1s similarly reduced

to
4 €12
H4(uz, ¥y) = e (Hz +a, -2— a,) {26)
12
A - 2Ax
with a, = T2 eyl ¢ 122 @n
2c,
i2
Sy B o-2bqp ez -4, (28)

The explicit expressions are the following :
1 3 1 2
H4(u1, v = A0, l(v1 + 5 cos) &y + (ny - 2 cosy ey {29)

+ (X1 - lj'—zg:c)sg(li)ul + (Bl + ~214-cos¢l”

=K Sy
Tt ]
K, LS 60 z

+
11742
{30)
- L[_m _ Tos, ,“ﬁ_“_ﬂ]
K42 60 8 4 2
K X
4 04 2 02
t X '[T’Kao]*' 7 [2‘2 - Kyt A"x]
11742 c“xﬂ

1 %os, . Faa  %a2 1 X4 %22
s x, Moot e 7 2 e, (R0t T T
42 11742

1
w12 K0 * Kool
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in the case of resonance {7) and,
_ 1 3 1 2
Hyta, ) = 8p ) [y, - 5 cosby)ay + (ny - z cosp,la;, (31)

+ ()(2 11 coswz)u + (B + l cong)]

2
12 X24
TN . - . T <]
K, 8 "2 "4
X, X
2 [ 60 24 42]
=2 {; 89, S . 1
[ 2 " Xoe 2 a
.4 [“Au X - "12_}
Cafat ¢ T4 2 (32)
vien =_1__[3xlc-x ]+[Kﬂ_k42]
K24 [:] 08 2 4
+ I-x -x—o]i- 2(X --—)+Aq]
ey e " g Zx, 2 2
ot (B, ). (ﬁa 42)]
Eral L 6 z 7l
. N
1 40 22 1
*1224[4+xo4+2]+czx x2°+2x°2]
12%24

in the case of resonance (8).
Finally, the Kk k are re—expx'essed in terms of the beam shape

parameters, ‘k = —Z ’ Ex y M— and in terms of the strengths of the
g ’ 8
X,y
beaw-beam interaction in the horizontal and vertical planes, ulready

defined in 1) 88 =

r N
3 =2 XY (33)
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We get :
KZO = Szx
KOZ = SEY
(K = 5k 2+
40 16e, 1+ /&
X
{k, - -5 2kea
4 16e, 1+
. x“y 1 +%k
o5 b omPag-7vE- e n??
- Keo % 2 - 12
x
K - s 5 3+e? -0 me w2
6 % 2 (k- 112
¥
<
K, -5 & Y 2y k- atl?
M2~ 4 T2 2 F]
[3 E (k ~ 1)
x Y
\ _ s _E_xfy_kl/:! Lo 2 e il g
ch. 4 2 2 F)
E. € k - 1)
Y ¥

4. RESONANT CONDITION AND RESONANCE BAND LIMITS FOR EQUAL BERM-BEAM

STRENGTHS

A particle is on resonance when

ay, o,
® - 5{ tag, wi) =0 1=1,2 (35)
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i.e. when
1 2 1 = 1
3tvy % 5 cosd)) a] + 2(np - z cos¥y) a) + (x) + 7 coswy) =0 (36}

3
2 z 2 2 2 2 2 2

A resonance can be crossed if at least one of the solutions of
(36) falls inside the physical interval [-1/2,1/2] for a;, A sufficlent

2
condition for no resonance to be crossed is thus :
ldl | > % 1. the case of resonance (7) a7
juz ] > ; in the case of rescnance (8) (39)

where a; * are the two solutions of (36} given by :

2
—tn,~ L cosv_ 1 e\Jtn, - 2 cosp, ) 2-3 (v, + 1 cosp. ) (x,~ L cosvy)
o i = 17 Sos¥, )4\, - cos¥y 137 ™" 18 1
1 3(\11 + % cosw])
1 1 2 1 1
.t —(nz-gcosvz)t\J(nz-g t:oswz) -3(v2—5coswz) (x2+ i-z-:oswz)
2

1
3(\)2 -3 00502)

2

cosyy \2 cosy cosy
e i | A
k4 ? 2

and where ul %, a, + are supposed real, which is true only if

6

In the case cf flat beams operated with equal beam-beam strenqths
in the two planes (§ = Eyi, we have h = /k, and we put h = Il? as a
typical value for a storage ring operated with flat beams, as LEP or
PETRA.

From (34), (32) ana (30), we thus get :

—er



- ‘l(‘ -
vl = 42,14
ny = 76,33 - 3‘— 12,66 (39)
1
1 1-&
x, = 35,8 - = 6,76 - 23,59
1 L 2
4
1
\|2 = 62,698
i
n, = 95,95 - — 7,39
2 02
1 L+ R,
X, = 48,86 - T 7,83 + 3,81 P (40)
2 [+
2
€5
oy = i are the reduced invariants

where, for 1 = 1,2
. P
Ri = EE—‘- are the reduced frequency splits
y

The above numerical values allow us to drop coswi terms, which
are all small, from the expressions of u' * and “2 1. Inequalities
{37 and (38) yield resonance band limits for the two resonances studied.
The largest bands are produced for a = 1

- 4,27 ¢ R1 € 1,13 (41)

in the case of (7}

- 47,36 ¢ R < - 0,97 42)

2
in the case of (8)

Aq
Their physical meaning follows from eq, (35) : if Ri = EF’-‘- falls
Y
within the limits of corresponding resomance band, particles can start
to beat, thus increasing their vertical dimensions. Whether a large
number of beam particles will or not beat appreciably due to these
resonances depends however on two other factors : the size of the bea-

ting ranges and thelr average over the particle amplitude distribution.
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This point will be further explained in the next paragraph. It
will turn out reducing notably effective resonance widths as well as

their harmfulness.

S. BEATING RANGES

As done in2s?), beating of particles can be studied using inva-
riant C,. It can be easlly shown that H., the hamiltonian obtatned
through the caronical transformation described above, is equal to just

C,. Bence, individual particles can be described by

2
Halui, wi) = constant 1i=1,2

which can be written, for resonance (7), putting co.sw, L 2K 25 I

1,3 -1, 2 -1 1 4

= - — — = = A
vy & oy + (n, + ey + (x + ey o7 Ao B, =)y 43)
and for resonance (8), putting cosp, = £ 1

B,(2)
=1 3 =1 2 1 1 4

= = = = A

vy + 300 + (ny + 2o, + Xy * e, 37 %o, B, = (44)

For fixed values of R, and 0., the limit values of a, are given
by two curves, obtained solving eq.(43) and (44) as a function of
- z= A . i =
34(”"%1 A =4, respuctively for 3 =1, 2.

Fig. 1 to 4 show the set of limiting curves in the (li, "i)-plme
corresponding to a set of Ri values, for different ai values. It can be
seen in fig. 1 and 3 that particles do beat over approximatively all the
calculated resonance bands for each of the two resonances, however with
quite small amplitudes, since the limiting curves are very close to
each othex. Effectively for each value of Ri' particles muve along the
vertical between the two limitipg curves. Significant beating occurs
when initial values of (ni. C';i correspond to a point near the vertical
tangent to the curves. In fig, 2 is shown a "magnification" of the center

of fig. 1. Beating dnesn't exceed 10 % in Q-
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Flg. 4 shows the behaviour for another value of 01. The range of
Rl valuyes for which beating is appreaciable within the physical limits
of u1 is considerably reduced : from -4 < ltl <1 to0<x Bl < 1. The
effective sizes of the bands therefore depend strongly on the mmber of

particles populating each (ui, "1)' Since, for a flat beam, typical
particles have

= €
LN x/2

n

€
x
2

Eat

By T fwe

o " - 1/2
{ has the larges* population, in the case of

9 " 172 rescenance (7)

(o, ~ - 172
and i in the case of resonance (8)
a
2

Hence, in tie case of resonance (7), for example, the effective rego-
nance kand is a rather narrow strip close to R ~ .9. In other parts of
the full resonance band, particles also beat, but as they are very few,
the effect is hardly significant. Similarly, in the case of resonance
{8), the effective resonance band is a strip located between R *~ -1 and

R~ -3,

6. CONCLUSIONS AND PROSPECTS

The results of this first order calculation seem reasonably in
acccrdance with what one expects for higher order resonances such as the
6th-order coupling resonances examined here. They appear .o be wider
.an the 4th- “-der coupling resonance : 2 Qy -2 Qx = integer, investi-
gated in3). Associated beating ranges are also smaller by a factor 4
in amplitude: which is consistent with large widths.
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Furthermore, as in the 4th-order case, the two 6th-order resonan-

ces exhibit asymmetries typical of ncn-linear r These asy
tries here appear through the difference in behaviour on both sides

of the resonances. According tc our calculations, beating appears sooner
vhen approaching the resonances from below than from above. However, as
only the effective resonance bands are relevant to the behaviour of the
beam, the effective asymmetry is reversed in the case of resonance (7) :
a large fraction of the beam will beat only when approaching that

resonance from above.

As the beating range is rather limited and as its average over
the particle distribution in (ui, mi) has the effect of reducing the
large widths to narrower effective ones, the two resonances seem less

dangerous than one could have feared.

How these results will prove relevant and accurate for a high
energy storage ring such as PETRA or LEP is a measure of the complete~
ness of the method used. Two limitationrs and improvements to make up

for them are belleved to be of importarce.

Plrstly, as previously mentioned, pushing the averaging method to
higher orders yields resonance mixing effects whose importance grow
with the beam-beam strengths E v This is quite natural since E _ is
the expansion parameter of the pezturbatinn method. A first order pro-
cedure is hence sufficient 1f currents are not too high, What "not too

high" means depends on the r one is working on and on its sur-
rounding (vicinity of other resonances of lower order than th: studied
one). In the case of the 4th-order resonance, the only resonances of
lower order excited by the beam~beam interaction are the one-dimensional
2 Qx,y = integer. The first order approximation in the perturbation
method is hence good for currents below the stochasticity limit provided
one is far frem those two one-dimensional resonances. In the case of
6th~order resonances, many lower order resonances can contribute in,

for example, 2nd-order terms of the perturbative expansion. Taking into
account such corrections could change predictions a great deal, even

chough general features would remain,

Secondly, the evolution of the particle distribution due to
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que.;tun fluctuations and radiation damping, has not been taken into
account, even though it could transport particles all over phase space
{and thus over (a 1 u‘)_ space) . A more global treatment taking account
of the distribution would be appreaciable,
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APPENDIX : Potential fon from the

distribution

Following Hontaguez) , the potential deriving from a gaussian

charge distribution

lse8

plx,¥) = p (A1)
is written in an integral form derived by Houssais :
i S L
Py ab [ 1-e a%st b+t
Vixoy) = - = at (A2)
° a0 m%e)
Expanding it yields :
ab + .
Ving =20 2 en® 3 (33 32) £231,252
4:0 n=l n! jl+j2=n i, -
o (A3)
N J de
j, +1/2 3 +1/2
o aZat) 1 o) 2

Keeping terms up to the 6th ordexr
to calcuiate the integrals gives :

2
x

and using a reduction formulaS)

Vi vy = o - i 1
Vi = Bijo =¥ Bgy * 3% Byt ¥ By
2 1.6 1 .42 2 4
+x7y B -2 x By, ixxszl—-xynlz (Aad)
1.6
“8Y Ppa

with :
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Bg = V% ata + b)
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By = Vo bla + B

By = gvo
By, = g 0
B, - voa

2
15 Vo

QUS

]
1

I

5
u
™
=<

&
]
win
°<

B, - §Vo

po
and where VD -
°

2a + b
aa(a+b)2

2 +a
ba(a + b)2

2
bla + l:)2

3

3a% & ab? - 7b%a - 722 + 3ba

{a5)

3

» % - aH? ta s py

4

3% + 8a? - 7ba’ - 72%? 4 2a

2

2wl -ah% a+n

b3 + 3a3 + ab2 - Sazb

baa (l:2 - 32)2 (a + b)

al + 3> + a’b - sab’

ab® @2 - a%2 @+ b

ah

variables, as shown further down.

has to be scaled to normalise to the dynamical

Putting a = V2 ux and b = V2 ay in (aS5) and multipling by the
corresponding powers of "1 and ul given in (5) gives the coefficients

of (12).

Using Hamilton's equation on eq.(13) gives, for vanishing small

amplitudes :

i s I

E>y ae
x

Kso = V100
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Vuoo is hence the linear beam-beam time shift. Writing, for 8 inter-

actjon points,

be x:DN Bx
T " V1300 = 5 5 =" S 7y (r6)

a e +a9)
x x ¥

enables us, through a comparison with coefficient V“OO given in (12),
to identify
:‘ON RS
Vo = Tay (a7
we thus simply replace VO in {12) by its expression given in (A7) to

account for the sca®ing operations.

Neglecting terme of order higher than 6 in the potential of (A4)
is a good approximation if those terms are small enough. Since high
order terms grow faster than low order terms when x or y is increased,
the expansion will not converge as fast for particles far ont in the
tails of the distributions and, in particular when the beam blow up

causes the vertical dimension to be iner d. The ies of the
4th-and 6th-order approximations were checked numerically : we found
the 6th-order approximation to be accurate to less than 1 % for parti-
cles at 1 0, to 10 & for particles at 2 ny and to only 50 % at 3 uy.
Hience, potential (A4) is believed to be a good approximation for par-
ticles up to around 2 ay, which is sufficient since beating ranges are
small. In the case of the 4th order coupling resonance :

2 Qy -2 Qx = integexr

studied ins’, beating ranges are bigger Aand the 4th-order approximation
is less good. However, since particles in fact only spend a fraction of
their time at the maximum values of the y-displacement corresponding to
to their amplitudes, the approximation is nnt believed to be bad.
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