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I. INTRODUCTION

ABSTRACT

This paper discusses generalizations of the model introduced by Kehr

and Kunter of the random valk of a particle on a one-dimensional chain which

in turn has been constructed by a random walk procedure. The superimposed

random walk is randomised in time according to the occurrences of a stochastic

point process. The probability of finding the particle in a particular

position at a certain time instant is obtained explicitly in the transform

domain. It is found that the asymptotic behaviour for large time of the mean-

square displacement of the particle depends critically on the assumed structure

of the basic random walk, giving a diffusion-like term for an asymmetric walk

or a square root law if the walk is symmetric. Many results are obtained in

closed form for the Poisson process case, and these agree with those given

previously by Kehr and Kunter.

The basic problem of random walks n;is been well discussed in the

classic text on probability theory of Feller and in many modern texts on

)k)Markov chains and stochastic processes Applications of the theory

of random walks to a wide range of physical problems have elso been extensively

documented in Barber and Hinham

Recently Kehr and Kunter introduced an interesting and novel model

of a random walk on a random walk. In it, they consider the random walk of a

particle on a linear chainwhich does not extend uniformly in one direction,

tut which in itself is constructed by another random walk formulation (see

Fig.l of their paper). In a way, we may picture this as a second random walk

superimposed on the path or folded chain of the first or basic random walk.

There are many physical situations which can be appropriately modelled

by random walk of a particle along random paths. As has been mentioned by

Kehr and Kunter , a realistic example is afforded by imagining a particle in

an amorphous substajice which has a tendency to hop along an irregular path
7) Pi)

raore easily. The "reptation" of a polymer chain discussed by De Gennes '

where the diffusive motion of a polymer in a tube which is subject to random
9)deformation is another example, Richards considered the hopping motion of

particles which interact through Coulomb repulsion. He advances a model by-

assuming that the repulsion Is sufficiently strong to forbid two or more

particles from occupying the same lattice site, nearest-neighbour and longer-

range repulsions being neglected. Thus, essentially,the particles are assumed

non-interacting except for the exclusion requirement which only allows hops to

unoccupied sites. For any particular tagged particle in the linear chain,

as other neighbouring particles are allowed to move, it will experience a

fluctuating range of unoccupied sites to fill. This of course is akin to the

case of a random walk on a random walk. Of particular interest is the

prediction that the mean-square displacement satisfies the relation

^ X 2 ^ ( t ) < c t 1 instead of the diffusion-like relation <x£^(t)<*;t for

non-interacting particles.

In Kehr and Kunter's discussions, both the basic and superimposed

random walks are assumed to be symmetric (equal forward and backward transition

probabilities), homogeneous (constant transition probability from site to site)

and infinite(0ver the integers -..-2, -1, 0, 1, 2,...). They initially

formulate the solution in discrete time where many basic properties of the

solution including moments, approximate formulas for the probability density
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W (x) of finding a value x after n steps transitions via the standard

Gaussian approximation and the saddle point approximation of Daniels.

Extensive numerical simulations have been performed "oy them to confirm con-

clusions from their derivations. They later discuss rather briefly the

generalization of the random walk on a random walk to continuous time for the

case when the steps of transitions take place at time instants according to

a stationary Poisson process. The solution for the basic formula for w(x,t),

the probability of finding the particle in state x, is obtained in a double

Fourier-Laplace form, from which they deduce asymptotic behaviour of the moments

<[x ^ ( t ) and other physical quantities of interest such as the frequency-

dependent coefficient and the incoherent dynamic structure factor. They have

shown, among other things, that the "anomalous" square-root law for mean-square

displacement is a natural consequence of the random walk on a random walk model,

in both discrete and continuous time.

In this paper we shall look at the continuous time generalization

mentioned above (calling it randomised random walk following the terminology

of Feller ) in some detail and in a more general setting. We find that

generally most results are expressible in closed form. The asymptotic laws

for moments derived by Kehr and Kunter via Tauberian arguments are easily

deduced from asymptotic behaviours of the solutions in the time domain. Lastly,

the superposed rsndc-mis.ed random walk is generalized allowing transitions to

occur according to a stationary renewal process. It is shown that the asymptotic

square-root law for mean-square displacement still holds true in this case

provided the basic random walk is symmetric, else a diffusion-like law (oC t)

will be in force. It is rather interesting that the model gives rise to two

types of asymptotic lavs dependent on assumptions on the parameter (the

transition probability rule) of the basic random walk.

II. RANDOMISED RA1JDOH WALK; POISSOH PROCESS TRANSITIONS

We assume that both the basic and superimposed random walks are

homogeneous and infinite but may be asymmetric. Let PQ(
X) (p-jjx)) be the

transition probability of the basic (superimposed) random walk, where Pi(+l)

p. (-1) = CL and 0 J p . • 1 - q.. •? 1, i " 0,1. Define the corresponding

structure factor^o (u), of the random walk as the Fourier transform of

p ±(x), i = 0,1, i.e.
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(1)

For the basic random walk let p
y (

x ) be the probability of starting with

x = 0, and finding a value x after v steps. It is not hard to find an

explicit formula for P (x), as is given in Kef.6 for the symmetric case of

p = n = 1/2. For the superimposed random walk (in discrete time) the

P (v) is the probability of finding a particular value of v after n steps.
n
On account of the independence in transition,it is not hard to see that the
Fourier transform of P (x) is

(2)

with a similar formula for p
n(v).

For the randomised random walk on a random walk let P(v,t) be the

probability of the superimposed walk to be in "site1' \> at time t, and W(x,t)

the probability of eventually finding the particle which performs this

continuous time random walk to be at a value x at tiiae t. By enumerating

all paths leading to the value x, we immediately have the equation given by

Kehr and Kunter

(3)

For

When the transitions occur according to a Poisson process, P(v,t) can be very
10)

simply derived using the following combinatorial arguments of Feller

the superimposed walk, the v h step leads to the position x > 0 iff among

the first v transitions (v + x)/2 are positive and (V-x)/2 negative. This

is impossible unless V - x - 2k is even. In this case the probability of
th ,_ fk + 2x] ^k+x _x

k + x
In thethe position x just after the v Jump is

Poisson process with parameter X , the probability that up to epoch t

exactly \J = 2k + x jumps occur is (At)v exp(-Xt)/v! Hence for x > 0

(U)
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1/2
where 0 = P J / ^ J <* = 2A ( p ^ )

I (z) is the modified Bessel function of order n with imaginary
n i n )

argument . Mote tha t , since I (z) = I (x), the probability
distribution P{v,t) is defined for a l l v = 0, ±1, ± 2 , . . .

The fact that the Bessel functions satisfy the Neumann identity

implies that

which is the Chapman-Kolmogorov equation for a Markov process. That P(v,t)

i s Markovian enables us to obtain (It) as a solution to the followina master
TO)

equation 1

f (v,

subject to the initial condition P(v,0) =
Q

Solutions similar to

have also been considered in connection with particle kinetics and Ising

model 1 3 ) ' l U > .

From (2), (3) and (It), the Fourier transform of w{x,t) is given by

Vt -at

t{^ f)
(5)

Further reduction of the general expression in (5) does not seem possible.

We shall, however, be able to discuss general properties of the solution on

the basis of it. It is obvious from (5) that since B = (p /q,) .
l/?

S1 " (1-L/P-J^ would yield the same expression. This means that in the

superimposed randomised random walk, p and q can be interchanged

without affecting the probability W(x,t).
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In the sequel, we shall be mainly interested in the case of a symmetric

basic random walk. (pQ = q. = 1/2), and we rewrite (5) as

(6)

If we make use of the expansions 15)

and the fact that

it is easily shown after some algebra that for n • 1,2,..

r
(7)

In order to bring the solution in (7) to bear on Kehr and Kunter's results,

we shall first of all consider the special case for which p Q = q. = 1/2,

corresponding to a symmetric superimposed walk. In this case, 6 = 1 and

a = )i , and we have

For n = 1 and n = 2, we further note the identities

and f (r.
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and therefore

-X*
(8)

->*.

(9)

The final results in (8) and (9) are arrived at with the help of the following
l^l

recurrence relation •

(10)

From the fcllovrLng well-known asymptotic formula as t •*• •»

,

where

v,«) ~ r (vi +v*«) /(«i , cv,o>

i t is immediate from (8) and {9) that

<y>(t)
(12)

(13)

The formula in (12) is given ty Kehr and Kunter using Tauberian arguments.

The slight disagiteement in the constant between (10) and their formula (31*)

arises from the fact that essentially their procedure corresponds to taking

W(x,t) = eip(-EXt) Ix(2Xt).

We note in passing that since
16)

-7-

expression in (8) can alternately be expressed as

The asymptotic behaviour of the moments is slightly more complicated if B ̂  1.

Consider, for example, the second moment

-v.*

On using (10), the first term can be written as

where we have made use of the results
16)

and J(u,v) = 1 - e"V I e w IQ(2(w.v)
1/2) dw.

It is further shown that if

-I

then for n < 1, z/5 small as 5 •+• » (which is the case in hand) we have

From (15) we may then deduce tha t , as t •*

Finally, on using ( l l ) , we deduce that
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(16) V,

For 6=1 and hence a = X, the result in (16) of course reduces to that

given previously in (12).

III . RANDOMISED RANDOM WALK: RENEWAL PROCESS TRANSITIONS

In this section we shall generalize the results obtained in the previous

section to the case when the superimposed random walk is symmetric but with

transitions occurring according to a stationary renewal process.

Let <|>(t) be the interval probability density function (pdf) of the

renewal process and <f (t) be the pdf of the time at which the n event

occurs. To be precise, <Ji (t) dt = Pr [given an event at time £ = 0, the n

event occurs in the time interval (t,t+dt)]. Obviously, <f> (t) satisfy the

following recurrence:

t h

(t) -

We define further Q(n,t) as the probability that, given an event at time t = 0,

the interval (0,t) contains exactly n events. This is a probability

distribution in n \ \ Q(n,t) = 1 for all t- Note also that by this

n
definition, an event is assumed to have occurred at time t = 0 and the

semi-closed interval [0,t) actually contains (n+l) events.

By standard renewal arguments, it is easily found that

where

(17)

backward recurrence time function of the renewal process

Under the assumption of stationarity it may be shown that

and

where t h e L a p l a c e t r a n s f o r m of a f u n c t i o n f ( t ) i s d e f i n e d

fro =
Thus from (17)

(18)

We would like to mention in passing that if we adopt a slightly

different definition of R(n,t) as the probability that the interval (0,t)

contains exactly n events (note that in this definition the beginning and

ending time instants do not coincide with the occurrence of an event), then we

would have
17),18)

(19)

Here +j.(t) is the forward recurrence time function
.19)

and

where v, the mean rate of the renewal process, is given by

Thus from (19)

(20)
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The corresponding formula in I.U) may now be written (in the double Fourier-

Laplace transform domain) as

(21)

Further progress can be made in inverting the Fourier transform by noting

20)
that

and finally

>.u.V

u. + b S''

on using the result in (18). Or, if we use the result in (30} we would have

(22)

A result similar to (21) has been previously given by Montrolland West

It is interesting to note that for the special case of Poisson transitions

considered in the previous section, the interval pdf is of course exponential

with parameter (X = u)

X - >e K i o

Here $*(s) » A/U+s) and it is easily derived from both (21) and (22) that

The fact that for the Poisson transition case both P and P yield the

same expression is due to the."lack of memory" of the underlying exponential

pdf, in that the situations of starting with an event or at an arbitrary

ttoe are equivalent; other renewal processes would yield different results

in these cases.

On inverting the Laplace transform in (£3) we have

\

the same result we obtained previously.

We shall now consider the ease when o,(u) = cosu(implying a symmetric
21)superimposed walk) and note the inverse transform relation

l

where y » [1 - (l-z2)1/l£]/a . Thus (21) gives

(21*)

From (3) we have the double transform result

(25)

The expression in (25) then gives us explicitly the solution, in transform

form, of the probability distribution W(x,t) for the case of a symmetric

randomised random walk where transitions occur in renewal instants and

superimposed on an asymmetric random walk with structure factor a
Q(u) given

in (1).

The mean and second order moment can be readily obtained, abeit

labouriously from (25). Thus we find

-11-
-12-



(26)

For example, ¥hen **(s) = \/{\ + a ) , then

and standard Laplace inversion table gives

- M p. -V)
Writing (26) in the form

(2T)

and noting that **{s) -v 1 - p ' ^ + o(s'
: ) ^ s _ > 0 > a n d w e

By applying the Tauherian theorem of Hardy-Littelvood-Karamata 2 2 \ we see tha

as t —> >c

(29)

Thus, the time dependent mean is non-zero if the basic random valk is asymmetric.

Furthermore, i t may be shown that

/ £<fr

( 3 0 )

analogous arguments in arriving at (28), we find that

-13-

Thus, i t is seen that as t -»

(3D

It is rather interesting to note from (31) that the time-dependent

mean-square displacements of a particle undergoing randomised random walk on

a random walk critically depend on the bias in the step transition probabilities

of the basic random walk. The asymmetric case gives rise to a diffusion-like

long time behaviour while in the symmetric ease, a square-root law is predicted.

IV. CONCLUDING EEMAKKS

In this paper we have discussed the model proposed by Kehr and Kunter

concerning the random walk on a random walk in the case when the superimposed

random walk is randomised in time according to the occurrence of some stochastic

point processes. Certain generalizations are made with regard to the structure

of the basic and superimposed random walks in that unequal forward and backward

step transition probabilities are incorporated in one or both of the processes,

Iri the case when transitions in the superimposed random walk are randomised

in accordance with a Poisson process, fairly explicit results have been obtained.

In particular, from the closed form expressions for the moments we are able

to deduce quite simply their asymptotic behaviour which agrees :fith that given

by Kehr and Kunter using other means. Finally, the general case when transitions

take place according to a stationary renewal process is discussed where the

general solution of the probability W(x,t) has been obtained explicitly in

the transform domain for the case when the superimposed random walk is symmetric;

the basic random walk may be asymmetric.

Of particular interest is the conclusion that when the basic random

walk is symmetric the asymptotic behaviour for large time of mean-square

displacement is still given by

anmm-a m,.



where now u is the mean rate of the underlying renewal point process. How-

ever, if asymmetry is introduced into the basic random walk, one finds the

following asymptotic large-time behaviour

In analysing the phenomenon of self-diffusion in a one-dimensional lattice

gas, Kehr and Kunter have introduced a "correlated" random valk by modifying

the basic random walk so that the probabilities p for forward steps

and p for backward steps are different. These are related to the con-

centration c of particles via the relations p = 1 - c and p^ = c. This

is precisely the asymmetric basic random walk case ve discussed in Sec.III.

They have argued, on intuitive ground that properties in their correlated

•random-walk model are dedueible from those for the non-correlated (symmetric)

random valk model by the inclusion of a linear correlation factor

r =

Thus they suggest that asymptotic time-dependent mean-square displacement of

a particle performing continuous time random walk on the modified Uasic chain

is given by their Eqs.{U3), viz.

This, when compared with their Eq.(3^),is seen to oe of the same form except

for the scaling factor of f.

On the basis of the detailed analysis in the previous section and the

results enunciated in (29) and (31), we believe the above conclusion is in-

correct. A cursory look at the general solution in (25) would convince one

that the occurrence of the structure factor a
n(u) has substantially modified

the form of the solution and is definitely more than just introducing a

scaling correlation factor of the type proposed,
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