
- 147 -

P R O G R A M M I N G L A N G U A G E S A N D S U P P O R T E N V I R O N M E N T S

J. N . B u x t o n

U n i v e r s i t y o f W a r w i c k , U n i t e d K i n g d o m

The Concept of Scope

T h e s t a r t i n g p o i n t f o r t h i s c o n s i d e r a t i o n o f p r o g r a m m i n g l a n g u a g e c o n c e p t s

i s t o l o o k at t w o b a s i c a n d e a r l y m o d e l s o f l a n g u a g e - F o r t r a n a n d A l g o l

6 0 . T h e s e a r e l a n g u a g e s o f c e n t r a l h i s t o r i c a l i m p o r t a n c e : F o r t r a n h a s b e e n

a m a j o r l a n g u a g e s i n c e 1 9 5 7 a n d i s s t i l l t h e m o s t w i d e l y u s e d l a n g u a g e f o r

s c i e n t i f i c p r o c e s s i n g a n d A l g o l i s a d i r e c t a n c e s t o r o f l a n g u a g e s s u c h a s

P a s c a l a n d A d a .

T h e s c o p e o f t h e d e f i n i t i o n o f a n a m e d o b j e c t i n a p r o g r a m , s u c h a s a v a r i ­

a b l e , c a n b e s i m p l y d e f i n e d a s t h e a r e a of t h e p r o g r a m t e x t i n w h i c h t h a t

o b j e c t m a y b e r e f e r e n c e d a n d i n w h i c h t h a t n a m e i s v a l i d . I n v e r y e a r l y

l a n g u a g e s s c o p e w a s n o r m a l l y u n i v e r s a l ; t h a t i s , a l l d e f i n i t i o n s w e r e v a l i d

t h r o u g h o u t t h e p r o g r a m .

T h e f i r s t b i g s t e p w a s t h e i n t r o d u c t i o n o f C O M M O N i n F o r t r a n I I . E a r l y F o r ­

t r a n c o m p i l e r s w e r e p r o h i b i t i v e l y s l o w a n d t h i s l e d t o p r e s s u r e f o r t h e s e ­

p a r a t e c o m p i l a t i o n o f p r o g r a m s e c t i o n s t o a v o i d u n n e c e s s a r y a n d l e n g t h y r e -

c o m p i l a t i o n . C o m m u n i c a t i o n b e t w e e n s u c h s e c t i o n s w a s p r o v i d e d i n F o r t r a n I I

i n t w o w a y s . C o n t r o l t r a n s f e r s a n d p a r a m e t e r s w e r e h a n d l e d e s s e n t i a l l y b y

t a g g i n g r e l e v a n t n a m e s a s E X T E R N A L a n d b y a l i n k a g e l o a d e r s y s t e m . D a t a r e ­

f e r e n c e s w e r e h a n d l e d b y g r o u p i n g d a t a i n t o C O M M O N a r e a s w h o s e c o n s t i t u e n t

d e f i n i t i o n s w e r e k n o w n t h r o u g h o u t t h e p r o g r a m . T h e F o r t r a n m o d e l o f s c o p e

i s e s s e n t i a l l y a t w o - l e v e l s y s t e m o f C O M M O N o r g l o b a l n a m e s a n d " w i t h i n -

s u b r o u t i n e " o r l o c a l o n e s . T h i s h a s r e m a i n e d e s s e n t i a l l y u n c h a n g e d f o r o v e r

t w e n t y y e a r s , t h o u g h w i t h s o m e a d d e d f l e x i b i l i t y i n t h e i n t r o d u c t i o n o f

m u l t i p l e n a m e d c o m m o n a r e a s i n m o r e r e c e n t F o r t r a n s . It g i v e s a d i r e c t a n d

p r a c t i c a l s o l u t i o n t o t h e r e q u i r e m e n t f o r s e p a r a b l e c o m p i l a t i o n o f l a r g e

p r o g r a m s .

T h e A l g o l 6 0 m o d e l i s m a r k e d l y d i f f e r e n t . A p r o g r a m is d i v i d e d i n t o b l o c k s

a n d b l o c k s m a y b e n e s t e d w i t h i n o t h e r b l o c k s t o a n y d e p t h . A n y b l o c k m a y

c o n t a i n d e f i n i t i o n s w h i c h a r e l o c a l t o it a n d v a l i d w i t h i n i t . I n g e n e r a l ,

t h e d e f i n i t i o n s o f s u r r o u n d i n g o r g l o b a l b l o c k s a r e a l s o v a l i d w h e r e a s d e ­

f i n i t i o n s w i t h i n i n n e r b l o c k s a r e i n a c c e s s i b l e . T h e p o s s i b i l i t y c l e a r l y e x ­

i s t s o f r e d e f i n i t i o n o f a n a m e w i t h i n a n i n n e r b l o c k - i n t h i s c a s e , w i t h i n

a n y b l o c k t h e " n e a r e s t " o r m o s t l o c a l d e f i n i t i o n i s v a l i d a n d i s r e g a r d e d

a s s h i e l d i n g a n y m o r e r e m o t e d e f i n i t i o n s u s i n g t h e s a m e n a m e .

- 148 -

The basically hierarchical view of a program as a nested structure of as
many levels as necessary in depth fits very well with the view, that hier­
archical decomposition is probably the only satisfactory way to order com­
plexity. This point of view is very widely adopted by computer scientists.
It does, however, lead to the serious practical difficulty that it is dif­
ficult to implement the requirement for program modularity through to the
stage of separable compilation.
Furthermore, the design of data-flow oriented programs do not usually map
easily or very naturally onto hierarchical structures and neither do pro­
blems exhibiting some forms of concurrency or with real time-dependent re­
quirements. Another and less disturbing problem is that essentially low-le­
vel and detailed activities, typically implemented as commonly available
subroutines, "float upwards" in the nested hierarchy so they are generally
accessible throughout the program.

Substantial developments in the concept of scope have taken place on these
early foundations, generally aimed at combining the best features of the
practical simplicity of Fortran with the intellectual appeal of Algol. An
important step in this development took place a decade or so ago with the
introduction of specific lists of names to be declared as non-local to
their defining module and hence accessible from elsewhere, together with
corresponding lists of names defined elsewhere but required by a user modu­
le. The import-export list concept and other similar ideas are extensions
of the EXTERNAL linkages in Fortran and allow highly specific control over
visibility. This approach leads to network-like structures of program modu­
le linkages and interconnections, as contrasted to the simple two-level
world of Fortran and the elegant hierarchical nesting of Algol.

A further and helpful step has been the introduction of name qualification
to avoid ambiguities; usually by a dotted notation. If a name X is defined
in two modules A and B, then in areas of the program where the meaning of X
alone is ambiguous this can be resolved by using A.X or B.X as appropriate.

C o n c e p t s o f T y p e

The second central concept we wish to discuss in this note is that of type.
In the early languages, the concept was not clearly appreciated; the type
of a variable was just a formalisation of what was representable and mani-
pulable on the computer in question. Thus, the "basic types" generally
available were integers, floating point numbers and so on and the opera­
tions available were those on the implementing machine.

- 149 -

This intuitive approach to type has now been replaced by clearer concepts.
We now speak of a type as comprising:
(a) a range of values, represented in some internal and concealed way and
(b) a range of operations on these values which are useful and "safe",

that is, they do not produce illegal results.

Clearly the use of types bears directly on the possible correctness of pro­
grams. If the variables of a program are partitioned into types, then ille­
gal use of operators on operands of the wrong type can in principle be de­
tected with consequent reductions in programming errors. The existence of a
very few built-in types only in a language implies that this partitioning
can only be at a very coarse level and this has motivated in more recent
languages a search for ways to enable finer divisions into types.

The approach adopted is to allow, in various ways, the user to define his
own types which can be tailored to best express the particular problem be­
ing addressed. The first steps in this direction were to introduce increa­
singly flexible data structures; arrays at first and then records, with
components of already existing types. The language designs of the 1960's
display many attempts to develop satisfactorily flexible and unified array
and record structures.

More recently language designers have addressed the problem of allowing the
user to introduce new types in more fundamental ways. We note two ideas
which were both to some extent pioneered in Pascal: subrange types and enu­
merated types.The first of these presents no major conceptual difficulty:
the user can introduce new "types" which share the representations and the
operators of another and more basic type but which have fewer possible
values, thus:
type shortinteger = integer (1.. . 1 0 0) ;
variable a, b: shortinteger;
Variables of this new type can clearly hold values between 1 and 100 and
have the other properties of integers.
Enumerated types are more confusing in nature in that the user here can in­
troduce new "names" as. data objects:
type colour = (red, yellow, blue, green);
variable paint, light : colour;
A confusion which can arise is that the name "red" is an internal, data
item; when first introduced in Pascal., for example, such a name could not
be read or written as data. A name which is a member of an enumerated type
list is a different sort of name from objects with which the programmer is
familiar, such as variable or procedure names,.

- 150 -

At the stage of language development typified by Pascal it is possible to
move some way towards the idea of allowing the programmer to introduce new,
e.g. structured, types together with operations upon them, though the lat­
ter may have to be described as procedures or functions. A simple and
often-quoted example in Pascal is that of a rudimentary system for complex
arithemetic which could be sketched as:
type complex = record

realpt: real, import: real
end

var A, B, C : complex jjinstances of the "type"

definition
or "template"

proc Addcomp (i, j : complex;
begin

an "operator"

end

This indeed enables us to provide objects of a user-defined type and to
specify operations on values of the type. However, we have not succeeded in
producing a fully satisfactory new type because we have failed to achieve
safety in the representation. The programmer could accidently or delibera­
tely use values of type "complex" for other purposes than those intended
including, for example, accessing the components (or record fields) direct­
ly. The security of such a system depends only on convention, and there is
no way analogous to type-matching with built-in types to ensure that only
the appropriate operations are performed on these data items.

We are of course moving towards the modern concept of "abstract data ty­
pes". The idea here is that a programmer should be able to specify new and
perhaps quite complex classes of object in his program, together with
appropriate operations, so as best to model his problem.
We repeat that the requirement is for language mechanisms such that:
(a) A type definition (or "template") can be made and instances of that

type can be introduced,
(b) Operations on that type can be specified and their application can be

checked by the supporting software, and
(c) The internal security of the representation of instances of such a type

can be guaranteed.

To provide further examples we will consider the most popular source of ex­
amples of abstract data types - the stack. In a simple language we might
write a "stack package" along the following lines:

- 151 -

begin
MAX : constant : = 100;

S : array (1 ... MAX) of integer
TOP : (0 ... MAX)
procedure PUSH (X : integer) is
begin
TOP : = TOP + 1;
S(TOP) : = X
end

the maximum length
so, we can only stack integers,
i.e. a subrange definition
an "operator"

(ommitting tests for
overflow etc.)

We have now the following problems:
(a) There is no way to access PUSH without also being able to access S and

TOP, so the representation is not secure.
(b) We would really like to parameterise the length of the "stack type".
(c) And even also the type stacked
(d) And there is no initialisation mechanism for a new stack.

To proceed further towards a solution it will be necessary to return to
consideration of questions of scope and visibility of names in a program in
order to achieve security of representations.
The most widely available current approach to abstract data types is found
in the Ada language. We use the stack example and Ada-like notation to il­
lustrate the visibility control:
package STACK is

procedure PUSH (X : integer):
function POP return integer;

end STACK

package body STACK is
MAX : constant: = 100,
S : array (1 ... MAX) of integer;
TOP : integer range 0 .

procedure PUSH is
begin

TOP = TOP + 1;
S(TOP): = X;

end PUSH;
(... similarly for POP etc.
begin

TOP: = 0
end STACK

MAX;

The specification part,
generally visible to
"users" of the package,
i.e. to other modules
requesting it.

The body: names
defined here and not
in the specification
part are invisible to
users of the package.

initialisation

- 152 -

This division of the program text of a module or package into public and
private sections gives sufficient control on visibility. But it leaves un­
resolved the other inconveniences of the need for parameterisation of
length and of the type stacked. Both of these can be handled in Ada by use
of the "generic" features of the language. A generic definition may be very
crudely regarded as akin to a macro-definition but with full security; it
functions as a template for possibly many similar "instantiations" at com­
pile time:

generic
MAX : integer
type ITEM is private

package STACK is
procedure PUSH (X : ITEM);
function POP return ITEM;

end STACK

the generic
"parameters"

package body STACK is
S : array (1 ... MAX) of ITEM;
TOP : interger range 0 ... MAX;
procedure PUSH is

begin
TOP: = TOP + 1;
S(TOP): = X;

end PUSH
(... similarly for POP etc...)

begin
TOP: = 0

end STACK

package STACKR is new STACK (100, real)
package STACKINTS is new STACK (50, integer)

instantiations

We do not attempt to describe this example in too great detail; for exam­
ple, we prefer to gloss over the meaning of "private" above. The general
idea is that having given a generic definition of a stack package we can
cause many such packages to arise with systematic changes in the length and
type stacked.

This now leads us to a further and interesting problem in visibility: the
names PUSH and POP now are defined in two packages - viz STACKR and STACK-
INTS - which share the same visibility in the above example; how are they

- 153 -

to be distinguished? There is an analogy here with polymorphic operations
such as "+"; whether we mean "real+" or "integer-»-" is determinable by con­
sideration of the types of the operands.

In the stack case, clearly
PUSH (3.14)

must refer to the PUSH defined in STACKR. Suppose, however, we had also in­
stantiated a package:

LONGSTACKR is new STACK (5000, real)
then we would have to use some other way to differentiate which PUSH we
mean. In this case we fall back on the qualified name device and refer to
LONGSTACKR.PUSH or STACKR.PUSH as appropriate.

Progranming Support Environments

The Ada language is an example of a large and complex modern programming
language which provides both packages and block structures with various
subtle devices for visibility control, together with user-defined types,
generic definitions, multitasking and other wonders of the modern programm­
ing world. Yet nevertheless we still require some traditional facilities
such as separable compilation. It is not really practicable to address the
support of large programs written in such a language for use in the chan­
ging requirements of the real world by traditional software tools such as a
classical operating system, compiler and link-loader. The compilation pro­
cess itself, or instance, may need visibility over wide areas of program
and may require resolution of many kinds of possible ambiguity.
Furthermore, a large application system is developed and maintained in many
interconnecting modules over lifetimes of many years. During these years
the individual modules will follow complex and different life histories,
arising in many versions and joining in many configurations. All this his­
tory must be fully and completely tracked to enable enhancement and support
of the system to continue throughout its economically useful life.
This is the world of the Programming Support Environments. The requirements
for such a system for the support of Ada programs (the APSE) can be briefly
summarised as:
(a) an integrated set of software tools covering the entire software life-

cycle
(b) working around a project database with full historical recording.

- 154 -

Conclusion

It seems clear that the development of software engineering for at least
the next few years will be much exercised with the development of APSE's
and other large-scale support systems. Modern languages display much intel­
lectual ingenuity in allowing the programmer to devise even more complex
structures for his data and his algorithms and modern support systems will
allow similar ingenuity in the structuring and version and configuration
control of very large and long-lived programs. The concepts of scope and of
type continue, however, to be central in understanding these developments.

Bibliography

Pascal

The source reference for Pascal which contains the original paper by Wirth
is:
K. Jensen, N. Wirth
Pascal User Manual and Report
Springer Verlag, New York (1 9 7 4)

There are many excellent Pascal textbooks of which two are
I.R. Wilson, A.M. Addyman
A Practical Introduction to Pascal
Springer Verlag, New York (1 9 7 8) ;
P Grogono
Programming in Pascal
Addison-Wesley, 1980

A current source for the definition of revised, standard Pascal is
Specification for computer programming language Pascal
British Standards Institute B S 6 1 9 2 (1 9 8 2) .

Ada

The source reference for the language design by Ichbiah et al is
Reference manual for the Ada programming language
US Dept. of Defense (1 9 8 0) .
A somewhat revised version of the language is now in preparation. These are
also many excellent textbooks, of which an example is
J.G.P. Barnes
Programming in Ada
Addison-Wesley, 1 9 8 2 .

- 155 -

rVograraning Environment

The source document for requirements for Ada Programming Support Environ­
ments (APSE's) is:
Buxton, J.N.
Requirements for Ada Programming Support Environments: "STONEMAN",
US Dept. of Defense, 1980.

This area is too recent to have led to textbooks and relevant work is
accessible mainly in conference proceedings, for example in the AdaTEC Con­
ferences on Ada organised by the ACM Special Interest Group.

