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ABSTRACT 
Contact problem are often encounteted in civil engineering applications and specially 

in nuclear piping systems : pipe whip, impact on supports in case of seismic analysis, non 
linear calculations of thermal expansions, etc... 

Host of the time, the geometrical non linearity of the contact problems is coupled with 
a material non linearity due to the nature of the contact associated with the state of the 
surfaces in contact. 

For the sake of simplicity, the classical Coulomb friction model has been assumed, 
which leads to frictional sliding when the tangential force modulus reaches a fraction of 
the normal compression force. 

In order to account for such a model in a beam type finite element program, a special 
element has been developped. It is formulated in terms of generalized stresses : axial forces 
and shear forces in two orthogonal directions. Below the sliding threshold, the element has 
only axial and shear elastic.rigidities in compression. When the sliding threshold is reached, 
a perfectly plastic behavior is assumed. 

The element can be used together with unilateral conditions for example in order to 
calculate the pipe whip impact on a structure. 

This element has been implemented in the piping analysis TEDEL program of the CEASEWT 
finite element System. 

In the second part of this paper, simple tests are presented. 
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1. INTRODUCTION 
The design of complete piping systems is often made on the basis of elastic behavior hy­

pothesis. However, it can be necessary to perform nonlinear analysis either due to the mate-
rial behavior (plastic or creep regime) or to the geometrical features of the line. For exam­
ple such problems are encountered in case of a pipe whip, since the pipe undergoes large dis­
placements and may impact a mechanical stop unit. A similar problem comes from the locking 
of snubbers in case of seismic analysis. 

Host of the time, material and geometrical *on linearities must be simultaneously ac­
counted for, as it is the case in contact problems, since the unilateral constraints are 
coupled with the material non linear properties associated with the nature of the contact. 

For these reasons, a special friction element has been developped and implemented in the 
nonlinear finite element program TEDEL of the CEASEHT system. / 9_// 10_7 

The main features of this program is to work with beam type elements and to use a glo­
bal plasticity approach /~1_7/*2_7/~3_7. 

In the present paper, the theoretical formulation of the element is first described ; 
then application examples »rt given. 

2. THEORY 
2.1 - Element description in elasticity 
The element is a two nodes straight element, with six degrees of freedom per node. 

An example of typical lay-out is shown on Figure 1. The element axis defines the vector nor­
mal to the sliding plane. The element possesses only axial and shear stiffness and has no 
bending and torsional stiffnesses. Thus, in local axis, the state of generalized stresses is 
defined by : 

- the axial force N 
- the shear forces T , T r. 
(see Figure 2). 
The corresponding strains ërt : 
- the longitudinal strain c 
- the shear strain y , y f 

They »rt computed by means of the local displacements u, v, w (see Figure 3) which ere 
assumed to vary linearly over the element : 

' du 

U j -

I 
Ul 

dx 
v» " Vl 

»y dx I 
HU *2 - wj dW "* 

'i dx I 
where v\, v\ are local displacements at note 1, and I is the lenght of the element. 
Two remarks can be made at this level : 

- Torsion has not been accounted for in the element, while It can be easily intro­
duced by meant of the torsional moment G and the corresponding strain 
Y * jjj* where •* 1s the axial, relation. 

- A more sophisticated element accounting for the end rotations can be made 
by using the following shear strains : 
V " dx " *i .../... 
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dw 
'* dx T y 

where • » * , are local rotations. 

The elastic stress-strain law of the element is therefore : 

{ a ) = M i ) = 

ES 0 O 

0 es 0 

0 0 GS 

Where S is the element cross-section and S y, S z are the shear reduced areas. 6 is 

the shear Modulus. 

2.2 - Friction properties 

A simple Coulomb friction law has been assumed for the element, that is sliding occurs 

in the y - * plane when the shear force modulus reaches the product 

f . I N I where f is the friction coefficient 

/ Ta • TJ 
Y * 

S f I N I 

with N < 0 

This is similar to the behavior of an elastic perfectly plastic material/ with a 

yield stress R depending of the parameter N. 

2.3 - Unilateral contact condition 
When the friction element is connected directly to the structure or when there is a 

gap as shown on Figure 4 , in both cases, the element has no stiffness when submitted to 

traction forces. 

This has been f i rs t accounted for in the element by setting N, T v , T z to iero and 

treating the prescribed element forces as residual forces for the next equilibrium iteration. 

However such a method may show bad convergence properties according to the ratio between the 

friction element and the structure stiffnesses. This is the reason why i t is more advisable 

to use a unilateral constraint technic C^JL^J which ensures the friction element to be 

only compressed. 

3. APPLICATION 

3.1 - Stactic example 

This f i rst example consists of a slab of length . Eight units, of unit thickness, 

made on an elastic material with a Young's modulus £ - 1 000 units of force per unit area 

and a Poisson's ratio v * 0.3 (£°"7_7). The slab is simply supported on one part of i ts bounda­

ry and subjected to a uniform pressure p acting through • fr ictional surface with a f r ic ­

tion coefficient f » 0.3 and also subjected to a prescribed compressive force at one of i ts 

ends as il lustrated on Figure 5. The analysis was done using 16 beam elements. The computed 

frictionnai forces for GS • W J M » . , n d 6 S " ^ûnits * r * , h o w n 1 n t n * f^W* * • T h e r * * * °* 
convergence can be small for high value of GS. 

The discrepency between the present results and the reference ones can be due on one 

hand to the numerical algorithm (use of elastic stiffness versus penalty method) and on the 

other hand on the difference of the shear modelization. (discrete versus continuous). 
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3.2 - Dynamic example 
This example deals with the free vibration of a spring with a Coulomb damping. The 

friction element is assumed to have the same stiffness as the spring. The dry friction force 
f,j has the same direction as the spring and is proportional to a constant weight N as shown 
on Figure 7. 

The friction force it opposite in direction to the velocity and remains constant until 
the velocity sign changes. There is then an elastic unloading followed by the sliding motion. 

The elastic phasis ia governed by the equation : 
• » • (kj • kj) x « k,x 

P 
where x p 1s the plastic displacement of the mass when the velocity sign changes. Then, 

the sliding phasis is governed by the equation : 
• i • ki x = - sign (*) F^ 
In our calculations, the motion starts from an i n i t i a l position x(0) = x D with a non 

zero x_. P 
The analytical solution, with k 2 = -, is given In / 8_/, and shown on Figure 8 in 

dashed lines. Here, the solution is slightly different since the cycle period as well, as 
the decay by cycle depends on kg. Moreover, the movement ends by a sinusoidal displacement 
of frequency f = 2D / r—. t •, while In the case kj = •• , it leads to some residual displace-
ment. 

The solution calculated by TEDEL compares exactly with the analytical solution (the 
two full lines are identical). It may be noticed that the linear decrease of the maximum dis­
placement is well reproduced. 
4. CONCLUSION 

An original friction finite element has been developped for the calculation of complete 
piping systems in statics or dynamics. The examples presented show that the main difficulty 
is the choice of a good elastic stiffness for these elements, since a too large stiffness 
may lead to numerical deterioration of the solution. The nethod used may be seen as a penalty 
technic. The Lagrange multipliers approach will be Investigated as an alternative. 
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Fig. 1 - Typical layout of the friction element 
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Fig. 4 - Friction element used together with unilateral constraint 
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Fig. 2 - Generalized stresses for friction element 
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Fig. 3 - Local displacements for friction element 
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Theoretical solution for k2=oo 

Analytical solution and TEDEL solution 
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Fig. 8 - Dynamic example 


