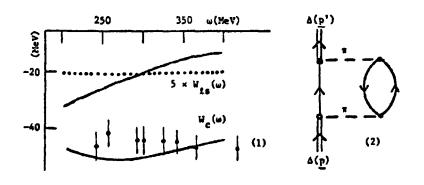
to the Δ -propagation in nuclei on a microscopic level.

For an approximate solution of this generalized many-body problem, the ΔN interaction is formulated in the meson-exchange picture and used as input in a simplified Hartree-Fock approach for a single isobar excited in a closed-shell nucleus. Allowing for the scattering of a pion on a correlated ΔN pair, finite range and nonlocal corrections for the $\nabla \rho^2(\mathbf{r})\nabla$ term in the π -nucleus optical potential are also investigated.

- * Nucl. Phys. A354 (1981) 602C.
- + Institute for Theoretical Physics, University Erlangen-Nürnberg, Erlangen, West Germany.

On the Absorptive Nuclear Mean Field of a $\Delta(1236)$ -<u>Isobar</u>* M. Dillig⁺, V.E. Herscovitz, M.R. Teodoro


Studies in the Δ -isobar-hole model have shown that besides π -multiple rescattering inelastic corrections are very important for the Δ -nucleus dynamics at intermediate energies. Their parametrization as an energy dependent Δ -nucleus optical potential

 $V_{\Delta}(r;\omega) = \left[\left(V_{c}(\omega) + iV_{c}(\omega) \right) + \left(V_{\ell S}(\omega) + iW_{\ell S}(\omega) \right) \right] \frac{L_{\Delta}S_{\Delta}}{\lambda} \frac{1}{\lambda} \frac{d}{d\lambda} \right] \rho_{A}(r) \quad (1)$

 $(\lambda = r/r_{o} \text{ with } r_{o} = 1 \text{ fm}; \rho_{A}(r) \text{ and } \omega \text{ are the nuclear density}$

and the scattering energy, respectively) yields $W_{c}(\omega)$ and $W_{lS}(\omega)$ for ¹²C as shown in Fig. 1 (note that $W_{lS}(\omega)$ was assumed to be ω -independent).

We estimate $W_{c}(\omega)$ and $W_{2S}(\omega)$ in a simple microscopic model. Starting out from the leading diagram in Fig. 2 (as known from $\neg d \rightarrow NN$) the resulting highly nonlocal effective \triangle -nucleus potential is cast into the local potential of eq. (1) in the limit $K_{N} \sim 500$ MeV/c >> p,p', where K_{N} is the typical momentum of the nucleons emitted. For a cut-off mass $\Lambda_{\pi} \sim M_{N}$, $W_{c}(\omega)$ and $W_{2S}(\omega)$ are given by the full lines in Fig. 1 in qualitative agreement with Horikawa, Thies and Lenz.

* Proc. 9th ICOHEPANS, Versailles, France (1981), K8, pg. 421.

+ Institute for Theoretical Physics, University Erlangen-Nürnberg, Erlangen, West Germany.