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"ABSTRACT
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Contact problems are often encounteted in civil engineering applications and specially
in nuclear piping systems : pipe whip, impact on supports in case of seismic analysis, non
Linear calculations of thermal expansions, etc...

Most of the time, the geometrical non linearity of the contact problens is coupled with
s material non linearity due to the nature of the contact sssociated with the state of the
surfaces in contact.

For the sake of simplicity, the classical Coulomb friction model has been assumed,
which teads to frictionsl stiding when the tangential force modulus reaches s fraction of
the normal compression force.

In order to account for such a model in a beam type finite element program, s special
element has been developped. It is formulated in terms of generalized stresses : axial forces
snd shear forces in two orthogonal directions, Below the sliding threshold, the element has
only axial and shear elastic.rigidities in compression. When the sliding threshold is reached,
» perfectly plastic behavior is assumed.

The element can be used together with unilateral conditions for example in order to
calculate the pipe whip impact on a structure.

This element has been implemented in the piping analysis TEDEL program of the CEASEMT
finite element system,

In the second part of this paper, simple tests are presented. ,
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1. INTRODUCTION

The design of complete piping systems is often made on the basis of elastic behavior hy-
pothesis. However, it can be necessary to perform nonlinesr analysis either due to the mate~
rial behavior (plastic or creep regime) or to the geometrical features of the Line. For exsm-
ple such problems are encountered in case of a pipe whip, since the pipe undergoes large dis-
placements and may impact a mechanical stop unit. A similar problem comes from the locking
of snubbers in case of seismic analysis.

Most of the time, material ond geometricel =on L(inssrities must be simuitsneously sc-
counted for, as it is the case in contact problems, since the unilatersl constraints are
coupled with the material non Linear properties associsted with the nature of the contact.

For thesereasons, & special friction element has been developped and implemented in the
nonlinear finite element program TEDEL of the CEASEMT system, [-9_7[-10_7

The main features of this program is to work with beam type elements and to use » glo—-
bal plasticity approsch /1 7172_7173_7.

In the present paper, the theoretical formulation of the element is first described ;
then application examples are given.

. THEOR

2.1 - Element description in elasticity

The element is a two nodes straight element, with six degrees of freedom per node.
An example of typical tay-out is shown on Figure 1. The element axis defines the vector nor-
mal to the sliding plane. The element possesses only axial and shear stiffness and has no
bending and torsional stiffnesses. Thus, in local axis, the state of generalized stresses is
defined by :

-~ the axial force N

= the shear forces Ty, Tye

(see Figure 2).

The corresponding strains are :

- the longitudinal strein ¢

= the shear strain Yyo Yy

They are computed by means of the local displacements u, v, w (see Figure 3) which are
assumed to vary linearly over the element :

du . u; * us
€= dx L
V2 = V
ﬂ 2 1
7y * dx L
W2 = W
y-i] —
Y; = dx *

where vi, wj sre local displacements at note 4, and L is the lenght of the element.
Two remarks can be made st this level :
= Torsion has not Leen accounted for in the element, while ft can be easily intro-
duced by means of the torsionsl moment 6 and the corresponding strain
Y, " 3&’ vhere ¥x s the axial. relation,

= A more sophisticated element accounting for the end rotations cen be made
by using the following shear strains :

veH- , veelues
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= 9
Y2 T dx * wy

vhere *y’ v, sre local rotations.
The etastic stress~strain law of the element is therefore :

N ES o o Cyx
{al= Ty =p{el)=}]o 65, o x{v,
Tz ° ° GSz T,

Where S is the element cross-section and 5,, S, are the shear reduced aress. 6 is
the shear modulus.

2.2 ~ Friction properties
A simple Coulomb friction Lau has been sssumed for the element, that is sliding occurs

in the y - z ptane when the shear force modulus reaches the product
f .| N| where f is the friction coefficient

j.e. /1;4»1% s f)N]

with N < O
This is similar to the behavior of an elastic perfectly plastic materisl, vith a
yield stress R depending of the parameter N.

2.3 ~ Unilateral contact condition

When the friction element is connected directly to the structure or when there is a
gap 8s shown on Figure &4, in both cases, the element has no stiffness when submitted to
traction forces.

This has been first accounted for in the element by setting N, Ty, Tz to zero and
treating the prescribed element forces as residual forces for the next equilibrium iteration,
However such a method may show bad convergence properties according to the ratio between the
friction element and the structure stiffnesses. This s the reason why it is more advissdle
to use a unilateral constraint technic / 5_7/ 6_7 which ensures the friction element to be
only compressed.

3, APPLICATION

3.1 ~ Stactic example .
This first example consists of » slab of Llength . Eight units, of unit thickness,

wade on an elastic materiol with s Young's modulus € = 1 000 units of force per unit ares

and 8 Poisson’s ratiov = 0.3 ([-7_7). The slab is simply supported on one part of its bounda~
ry and subjected to @ uniform pressure p scting through 8 frictionsl surface with & fric~
tion coefficient 1 = 0.3 and also subjected to » prescribed compressive force st one of its
ends a3 {llustrated on Figure 5. The analysis was done using 16 beam elements. The computed
frictionnal forces for G5 = 100 .. and 68 = 10}
convergence can be small for high value of GS.

nits 27¢ shown in the Figure 6. The rate of

The discrepency between the present results and the reference ones can be due on one
band to the numerical algorithm (use of elastic stiffness versus penalty method) and on the
other hand on the difference of the shear modelization. (discrete versuscontinuous).

Y
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3.2 - pynamic example

This example deals with the free vibration of a spring with a Coulomb damping. The
friction element is sassumed to have the same stiffness as the spring. The dry friction force
Fq has the same direction as the spring and is proportional to a constant weight N as shown
on Figure 7.

The friction force is opposite in direction to the velocity and remains constant until
the velocity sign changes. There is then an elastic unloading followed by the sliding motion.

The elastic phasis is governed by the eguation :

i+ k; +ky) xs l,xp

where X 4s the plastic displacement of the mass when the velocity sign changes. Then,
the sliding phasis is governed by the eguation :

ak4+k x == sign (D) Fy

In our calculations, the motion starts from an initial position x(0) = xg with a non
zero x,.

The analytical solution, with k; = =, is given in / 8_/, and shown on Figure 8 in
dashed Llines. Here, the solution is slightly different since the cycle period as well as
the decay by cycle depends on k. Moreover, the movement ends by a sinusoidal displacement
of frequency f = 211/;1—:—-.:, while in the case ky = » , it Leads to some residusl displace-
ment.

The solution calculated by TEDEL compares exactly with the analytical solution (the
two full Lines are identical). It may be noticed that the Linear decrease of the maximum dis-
placement is well reproduced.

3 CLU

An original friction finite element has been developped for the calculation of complete
piping systems in statics or dynamics. The examples presented show that the main difficulty
is the choice of » good elastic stiffness for these eléments, since s too large stiffness

may lead to numerical deterioration of the solution. The nethod used may be seen as » pensity
technic, The Lagrange multipliers approach will be investigated ss on alternative,
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Fig. 1 - Typical layout of the friction element
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Fig. & - Friction element used together with‘unilatéral constraint
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Fig. 2 - Generalized stresses for friction element

N

X

Fig. 3 - Local displacements for friction element
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Analytical solution and TEDEL solution
for ky=ky=1000

FEEEE IR INITIENEY

1011

SSBIBNINIRRENINRERI TN

—
=

06 08 1 12 16 16 18

Fig. 8 - Dynamic example
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