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Abstract

Energy Density Formalism calculations in semi-infinite
nuclear matter are performed. Analytical solution of the
Euler equation is given. Geometrical properties of the density
are studied. Surface and surface symmetry energies are calcula-
ted and simple compact formulae are given.

It is known that the surface symmetry energy £% plays an
important role in the determination of fissions barriers
heights, dipole resonance [1]strength and formation of the
neutron skin. However experimental uncertainties do not
allow even a rough estimate of this quantity. From experimen-
tal masses, one can only extract a correlation between volume
and surface symmetry energies, so that the values of E|
found in the literature lie in the range (-20, -160). On the
other hand the theoretical calculation of EJ is not accurate :
with the same interaction, the results oan vary by 50 % [2].
Besides the Droplet Model [2] two methods have been exploited
i) a fitting procedure on calculated masses using an Extended
Thomas Fermi (E.T.F.) calculation [*], ii) a direct H.F. cal-
culation in the semi-infinite nuclear natter (SINM) [2,5].
The method proposed here combines both advantages : it gives
directly £* through a self-consistent ETF calculation in SINM.

In the first part we study the SINM (N = Z).Exact integra-
tion of the Euler equation allows a detailed investigation of
the nuclear surface shape which is shown to be poorly repre-
sented by the usual Fermi shape [6]. We mention some consequen-
ces of this departure in the analysis of actual nuclei.
We then calculate the surface energy %i . Finally we generalize
the method to the asymmetric case N jt Z. Analytical formulae
are proposed for i& and t\ .

1. On the shape of the surface

a) Case of SINM

When using Skyrme forces and an ETF approximation for the
kinetic energy density T , the total hamiltonian density
yC has the form
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is the coefficient of the Weiszacker term in T
a constant. The corresponding Euler equation

where j
and it is
can be integrated once and gives

where

f
is the separation energy at saturation density p

A cubic expansion of h( P ) around f is a good approxi-
mation for all commonly used interactions :

where K is the nuclear incompressibility modulus and [ c | is
found smaller than 0.2.

Inserting (3) into (2), another quadrature can be perfor-
med analytically [8], giving x as a function of P . This func-
tion can be inverted in the two asymptotic regions, namely :

., B,, i and a are i
lent a^is given by :

C
- 9£

4.a)

determined by the interaction. The coeffi-

V K ^«- 'ft.) (5)

and $ is found in the range (2 »v 4)-, according to the Inter-
action and the value of (S . We can then define an internal
diffuseness a^n given by Eq.(5) and an "external" diffuseness
a . = a. /0 . The first quantity is mainly governed by K
wnereas trie second one by A • There is no physical reason why
they should be equal, and indeed they are not. However one
assumes a, = a - (i.e. 0 =1) when parametrizing the density
with a Fermi distribution. In order to preserve the simplicity
of the latter while keeping somehow the asymptotic behaviour
as given by Eqs.CO, we strongly favor the use of a 0 -power
of a Fermi distribution, hereafter labelled (F-vv) when geome-
trical properties of the density are involved. In Ref.[9]
are derived analytical expressions for the various momenta of
(F-v) in powers of a/R.

b) Case of finite nuclei

In this case one cannot integrate analytically the Euler
equation. Nevertheless the above considerations suggest the
use of F-\) distributions as

(6)
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where f , R, a and 9 are mass-dependent. For actual nuclei
(N t Z ai?d Coulomb foroe) the landscape is more intricated, but
two remarks are in order i) people using a folding model
for the real part of the optical potential have already
introduced (F- $ ) distributions with v1 = 2.65 in order
to fit the data [10] ID when fitting ETF or H.F. densities
with F- i distributions, one gets a better j£ * with 0 = 2 or 3.

Let us briefly discuss two examples where the dissymmetry
of the surface shape around inflexion point Is significant.
i) When fitting H.F. or ETF densities (N = Z, no Coulomb) with
F-1 distribution for A going frcm 16 to 208, one obtains a
10-15 % variation of the surface thickness. But the same
effect is obtained when fitting (F-2) distributions with cons-
tant 10-90 % distance (and increasing normalization) with (F-1)
distributions. The conclusion is that a fitting procedure with
(F-1) distributions can lead to spurious effect in the deter-
mination of the surface thickness.

ii) The O.M. predicts a larger value of *(o) in finite nu-
cleus as compared to p . ̂ elf-consistent ETF calculations
confirm the D.M. predictions. . However in a recent paper [11],
Pearson argues that from H.F. calculations one has P (°)<fnm-
We think that part of the discrepancy between the D.M. Sffd
Ref.[11] is due to the fact that Pearson uses (F-1) distribu-
tions to get ride of the shell oscillations in the interior.
Fig.1 indicates what happens when (F-2.5) distribution are

FIG 1 : Plot of (l')-f«»- as a function of A"1'3 (N=Z, no Coulomb)

In fact, for A < 100, the constant density approximation of
the Droplet Model breaks down, and an exponential term
ru exp(- & A ' ) can be shown to reduce significantly

31 the compression.

used, instead of (F-1). For v = 1 one recovers the Pearson
results, but for 0 = 2.5 one recovers on the average the cen-
tral compression. Smooth curves show respectively O.M. and
various corrections, broken curves show the fit to HF density
using F- V distributions. The importance of the filling
of s and p shells is striking as can be seen in Fig.1.

Although the experimental densities do not oscillate as
much as H.F. ones, the above discussion proves that great care
must be taken when extracting a central density to be compared
to the DM one.

2. Surface energy of SINH

a) N = Z

The surface energy g, and the surface tension <r^ are
defined as follows :

?{)- \*(]tr (9)

Use of Eq.(2) proves that the contributions of the volume and
gradient terms are equal. So one can write

where the last integral does not require the knowledge of
p (r) [7]. Using the cubic expansion (3) one obtains an

explicit formula for cr .
r nm

An alternative procedure is t
tional calculation using a (F- J
density. One then obtains

perform a restricted varia-
) parametrization of the

(ID

which agrees very closely to the results of Eq.dO). With the
choice (1 = 4fit we reproduce for all Skyrme forces the H.F.
results within b %. We will now generalize the method to the
case N i I.

b) N

£ , which n
defined as in Eq.(9)

which now depends on the asymmetry I = ^-jr, is
hNZ
A

"T.-fffJ-- ( 1 2 )

where « = L" ~ i* and i and <* are the chemical poten-
tials for neOtrSfis and protons. iR Ref.[15] is presented a
restricted variational calculation of <T(I) using F-V distri-



butions for neutrons and protons. We shall derive here a
simple yet accurate expression for the surface symmetry
energy.

As in the symmetrical case one can integrate once the two
coupled Euler equations for a and f . One gets :

where h( o , & ) is the volume term of ft , which we write

In Eq.(1<0 £ ( p) is the volume part of symmetry poten-
tial. It can be expanded as

£ n m is the symmetry energy of nuclear matter, L =

On the other1" hand", from the mass formula one has :

(16.a)

(16.b)

Using Eqs.<13), (1*) and (16) in Eq.(12) one gets :

7/7f'V>-
The first integral is equal to CT * &•(! ) despite the fact
that f (-••) is no longer equal to p m : it is known that
<T is stationary around p [3].nm v nm

If we define the surface symmetry tension (T

one has

(18)

Formula (18) is exact within the Energy Density Formalism
(EOF). (It will probably give reasonable results when using
H.F. densities, but we did not check it). However it requires
the knowledge of the function S(r). We shall see that the
approximation S = I in Eq.(18) leads to a rapid and fair
estimate of . Notice that this approximation should
not be made directly in Eq.(12), because one would loose
the contributions of the terms In VS , i.e. rJ half of

With this approximation Eq.(18) becomes

(19)

which nicely exhibits the origin of 0, : the surface symmetry
tension appears as the average of the defect of the symmetry
potential with respect to its nuclear matter value. This
defect is plot in Fig.2 and one understands why (T of S-V
is three times greater than of S-III.

rt-.v l

FIG 2 : < ! ( * ) - £ ,n m i s plotted as function of f IP for
S-III and S-V force*. 39



One can further simplify Eq.(19) by i) taking the expan-
sion (15) for £ (p ) ii) using a F- 1 parametrization for p .
If one writes * *• v

One gets finally

(20)

Table (I) compares results given by Eqs.(18), (20) and
other calculations available.

TABLE I : Values of - £ for various Skyrme and finite range forces

Eq.(20)

Ref.[15]

Refs.[2,
(5D

Refs.[14,
(43

SII

54

56

60

85

SIII

31

30

34

47 (35)

SIV

57

66

57

105

SV

77

99

84

SVI

22

20

26

38

SkM

52

56

(46)

D1[12] Blt13]

39 133

(38)

If one excepts the values of Ref.[14], which are obtained
through a fitting procedure to calculated masses and therefore
probably less accurate, an overall agreement between the
different approaches ( <v20 %) is obtained.

Concluding remarks

The major interest of the method sketched here (see
Refs.[15,16] for a more systematic development) when comparing
to the others is that it gives rise to analytical formulae for
macroscopic properties of interactions to be used in microsco-
pic calculations. The method may facilitate the process
of improving the existing effective interactions, incorpora-
ting more experimental information on static and dynamic
properties.
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