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ABSTRACT

This paper discusses generalizations of the model introduced by Kehr
and Kunter of the random walk of a particle on a cne-dimensionel chain which
in turn has been constructed by & rendom walk procedure, The superimposed
random welk is randomised in time according to the occurrences of a2 stochastic
point process, The probability of finding the partiele in & particular
position at & certain time instant is obtained explieitly in the trensform
domein, It is found that the asymptotic behaviour for large time of the mean-
asquare displacement of the particle depends critically on the assumed structure
of the basic random walk, giving & diffusion-like term for an asymmetric walk
or a sqQuare root law if the walk is symmetric. Many results are obtained in
cloged form for the Poisson process case, and these agree Wwith those given

previously by Kehr and Kunter,
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I, INTRODUCTION

The basic problem of random W2lKS has peen well discussed in the

classic text on probability theory of Feller L
2)-h)

Markov chains and stochastic processes . Applications of the theory

and in many modern texts on

of random walks to a wide range of physical problems have slso been extensively

51

documented in Barber and Ninham .

Recently Kehr and Kunter 6) introduced an interesting and novel model
of a random walk on a randem walk, In it, they consider the random wslk of &
particle on a linear chainvwhich does not extend uniformly in one direction,
but which in itself is constructed by another random welk formulation (see
Fig.l of their paper). In a way, we may picture this as a second random walk

superimposed on the path or folded chain of the first or basie random walk.

There are many physical situations which can be appropriately modelled
by random walk of a particle along random psths. As has been mentioned by
Kehr and Kunter 6), & reslistic example is afforded by imagining a partiele in
an amorphous substance which has a tendency to hop along an irregular path
more easily. The "reptation" of a polymer chain discussed by De Gennes 77,8)
where the diffusive motion of a polymer in a tube which is subject to randem

9)

particles which interact through Coulomb repulsion. He advances a model by

deformation is ancther example, Richards considered the hopping motion of
assuming that the repulsion is sufficiently strong to forbid two or more
particles from ocecupying the same lattice site, nearest-neighbour and longer-
range repulsions being neglected. Thus, essentially,the particles are assumed
non-interacting except for the exelusion requirement which only allows hops to
unoccupied sites. For any particular tagged particle in the linear chain,

as other neighbouring particles are allowed to move, it will experience a
fluctuating range of unoccupied sites to fill. This of course is a&kin to the
case of a random walk on a random walk. Of particular interest is the
prediction that the mean-square displacement satisfies the relation

{EY ) +1/? instead of the diffusion-like relation &x°Y(t)ecst for

non-interacting particles.

Tn Kehr and Kunter's discussions, both the basic and superimposed
random walks are assumed to be symmetric (equal forward 2nd backward transition
probabilities), homogenecus (constant transition probability from site to site)
and infinite(over the integers +» -2, =1, C, 1, 2,...). They initially
formulate the solution in discrete time where many basic properties of the

solution inciuding moments, approximate formulas for the probability density

-
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Wn{x) of finding a value x after n steps trensitlons via the standard
Gaussian approximation and the saddle point epproximation of Daniels.

Extensive numei-ical simulationshave been performed by them to confimm con-
clusions from their derivations. They later discuss rether briefly the
generalization of Yhe random walk on o random walk to continuous time for the
case when the steps of transitions take place at time instsants according to
a stationary Poisson process., The solution for the basic formula for W(x,t),
the probability of finding the particle in state x, is obtained in a double
Fourier-Laplace form, from which they deduce asymptotic behaviour of the moments
<xz>(t) and other physical guantities of interest such as the frequency-
dependent coefficient and the incoherent dynemic structure factor., They have
shown, smong other things, that the "ancmalous" square-root law for mean-sgquare
displacement is a natural consequence of the random walk on a random walk model,

in both discrete and contirucus tinme.

In this paper we shall look at the continuous time generalization
mentioned above (calling it randomiSed random walk following the terminology
of Feller 10)) in some detail and in a more general setting. We find that
generally most results are expressible in closed form. The asymptotic laws
for moments derived by Kehr and Kunter via Tauberien argumenis are easily
deduced from asymptotic behaviours of the sclutions in the time domain. Lastly,
the superposed randemiSed random walk is generalized allowing transitions to
occur according to a stationary renewal process. It is shown that the asymptotic
square-root law for mean-square displacement still holds true in this case
provided the basic random welk is symmetric, else a diffusion-like law (eg t)
will be in foree. It ia rather interesting that the model gives rise to two
types of asymptotic laws dependent on mssumptions on the parameter (the
transition probability rule) of the basic random walk.

II. RANDOMISED RANDOM WALK: POISSON PROCESS TRANSTTIONS

We assume that both the basic and superimposed random walks are

homogeneous and infinite but mey be asymmetrie. Let po(x) (pl(x)) be the

transition probability of the basic {superimposed) random walk, where pi(+l) =D,

Pi(-l) =9 and 0 £ P & 1 - 9 L1, i+ 0,1}, Define the corresponding
structure factor , Gi(u) , 0f the random walk as the Fourier transform of

pi(x), i=0,1, f.e.

3=

O—z(u} = E. JLY}"(I{,U?‘?‘ ‘(J‘.rrz}

= Ces w + {’(P[-GVL)S.Y\ LA._

For the basic random walk let Pu(x) be the probability of starting with

x = 0, and finding a value x after v steps. It i5 not hard to find an
explicit formule for P (x}, as is given in Ref.6 for the symmetric case of
Py = 99 = 1/2. For the superimposed random walk {in discrete time) the
Pn(u) is the probability of finding & particular value of v after n steps.
On account of the independence in transitionit is not hard to see that the

Fourier transform of Pv(x) is
~ ‘V‘
P (W= C ﬁ;(“)] (2)

with a similar formula for Pn(v).

For the randomised random walk on a random walk let P(v,t) be the
probability of the superimposed walk to be in "site" v at time t, and Wix,t)
the probabllity of eventuslly finding the particle which performs this
continuous time random walk to be at a value x at time t. By enumerating
all paths leading to the value x, we immediately have the equation given by

Kehr and Kunter
Wi, 1) = E; P, OB 3

When the transitions occur according to a Polisson process, P{v,t) can be very
simply derived using the following combinatorial arguments of Feller . For
the superimposed walk, the vth step leads to the position x » O iff among
the Tirst v trensitions (v + x)/2 are positive and (V-x)/2 negative. This

is impossible unless ¥ - x = 2k is even, 1In this case the probability of
k + 2x k+x x

the position x Just after the vth Jump is K+ x P9 - In the
Poisson process with parameter XA , the probability that up tc epoch t
exactly v = 2k + x jumps ocecur is ) exp(-it)/v! Kence for x > 0
) _ . = ar)KE K’t’-'-“-) Kex X
P(vt) = exp(2t) Z;;(K*L:ﬂ! ( cex J B0V

= axp(o3) rs’“ 1, («t) ()

T,




1l/2
vwhere B = pl/ql, a = 2 (plql) /

In(z) is the modified Bessel function of order n with imaginary

argument 11)

. Note that, since In(z) = I_n(x), the probability
dlstribution P(v,t} is defined for all v = 0, &1, &2,...

The fact that the Bessel functions sstisfy the Neumann identity 1.0)

I,Gax) = i Iimr K

implies that

P(Vjt*t) = i P(K}t)P(V'K)‘t>

Ku -vo

whieh is the Chapman-Kolmogorov equstion for a Merkov process. That P{v,t)
is Markovian enables us to obtain (4) as & solution to the following master

equation 12 ):

(349 Pos%) = AT, R) + APV, N PR - < vdon

subject to the initial condition P{v,0) = du o+ Solutions similar to (4)
3

have also been considered in comnection with particle kinetics and Ising

model 13),14)

Fram (2), (3) and {4), the Fourier transform of W{x,t) is given by

i PG, 0 o) i

Vs -co

W (1)

s b9{ £ (480 7,00l - 1,00}

Further reduction of the general expression in (5) does not seem possible,

We shsll, however, be able to discuss general properties of the solution on

the basie of it. It is obvious from (5) that since B = (pl/ql)l/'?,

)1/2 would yield the same expression, This means that in the

T =
8" = {qy/py
superimposed randomised rapdom wallk, Py and g, cen be interchanged

without affecting the probability W{x,t).

In the sequel, we shall be mainly interested in the case of az symmetrie
basic random walk (po =q, = 1/2}, and we rewrite (5) as

Qe g9 5 PN I s 0 - 1008,

15)

If we make use of the expansions
-
an- e
T 2w YALT .r( )
(e )™ = 2 {%’Z(K)um.(n ) .

n-y

CCQS w)ln-l 3 Z'zvs.-L 2 (7_\«:-\) Cos (’LV\,-?—““) w

Kz
and the fact that

(=738

h

wso

1) (a/au)( W (%)
it is easily shown after some algebra that for n = 1,2,...
(=" =0
N o - » lrn) ” .
(DO = 2o 2 [ (1)) EREINWIED)

(1)

In order to bring the solution in {7) to bear on Kehr and Kunter's results,
we shall first of all consider the special case for which 1 P 1/2,
corresponding ¢ a symmetric superimposed walk, In this case, 8 = 1 and

a =)} , and we have

pe o ) - T
<Izw> (:) = 4 v,;.‘;(-}t) 2 vl Ir(}«t) Z (“)(r-w() .
r=i K=o
For n=1and n = 2, we further note the identities
il -
S = e
K=g

and

Lri)

= (D = Grand”
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and therefore

LX) = L O i rT0%) = ;’-)\t[’-to(%t)fl.(’)\t):]
v (8)

=1
- hing p t |
w18 ?:@vl.lv) L% =t 1)k d (.00 I'(M](é)

The final results in (8} and (9) are arrived at with the help of the following

15),
recurrence relation 5) M

TG - L, 6) =G v3) 1.6) . (10)

From the followlng well-known asymptotic formula as t + o

L@ = ¢ e L6969 0™ w)

(v, <) = r‘(:ﬁ_«-vw)/(wl r‘(r/-,,«-d-\.()) , (V,0)= |

it is immediate from (8) and {9) that
Y
<1L>(t) g (th/ﬂ) (12)
414>(t) ~ 32K, (13)

The formula in (12) 18 given by Kehr and Kunter using Tauberian arguments.

The slight disagreement in the constant between (10) and their formuls (3h4)
arises from the fact that essentially their procedure corresponds to taking
Wix,t) = exp(-2it) Ix(zxt).

We note in passing that since 16)

T80 = (&4 § & s

=T~

The expression in (8) can alternately be expressed es

o
(M) = g <’ L)dy

The asymptotic behaviour of the moments is slightly more complicated if @ ¥ 1,

Congider, for exsmple, the second moment

(x>x) = 1L Q-jt Z r(?'r“‘ %Fr) 1r(°<t), (1)

On using (10), the first term can be written &s

L & 2 v B To(xt)
=i

G P PREEYORENCOREENC

1"

ot (P lat(es I ) LD F i)} )

16)

where we have made use of the results
o < B . l ‘}}
3= w365 3 (E, R)
J{u,v) =1 ~ - * e v I (2(w.v)l/2) dw,
end J{u,v e IO 0

16) that if

9 = (o™

It is further showm
? = ZC‘VLV')\IL

then for n<l, z/f small as E + = (which is the case in hand) we have

}: (V.’L_- LL‘h)L

T ~ wp (-Gl LD/,
From (15) we may then deduce that, as t + =
(xHE) ~ (at/2) w\a(-).t) [(QJ:{S‘) I, E)+ LI‘(K*-)] )

Finally, on using {11), we deduce that

-8~




. o, -
) ~ [ (B2 (3/m) /2 lampi (v etk
b ‘ (16}

For B =1 and hence a = A, the result in {16) of course reduces to that

given previously in (12).

II1. RANDOMISED RANDOM WALX: RENEWAL PROCESS TRANSITIONS

In this section we shall generalize the results obtained in the previous

section to the case when the superimposed random walk Is symmetric but with

transitions occurring according to a stationary renewal process.

Let ¢(t) be the interval probability density funetion {pdf) of the
renewal process and ¢n(t) be the pdf of the time at which the nth event
occurs., To be precise, ¢n(t) dt = Pr [given an event at time £ = 0, the ot
event occurs in the time interval (t,t+dt)]., Owbvicusly, ¢n(t) satisf{y the

following recurrence:

¢,(x) = 5
¢|(t) = ¢(t)

\

. t
tW= { 8.60d4@dr | nzd

We define further Q(n,t)} as the probability that, given an event at time t = O,
the interval (0,t) contains exactly n events. This is & probability
diagtribution in n Q(n,t) = 1! for all t. HNote also that by this

n
definition, an event is assumed to have ceccurred &t time + = O and the

semi-closed interval [0,t) actually contains (n+l) events.

By standard renewal arguments, it is easily found that

Q) (4lety (gl an

where ¢B(t) is the backward recurrence time function of the renewal process 1h

Under the assumpiion of stationarity it may be shown that

# (9= § bode

and

-9~

b‘ ()
5 ) =

where the Laplace transform of a function f{t) is defined as

M

£ g ;jt ®de

Thus from (17)
L) = L= ] /o ) (18)

We would like to mentlon in passing that if we adopt & slightly
different definition of R{n,t) as the probebility that the interval {0,t)}
contains exactly n events (note that in this definition the beginning and

ending time instants do not coincide with the occurrence of an event), then we

1
would have 7,18)

* £,
Ren - § e Chmatona | e

= | - ST & (£)dE (19)
(t) is the forward recurrence tize function ~° and
5 =y § b0
b ls) = wl- INOLVE

where 1y, the mean rate of the renewal process, is given by

e[ (ro0a]” - (e @]

Thus from (19)

R Gny )

Here ¢F

(L gl (4o o mz

2

"

v \*(_\-#ifs)']/sl' , W=o,

{20}

=10~
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The corresponding formula in (4) may now be written (in the double Fourier-

Laplace transform domein) as

Bl 'féo MNOHI N

L]

$ - K6 /- For a)] a1

n

on using the result in (18). Or, if we use the result in (20} we would have

B s = 2. fi(w.s)l—_o'.(u)ln

= ¢ - 51’["4’""-.\(-_" ﬁ“ﬂﬁ-“ oWl (22)

A result similar to {21} has been previously given by Mentrolland West 20}.

It is interesting to note that for the special case of Poisson transitions

considered in the previous section, the interval pdf is aof course exponential

with perameter (i = yu)
N
‘#(k):}‘q" 3 Kk zo
= Q , <o

Here ¢%*(s) = A/(i+s) and it 1s easily derived from both {21) and (22) that

'Ft’*Cu,s) = &PJIlCuis) = [S -+ X\ UTCM)]J\ ) ©3)

The fact that for tﬂe Poisson transition case both P and Pl yield the
same expression is due to the."lack of memory" of the underlying exponential
pdf, in that the situstions of starting with an event or at an arbitr;ry
time are equivalent; other renewal processes would yield different results

in these cases.

On inverting the Laplace transform in (23] we have

f’- (u.’t) = M‘:i—'}k[\- oS W =1 (p\-q/!) Sin u.,]} ‘

-1]=

Further progreas can be made in inverting the Fourier transform by noting

that 290
Toluw
‘zl& g_“ %u _w:tt’(ck S U+ b Iin u) A
( ' //‘ t 1-j/L -x/ Lot 'y
= Ux*do) (@ ] 1»(_(0&‘9) }
and finally

A \
068 = & (rfad o, (G

-~

the same result we cbtained previously.

We shall now consider the mase when ol(u) = cosulimplying a symmetric

superimposed walk) and note the inverse transform relation 21)

Ty - vt an-th
_Lﬁg ' l-.}‘*"“) du =47 (1Y)

where ¥y = [1 ~ (1-22)1/2]/2 . Thus (21) gives

Pl = [t ol - ]!
2SN e ) (2

From (3} we have the double transform result

W69 = T Paa sl

= L{"*’“’Y’ﬁ §'0 + a@i-(i-4 o]
S \+¢*ﬂ) 43‘(5) —G;(‘JL){_“‘L‘\- +*1(‘)]1/1_k ' (25)

The expression in (25) then gives us expliecitly the solution, in transform
form, of the probability distribution W(x,t) for the case of a symmetric
randomiSed random walk where transitions occur in renewel instants and
superimposed on an asymmetric randem welk withstructure factor co(u) given
in (1).

The mean and second order mament can be reedily obtained, sbeit

labouriously from {25)., Thus we find

=12=




(=NCs) = §° (Po-qm)cb*cs)/ﬁl- $” 1(:)]I/L_

(26}

For example, when ¢*(s) = A/(A + 8), then

{ x >*(s) = %( Po—,) s'a’l"Cerz))_‘/L

and standard Laplace inversion teble gives

LxDE =Ny o) Q\t [(\Jr 1) 1,08 + 10k I\(‘)‘k)]

Writing (26) in the form

%)
=6 = (G- : |
G’ ‘L) [ *4‘.)]11. S'd/a,[ - 4"(53] 7s (27)
and noting that ¢*{s) ~ 1 - p—ls + O(s?) as 5 =»0, and we have

(=Y ~ [(?nﬂ,)/z Ll (y‘/s‘)ﬁ_ {28}

By applying the Tauberian theorem of Hardy-Littelwood-Karamate 22) s, We see that

ag t — oo

, "
oM~ () () (29)

Thus, the time dependent mean is non-zero if the basic random walk is asymmetric.

Furthermore, it may be shown that

2\Froy _ $70s)
(=56 = s{L\-q(:)}[\+¢s)]_\S*Tz +

LGG'T/;)" 4’*(5\{1_ E|_ 4):41.6)]!/1. 'g
sfi- éﬁ(s)]{+*(5)H_[[_4“m],ﬂ3 . (30)

By analogous arguments in erriving at (28), we find that

-13~

Ui wa’ucr.‘ PRS-

B . & -»mnqmlm-um [H R F T R & NN

[

LA m
L)~ Tﬁ)—r(v.ﬂ\,) —E:

Thus, it is seen that as t —» o0

{xD{E) ~ (vg.—ov,)L }Lt  beq,

NENERT=0 .
™ <

bo=q,, (31)

It is rather interesting to note from (31) that the time-dependent
mean-square displacements of a particle undergoing randomised random walk on
a random walk critieally depend on the bias in the step transition probabilities
of the basic random walk. The asymmetriec case gives rise to a diffusion-like

long time behavicur while in the symmetric case, & square-root law is predicted,

v, CONCLUDING REMARKS

In this paper we have discussed the model proposed by Kehr and Kunter
concerning the random walk on a random walk in the case when the superimposed
random walk is randomised in time according t¢ the occurrence of some stochastic
point processes. Certaln generalizations are maede with regard ¢ the structure
of the basic and superimposed rendom waiks in that unequal forward and backward

step transition probsbilities are incorporated in one or both of the processes,

In the case when transitions in the superimposed random walk are randomised
in accordance with a Poisson process, fairly explieit results have been obtained.
In particular, from the closed form expressions for the moments we are smble
to deduce quite simply their asymptotic behaviour which agrees with that given
by Kehr and Kunter using other means. Finally, the general case when transitions
take place according toc a stationary renewsl process is discussed where the
general solution of the probability W(x,t) has been obtained explicitly in
the transform domain for the case when the superimposed random walk is symmetric;

the basic random walk may be asymmetric.

Of particulsr interest is the conclusion that when the basic random
walk is symmetric the asymptotic behaviour for large time of mean-square

displacement is still given by

~1h-



e~ (K

where now u is the mean rate of the underlying renewsal point process. How-
ever, if asymmetry is introduced into the basic random walk, cone finds the

fellowing asymptotic large-time behaviour

> ~ (i) (‘J%)VL

LD~ () pr,

In enalysing the phencmencn of self-diffusion in a cne-dimensional lattice
gas, Kehr and Kunter have introduced a "correlated" random walk by modifying
the basic random walk so that the probabilities Py for forward steps

and Py for backward steps are different. These are relsted to the con-
centration ¢ of particles via the reletions By = l1-c and B, = cC. This
is precisely the asymmetrie basic random walk case we discussed in Sec.III,
They have argued, on intuitive ground that properties in their correlated
‘random-walk model are deducible from those for the non-correleted (symmetrie)

randem welk model by the inclusion of a linear correlation factor

'F'_' 1+ P -~ by _\-e
1~ \’C-W\, B - *

Thus they suggest that asymptotic time-dependent mean-square displacement of
a particle performing continuous time random walk on the modified basic chain
is given by their Eqs.{43), viz.

r e\~
B

<~1}:>(k) - _E£%;52 (

This, vhen compared with their Eq.(34),is seen to be of the same form except
for the scaling factor of f.

On the basis of the detalled analysis in the previous section and the
results saunciasted in (29) and (31), we believe the sbove conclusion is in-
correct, A cursory lock at the genersl sclution in (25) would convince one
that the oceurrence of the struecture factor uc{u) has substantially modified
the form of the solution and is definitely more tham just introducing =

acaling correlation factor of the type proposed.
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