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SUMMARY
A compact averaging procedurc 18 warked out to
study the beam-beam effect in storage rings, in the
weak beam-strony beam case. In ocder to avoid difficul-
ties with be tial
doriving froa the assumed Gawssian charge dlatribution
3R used.

INTROIICTION

In A storage ring, particles experience, each
time they intersect with the or-coming bunches, sharp
non-linear impulses. These may add up to increase par-
ticle emplitudes thus hurting luminosity gosls and 1i-
Eetimes. As for non-linear problems La general, the
motions of the “weak beam™ particles ave described by
a non-integrable Hamiltonian. Two approaches have been
developed. The first one is to express the problem as
sn irerative @apping and to use » cumputer to calcula-
te the evolution. Results from such slaulationa’ show
the behaviour of particles during a great mumber of
*orns as well as fundanmental characteristics of mon-
integrable problems : beyond a threshold, o large pum-
ber of trajectories become "chaotic” 8nd unpredictable.

The gecond one is to approxlmate the probles with
an integrable one. Analytical calculatlons can then,
in principle, be achieved. Althcugh results will be
qualitatively false in the sense that the fundamental
"chactic® property of the systea is, 4 priori, suppres-
sed, they can, up to a threshold in besaa-current or in
amplitude, be very good guantitativaly (see 11). The
most popular approximation is the use of o flrst order
averaging procedure : amcng the many rescnant terms

in the Bamiltonian, only
one 1s kept, assuning that the system s cicse anough
to the 2 well
a8 the operation of existing storage rings" show the
resonances do play an important role, before the beam-
beam limit is reached.

In this paper, we compare polynsmial approxima-
tions of the beam-beam porential with the exsct one,
and we present operational expressions using the latter.
Illustration Ls given in the case of the coupling re-
EonANCe 2Q' - Zpy = integer.
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Fiqure 1 - Exact potential (solid line) and truncated
potentials to 4th order (dotted line) and
to 6th order (dashed linel for » = 0

Truncated and enact potentials

The ic pot jal g {rom a
Gaussian charge distribution can be written in an inte-
gral furm as done in Ref. S5 :
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For convanience, mogt_authors expand the potential in
polynomial series®*5+7, truncate them at a certaln order,
and then proceed to transforming and aversging.

A truncation at the 4th order gives
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InS, the truncetion ls made at the 6th arder, yielding
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Figura ] - Exact potential (solid line} and truncated

potentials to 4th order (dotted line) and to
6th order (daghed line) for x = 0.5 L

Figure } - Exact potential {solid line) and truncated
potentlals to 4 th order (dotted line) and
to 6th order {dashed line) for x = %



Such truncated cxpansions are believed to be va-
1id as long as one only considers particles with small
amplitudes. Since the serles are alternating, it Semms
obvious that the convergence is going to be extremely
slow for large amplitudes. What a “large” or a "smali®
amplitude means, has never, to my knowlegde, been qua-
liffed. An answer is given here through a comparison
of Yox.yl with lex.yl and V6<-.yp. in the case of a

flat beam ﬂx/“ = 16. They are plotted as function of

y. for three Eixed values of X, in Eig. 1-3.
Roughly, It cen be said that the truncated ex~

pressions and thel(r first derfvatives (relevant to

resonance widths) are very close to the exact ones for

X(;u‘,y<20y,

Dimensionless non-truncated potential

The pctential given in (1! is first reexpressed
in terms of dimensjionless quantities :
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The Hamiltonian and its transformation

As done Ln3:6, the motion of a weak-beam parti-
cle can be described by the Eollowing Hsamiltonian

Hxty¥o =y + Hxo ¥, 0 15)
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b {X,Y,8) = V(x.1) nz'—~ < is the perturbing

where{ term due to the succession of localised kicks.
Jjrepresents unperturbed motion, S = superperio-
dictey

The method of variation of constants with the Floquet
solutions for the unperturbed problem is then used to
obtain an action-phase Hamiltonian. Setting :
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Uslng the Iello\llng expansion in terms of modified
Bessel functiol
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n=3 "
we obtain :
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Expression (9] is a compact non-approximated way
of writing the Hamiltonian, and the problem of it being
non~lntegrable remains. A similar approach inciuding
all orders of the potential can be found in?. The inte-
grals given in (10}, are, of course, not masy to cal-
culate analytically, Howsver, the smooth behaviour of

y = e 1 (x) allows a quite accurate computation.
£irst order averaging procedure
Von Zelpel's 10 ps a

averaging acheme which 1s developed €0 the firat order
as in°/6+7_ It is then equivalent to the usual neglec-
ting of fast oscillating terws. Assuming the system is
close to an isolated resonance, §.e. verifies

ZnQ +2mQ mksS+284q an

4 q =21l
the averaged Hamiltonian Is :
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We now have a completely integrable problem since two
invariants of the motion can be derlved
1
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let us also notice that the Ramiltonian given in (9}

makes it quite easy to develop the averaglng method to
higher arders.

Yllustration in the case of the coupling resonance
Qi 29 integ

C,=-mA +us
x Y

er
Putting n = - m = | In (9 - 13) and reducing the
number of degrees of freedom through a canonjcal trans-
formatlon with generating function
. 1 1
cz“x"y""cl’m Ox cllo,‘(z—aywy(imnmm {14

we obtain the following expression for the invariant
C, twith SE = S¢
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On fig. 4 ia shown 2 plot of the limiting values of Cz
correspopding to Cvs(Zvﬁl - - kS } = 21 and for

=0.25 LA 0.25 oy.
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Figure 4 - Limiting Lrnvariant curves for the coupling
resonance 2 Q. -2 - lntqer.mre-p:m—

ding to (x,yl-initial values of (. ok u,),
s ty = 0.12, and for various valuves of Aq

are
lines limited by Ul! two curves. The amplitude of the
beating is given by the length of these lines, which
may become importsnt near the resonance. The closeness
of the 2 curves is explained by the cespective order
of magnitude of the computed functions K, and H“V In

general [H,,/H,l ~ 107,

Conclusions and prospscts

Motivations to present a practical ard reslistlc
method can be listed by order of importance
1°) ailow more or less reliable predictions to be made
concerning beam blow-up versus (Ql:ﬂ,l-wrkmq
points, belov the stochastic limit.
2°) answer the q-uuu.on “up to which threshold is a
1L

we!
u—ud by an imnble one in the case of beam—
besm interacticn 7%

3%) verify the +*the usual region
in which s vesonance beshaviour prevails corres-
ponds to the zone below tha above mentionned thres-
hola®.

I would 1ike to thank J, Buon for his support
and R. Ruth for suggesting that all arders of the

could be in a
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