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SUIT:ARY

During the operation of nuclear plants, components
experience low-cycle fatigue due to thermal transients.
As is well-known, low-cycle fatigue is the condition
in which inelastic strain predominates. A good know-
ledge of the local strain range is therefore highly
desirable for low-cycle fatigue analysis. Since
current practice is to perform a linear elastic
analysis, results thus obtained must be corrected to
assess accurately the actual strain range.

There are two basic discrepancies between the plastic
behaviour of the material and the linear elastic model.
The first is the non-linear stress/strain relationship,
vhich mainly affects the strain range in the vicinity
of stress raisers. The second is that plastic de-
formation shows no change in volume. In other words,
the plastic POISSON's ratio (P.R.) is equal to 0.5 in
the plastic range, i.e., it has a higher value than
the elastic P.R.. This paper covers the corrective
action related to this absence of volume variation.

Current practice is to require that stresses be evalu~
ated on an elastic basis, although with a P.R. value
different from the elastic P.R. This procedure is
rather inconvenient, and seldom used. It appears
preferable to use an alternative rule requiring only
multiplying the computed equivalent elastic strain
range by a corrective factor which may de designated
as K

Under plane stress conditions (e.g., close to a wall),
the actual equivalent strain range can be computed

using an equivalent P.R., the value of which is obtained
from simple considerations.
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where bs is the secant modulus of the cyclic stress/
strain curve (at the actual strain range value) and
2yy are the elastic constants.

This permits deriving the corrective factor K,, and
plotting curves showing K 25 a function of the
elastic strain range (and the ratio of principal stva: ag
stresses) for & given material.

Elastic analysis is generally used to evaluate low-
cycle fatigue, Since the latter is dependent on actual
deformation conditions, two correction types are reguired.

During the operation of nuclear plants, components
experience low-cycle fatigue due to thermal transients.
As is well-known, low-cycle fatigue is the condition
in which inelastic strain predominates. A good know-
ledge of the local strain range is therefore highly
desirable for low-cycle fatigue analysis. Since
current practice is to perform a linear elastic
analysis, results thus obtained must be corrected to
assess accurately the actual strain range.

Calculations are based on the assumption that material

behaviour is fully elastic and linear. This method has

the advantages of simplicity and economy. It is also ,..-i%,'iye
Justified by the fact that selecting a suitable eharec-
teristie equation is difficult and often unreliable.

Unfortunately, strain variations obtained through
elastic analysis are not identical to the actual
variations which are required for evaluating low=-cycle
fatigue behaviour. Differences between these two
values of strain variations have two distinct origins,

The first is the non-linear stress/strain relationship
in the event of plastic behaviour., Because of this,
the actual strain variation is often larger than the
value computed assuming the material to be elastic and




linear. The magnification due to this non-linearity
is particularly noticeable in the vicinity of stress
raisers. Practical rules have been proposed in a
number of codes, e.g., ASME Section III (2), where
elastic analysis results must be multiplied by a
factor Ke. Although this eifect will not be discussed
here, readers are invited to refer to the article by
P. Petrequin et al. (1) for more detailed information.

The other origin is the fact that only elastic strain
causes volume changes in sound material. Plastic
strain produces no volume changes. Such changes are
directly related to the value of Poisson's ratio
(P.R.). If this value is 0.5, volume variation is nil,
which is the case of non-elastic deformation. For
linear, elastic deformation in most metals, P.R. is
close to 0.30, representing an appreciable change in
volume. A change in P.R: when plastic deformation
takes place may also amplify the strain variation.
Unlike the phenomenon discuss%d above, amplification
does not occur in the stress risers, but rather where L
the stress or strain field is bi~axial. Such is the. -*"°%°%>
case in a wall subjected to thermal stress. The object

( of this paper is the P.R. correction through a factor
designated as Ky to make a distinction between this
phenomenon and the former. Such a correction is
actually prescribed by the construction codes (1), (2)
in certain cases of fatigue analysis. It is generally
required that computations be performed using a nominal
P.R. (different from the physical value) which accounts
for stress cycle amplitude. Unfortunately, applying
this correction is not straightforward and it is
frequently omitted. This paper therefore aims at pre-
senting a more convenient method.

2. If fatigue resistance is dependent on the equivalent
veriation, a P.R, correction factor must be applied to
elastic analysis data.

Although fatigue testing is performed using mono-
axially loaded specimens, practical fatigue analysis
aften covers multi-exial load cases. The multi-axial
nature of the load is the reason for the P.R. correction.




Such an investigation reguires determining the in-
cidence of multi-axial strains on fatigue behaviour.
This is a complex problem which has been extensively
covered by Brovn (4) and liarloff (5). However, it
should be noted that workers in the field do not seem
to agree unanimously on a single general law. The
authors do not intend to discuss this point; the
octahedral strain amplitude law will therefore be
accepted as a good representation of physicalreality
as regards low cycle fatigue. This statement is in
agreement with common practice as mentioned in code
case Na7 (3). X
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Iz othor warms, 15 we know/::he variation A€ij of

every actual strain tensors we must subsequently agree
that the following relationship should be used to enter
the "design fatigue curves'":

2
Afea= \J( 5 A €13 + 2 Afxk)2 ) (D

Unfortunately, these actual variations remain unknowm
if computations have been based on the assumption
that material behaviour is elastic., The only known
quantity is the equivalent strain variation Af eq

calculated under elastic conditions. e

It can be readily be shown that, for an e¢lastic, isc-
tropic material (with Young's modulus E and Poisson's
ratioy, the following relationship holds:

Afeqe = & 13 AGea (2)

.S'I’rc:;c
vhere ) 0"eq., 1s the equivalent strain variation based
on the law of octshedral shear and given by:

AGeq., = \f(g*mé -3 (Gkk)2 ) (3)

(6ij 1is the elastic component of the stress tensor),




M

LI

loading 2ot
Q N

However, the above relationship is no longer valid

if the material, although isotrcpic, is not,/ fully
elastic and linesr. It reirains possible to. use a
similar relationship if the leed-considered remains
in the proportional & . 'To this end, one should
define two quantities £h_andy, such that the following
relationshiv holds at bcth ends of the loading cycle:

€ij = 140 Wi - ¥ 6k &ij (%)
"S 0‘ Eg

YWe may then write relationship (5), similar to (2),
in cases where the material is not fully elastic and
linear.

14V AGeq (5)

Lg

Afeq =

3l
It is spperent that Es must be the secant module taken
from the material cyclic curve at the considered
loading point. \ is the effective P.R., which is
equal to V in the elastic case, and tends toward 0.5
when behaviour is totally plastic (plastic deformation
entails no change in volume).

The value of effective P.R. v has a strong incidence
on fatigue analysis results, since for a given cyclic
strain, the value of Ateq (entered in the design
fatigue curves) may be highly dependent onit . It is
sufficient to consider a point where 4€11 = A€22 =
HAT, 8533 =0 and AE€12 = AE23 =0G13 =,4G32 = 0
(thermal stress with principal directions 1, 2 and 3).
Then:

Aéeq=% J._.:.‘;.I_i_o(AT (6)

It can readily be seen thet, if the material exhibits a
strongly plastic behaviour (with Yy close to 0.5) the
computed value of Af&eq is significantly greater thean
in the elastic case (y =V ). Haximum magnification is




3.

3 (1.-Y)

TV » i.e., approximately 1.61.

Yhen a wall experiences thermal shock, the strain
condition is dependent on the effective P.R., i.€.
on_the magnitude of plastic deformation, Ac%ual '

e ivalen% strain is Ky times that calculated under
elastic conditions. Factor K can be determined as
a_function of thermal deformation.

The value of maximum amplification (1.61) derived
through the above calculation is consistent with
published data. Finite element calculations performed
under inelastic conditions using the ANSYS code and
quoted by Severud (6) give similar results. The same
subject has been investigated by Gonyea (7) and

Houtman (8). A diagram as in figure 4 of (6) gives a
correction factor solely due to the incidence of the
effective P.R.. This therefore suggests that the
relevant correction should be applied through increasing
by a factor Ky the value of equivalent strain variation
as computed under elastic conditions. Further, it will
now be shown that the diagram which gives Ky can be
derived analytically from material properties and

loading characteristics.

It is advisable to begin with the simplest case, i.e.,
thermal shock at a wall not subjected to pressure.
This is the case of the example in the above paragraph.
Along the main directions, A €11 =8€22 =X AT and

AG33 = 0; the value of the third main deformation 4 £33

results from the relationship: ?,.&U-‘,A

0=AGH < Fs____ (T(AE+A6,)+ (-7)bEs3) (6) 5
| (1+3)(-27)

wh;i.ch gives A4 €33 = ANV < AT (7)
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a value hignly dependent on effective P.R. y3;
equivalent strain variation is:

Ae‘,,-_-%_ti_j__x AT (8)
-9

It is found again that, in the case of an elastic
material, the result would have been, as above:

Ay, - 2 13 Y X AT (9)
e 3 1~V

a value which is too low and must be mltiplied by
factor

Afeq (actual)

Afeqe (computed under elastic conditions)

vhich in this case is:

Ky = 1+ vV =Y (11)

I+y I-V

The effective P.R. value, designated as Y, is given by
relationship (12), established by Nadaf (9:

:)-:\)"Eé.—'A“l' O-S(l—%‘) (12)

Derivation of this relationship is given in the Appendix.
LS

In practical cases, the secant module cg associated with

equivalent strain amplitude XA T _ A ¢ can be found

on the material cyclic curve (figure 1). Effective
P.R. 'V can be computed using formula (12) and elastic

(10)
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values (E,'V). Ky is then found from formula (11),
and associated with XA T (9) and A€ eqge.

It is thus possible to pvlot z diagram giving Kx? as a
function of A E£eqe. This has been done (figurel )
in the case of a type 316 austenitic steel (at 28%),
the cyclic curve oi which is shown by figurej .

The above example illustrates the effect of P.R. .
The specific case investigated is that of a point in a
wall with no pressure applied, and where the only known
deformations are those in the plane of the wall. How-
ever, deformation A& 33 in the perpendicular direction
is derived from conditionAG33 = O, 1Its value is there-
fore directly dependent on material compressibility; it
is different if material behaviour is strongly plastic
(low compressibility) or fully elastic. In such cases,
the value of A £ 33% is dependent on material behaviour.
Hence correcting factor Ky.

“Then a free wall is subjected in its own plane to cyclic
bi-axial deformation, the actual equivalent cyclic strain
to be used in fatigure calcul ztions is eggﬁ to K# times
the equivalent strain variation computed under elastic
conditions. Factor }’.I is easily derived from the mater al

cyclic curve. ~ \

‘vn.a < (‘"
-y

In the example given earlier, strain values were the same
in all directions (thermal shock case). One might con-
sider more general cases in which the two medm-actual de-
formations AE11 and A £22 are not equal. The value of
deformation in the direction perpendicular to the plane
results from conditionAG 33 = 0, leading to

S(AEW +4€22) 4 (1-9)AE33 =0, hence
A€z = :_))_(Aﬁuwt.AEzz) (14)
I~V
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Introducing a change in notation defined by:

} — -y
A€|I - e;d P A&‘li:‘ czd ahJ/l—:‘ -—'-:—v—

where e and d are values o:f.)\expansion and distortion
respectively.

actval

Actual strain equivalent variation is

A€eq= L V(345 —if-:) (15)
3 /u‘

As above, if the material had been regarded as elastic,
identical results would have been obtained withy =V ,
giving a low value vhich must be miltiplied by factor
Ky to derive the actual value.

A Eeq (actual)

Kyg =
v A E ege (computed under elastic conditions)
therefore:
2 -1
Ky = L [( |+ 3 ('r /‘ )
2 | +3 §*p”
vhere

S o/ AC::—Aézz

= - (13)
e AEu +AE22

Effective values of P.R.§ and /& are derived from
Nadai's relationship through a ‘procedure similar to
that in the previous paragzraph. In the above formla,
it will be noted that ratio/«//z' is the value of factor

Ky i}'the case of a fully equi-axial deformation where
d = = Oa

Hased on the above considerations, a diagran can be
plotted, giving Ky a3 a function of e = A £11 + A £22

/
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d
J = @ for a material with known cyclic curve. This
requires :iaxing the assusntion that, under multi-axial
ccnaitions, tne cyclic curve can be plotted in the
AEecqg - AGeq nlane. The procedure is then the
following: for a given value of A£eq, one finds the
secant module of the cyclic curve, hence ESerom Nadai's
formula, and & . From values of y and y Ky is
found by forfula (15) and e by formula (15), written
as:

(16)
((1+35 %) 1

As in the above example, curves giving Ky as a function
of A &eqe and can be derived from the cyclic
curve of a type 5156 austenitic steel at 20°C; they are
shown by figures g and 5 resvectively.

4

Conclusion. Proposed rule

Since plastic deformation takes place with no change
in volume, the equivalent variation in deformation
relevant to fatigue analysis is greater than in the
elastic case.

Although certain codes ( (2), (3) ) recommend using
a nominal P.R. value in calculations, it appears more
convenient to apply a multiplying factor Ky to the
equivalent variation in deformation computed under
elastic conditions.

It has been shown that this factor Ky can be derived
analytically from the material cyclic curve. Diagrams
can be plotted, giving Ky as a function of changes in
deformation taking place in the plane of the wall.

This correcting factor Ky is independent from correction
Ke vhich applies to strain amplification in stress
raisers.
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APPENDIX -~ Determination of effective P.R. V

3y definition, effective P.R.V is given by formula:

MY 5o LG 84 (17)
Es Es
for an isotropic material. In this relationship, Eg

t~ is the secant modulé®tsken from the equivalent stress/
equivalent deformation curve,

6¢:J':

Since it is well known that plastic deformation occurs
with no change in volume, the only change in wvolume is
due to elastic deformation, and written as:

ﬂ = kk = ..l_ii_ ﬂk (13)
v £

where i is Young's modulus and V is the elastic P.R. of
the material. This therefore requires:

m

J-E'—s'--?-\-J = J ; 2 » hence the value of effective P.R.
£
—_— < En.
Y= + 05 (1= =) (19)

m l.(j

E
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