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The motivation to set up a theory to treat the multidimensional quantum

tunneling problem need notbe restricted to nuclear physics. The problem of

vacuum tunneling in gauge field theories as well as the tunneling of magne-

tic flux in solids have been treated within the framework of the path

integral formalism. One advantage of this formalism is that the explicit

introduction of wave function can be avoided. In nuclear physics there are

mainly two problems for which quantum tunneling is important: spontaneous

fission and subbarrier fusion. In the firs' case, one could use the path

integral formalism to describe the decay width of the fissioning state, but

for the second, the explicit introduction of the wave function is

unavoidable, as well as for any scattering problem.

We propose a method to obtain a multidimensional WKB like wave function

(1), which is less general than the method of Gervais and Sakita (2), but

better adaoted for physical applications.

The presentation of the theory as well as its application to the

tunneling problem will be developed below, as well as some preliminary

results on the modification of the transmission coefficient of a parabolic

barrier due to the presence of other degrees of freedom. The details of the

derivations and the justification of approximations are given in (1).

II. Presentation of the Method

In this section, we aim at finding an approximate solution to the time

independent Schrodinger equation associated with the following hamiltonian

H • ~MT^^

The coupling could have a more general form

without changing the argument.

We write the wave function of our problem as

where 6 = 1 1 . in a classically allowed region and «=ii in a classically

forbidden region. The wave function (II-2) satisfies the Schrodinger

equation H*=Ef i f W and \ satisfy

£

where (II-5)
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In a more general trial wave function.M would depend on y-A as well as on

q. Me prefer the form (II-2) because it leads to simple results and a

transparent physical interpretation.

The solution of eq. (11-31 is

(II-6)

The next step to simplify eq. ( I I -4 ) is to introduce a new variable

which replaces the variable q in the following way

(H-7)

so that

We also put q6 = X

and then eq. (II-4) can be rewritten as

(II-9)

III. The Tunneling Problem

Let us assume (with no loss of generality) that the collective co-

ordinate q is coupled to one coordinate x- Furthermore if one takes the

potential to be of the form

V(q) = i l (III-l)

and take it to be V(q) = i H u>a q
2 for q = 0, one can then write the wave

function of the lowest stationary state in the potential pocket as

(0 < q < qo)

+ (q,x) = !L <|,0(q) exp { -±
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The term proportional to "3 v ^ ) nas been neglected, this is the

approximation m de in our method. Its conditions of validity are discussed

in sec-do^ £ «f (1) .

G(5) =^. (!

and

( ^
dq
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which is the BKH wave function for the barrierV(q) in the absence of the

coupling.

and

The corresponding decay width is givewn by

r = r0 (JL)2 exp(S(u>))
No

(111-7)

when To is the width calculated in the absence of coupling and the

function G(u/) given by

G(u) = - S i - J dfe J d5 v exp[-a)|S-S'|] q(s) q{s')

It is possible to show the following inequality (1)

ro < r < r a d

wher r ^ is the width associated with the adiabetic potetnial. This

inequality can be proven for any form of the coupling hamiltonian.

III-l Interpretation of the results in the limit <o»wo

In this limit, the function I( )(eq.IIl-5) can be expanded as follows

1(6) = 1 q(-s) -!_ q(t) +

also

q(») -

mfi o)
S')d5" - \ J

These two terms in the expansion of G(3) represent a potential

normalization and a mass renormalization, respectively, and can be

incorporated in <K)(q) (eq I I I - 6 ) provided one defines an adiabatic

potential and a renormaiized mass in the following manner

= V(q) - - ^ - q 2 (III-8)
2mu>

M* = H + — (IH-9)

In this limit (u»>ua) the wave function can then be written as

2b2 m2
(111-10)

eff 4
W (q) = / / 2M* V^ (q1) dq'

In order to understand the term involving x i n eq (111-10). we make a

variable tansformation

x = y q

and write the hamiltonian in the new variable

H--iSi
Zh\ aq -4

2m 32 m Bq3y

Thos transformation eliminates the coupling term c q from the hamiltonian

and it is replaced by a momentum dependent coupling. In the adiabatic 111



approximation this coupling can be neglected and the wave function can be

written

* = N^ o
e f f (q) exp{-i- y2)

2b2

which agrees with eq. (111-10) showing that the mean position of the wave

pacKt+for fixed q follows the adiabatic path y = 0.

A similar result holds for the decay width, namely, the effect of the

coupling between the q and x variables can be taken into account by replac-

ing V(q) by the adiabatic potential V^j(q) and M by M* appropriate for

the adiabatic path in the limit for large u.

r - (!L)2 r0
No

eff

111-2 A generalization of the Bohr-Wheeler formula

This method can also be applied to study the modification in the

transmission coefficient of barriers, due to the p ence of other degrees

of freedom. In the case of parabolic barrier, one can obtain analytical

results for any value of the ratio — (3) . TVe r«v£t Cm +Kt W<^
u o

T = To exp
n|E-Vo|c2

2m H u2itio
(111-11)
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where V , <oo and H are defined by the collective potential

V(q) = Vo -

2n|E-V0|
To = exp [ - -4 1]

•TltiJO

In order to interpret the result, let us recall again the potential

energy ofourproblem

q,*) = V(q) + j n w V + cqx (111-12) (

In the limit when <u>»wo, the % degree of freedom will follow the

"adiabatic path", or it will adjust itself to the q motion according to the

following condition

a W(q,x) = 0

3x

which gives

Inserting this average x-value in eq. (111-19), we get an effective

potential given by

Weff(q,x) = V(q) cq(-H_)

Vo - I M q2 (to2 + X - ^ ) = Vo - I H Si^ q2

2 Vim
(111-13)



We see from this equation that the effect of the coupling in this case,

is to make the barrier thinner and therefore the transmission coefficient

w i l l be enhanced. This effect might help us understand the too large exper-

imental sub-barrier fusion cross sections , which cannot be systemati-

cal ly reproduced by one dimensional potetnials.

I f one would calculate the transmission coefficient for this new

barr ier , one would get the Bohr-Wheeler formula with the corresponding

renormalized frequencyu/o":

I f , furthermore, one assumes

2 2 <« 1

one gets

T = T0

2mMa>

a result which is identical to eq. (III-ll)
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