
Ныйояш 

KFKl-1983-105 

6 . LUKÁCS 

ELECTROVAC SOLUTIONS WITH COMMON 
SHEARING GEODESIC EIGENRAYS 

cHungMriaü Ясшкяу ofcSckncem 

CENTRAL 
RESEARCH 
INSTITUTE POR 
PHVBICS 

BUDAPEST 



Ji 
У 

КГЖ1-1983~105 

ELECTROVAC SOLUTIONS WITH COfflON SHEARING GEODESIC EIGENRAYS 
В. Lukács 

Central Research Institute for Physics 
H-1S25 Budapest 114, P.O.B. 49, Hungary 

Hü ISSN 0360 5330 
ISBB 963 172 162 0 



ABSTRACT 

The spatially symmetric electrovac problem is investigated in the Gen­
eral Relativity, with common, geodesic and shearing eigenrays. It is shown 
that all these solutions are Ernst counterparts of the corresponding vacuum 
solutions. 

АННОТАЦИЯ 

Изучены пространство-симметричные решения уравнения Эйнштейна-Максвелла 
с совпадающими геодезическими собственными лучами со сдвигом. Показано, что 
эти решения являются парами Эрнста соответствующих вакуумных решений. 

KIVONAT 

Az általános relativitáselméletben vizsgáljuk a térszerűen szimmetrikus, 
közös geodetikus nyiró sajátsugarakkal rendelkező elektrovákuummegoldásokat. 
Az adódik, hogy e megoldások mind a megfelelő vákuummegoldások Ernet-párjai. 



1. INTRODUCTION 

The spin coefficient technique has led to many new solutions 
of the Einstein equation of General Relativity, Without assuming 
any symmetry, the 4-dimensional Hevman-Penrose equations can be 
solved for geodesic rays, and the Kerr solution is among these 
solution», belonging to a special subclass, where the shear of the 
rays vanishes too [1], [2], [3]. When the space-time possesses a 
non-null Klllinr symmetry, the problem is essentially 3-dimen-
sional, and after a decomposition 

ds 2 - f(dy + u_dx r) 2 - f" 1g r-dx rdx e (1.1) 

i - 1,2,3 

it can be reformulated in a 3-dimensional background space or 
space-time, whose metric tensor is 9ijt(*m) t4J, [5] Then the 
eigenrays play a role analogous to that of the rays in 4-dimen-
sions. (The definition of eigenrays can 1 'ound in Refs, 4 and 
5; they are projections of rays if the гь. < are sheurfree.) Being 
the dimensionality of the background space smaller, more cases 
can be analytically handled there, in fact, all the classes ко«0 
have been integrated in vacuum both for stationarity and for 
space-like symmetry. Since the class к«а«0 is known from the 4-di-
mensional calculation, this means oj<<-0 and к^о-0 as new solu­
tions. (When 0f*O, the elgenrays do not coincide with the projec­
tions of the shears, so, even if they are geodesic, the rays are 
not.) Unfortunately, none of these new classes contains any gen­
eralization of the Kerr metric [6-9]. 

In the presence of material fields the problem Is more com­
plicated, but it is interesting that for stationary, rigidly ro-
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tating dust the sane ко«0 classes have been integrated [10]. 
With pressure the integration has been successful only for 
ic-o«0 [11]. 

The electrovac case shows seme structural similarities with 
the vacuum problem. Nevertheless, the equations are more compli­
cated, and generally their integration is still not performed.. 
However, there is a special case, i.e. when the gravitational 
field G (produced by the decomposition process) and the electro­
magnetic field H have common eigenrays, which can be handled in 
the same way as the vacuum. The condition that the eigenrays of 
the two field coincide can be formulated algebraically as [12] 

(GxH)2 « 0 (1.2) 

Here G and H are defined in a rather complicated way, the actual 
forms will be discussed in Sect. 2. 

For stationarity the integration was successful in each case 
when the vacuum equations could be integrated [7], [12], and the 
class к»о»0 contains the electrified generalization of the Kerr 
solution [13]. There is a strong tendency to get the Ernst counter­
parts of the vacuum solutions, nevertheless, only when the strength 
of the G field dominates that of the H fiele [7], [12]. 

For space-like symmetry the 0=0, <^0 solutions are known, 
containing only Ernst counterparts of the vacuum metrics [9]. So 
there remains the case ofO, к«0 as promising for integration. 

Here we show that this class contains also Ernst counterparts 
only. Having done this, the process of integrating the KCJ-O, 2 (GxH) »O metrics essentially ends, except producing explicit forms 
for special line elements, if necessary. Since the Kerr and Kerr-
-Newman solutions are isolated among the tca-0 metrics, obviously 
the K?<0, a^O class should be investigated in order to get asympto­
tically flat solutions, however, until now constructive methods 
are not known for handling this class. 
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2. THE FIELD EQUATIONS FOR ELECTROVAC 

Consider the 3+1 decomposition for stationary space-times as 
in eq. (1.1). A complex vector field G 

G - j£(Vf - if2Vxw) (2.1) 

can be introduced, instead of the derivatives of f and ш. From the 
electromagnetic potential A'' a complex three-vector 

H » ф= [VA„ + i(VxA - wxVAjf] (2.2) 

can be constructed, and then the sourcefree Einstein-Maxwell equ­
ations contain f, u>, A and A only in these combinations [ 12 ], 
[14], [15]. In fact, the field equations have the form 

(7 - G)G « HH + GG (2.3a) 

VxG = HxH + GxG (2.3b) 

(V - G)H • j{G - G)H (2.3c) 

VxH » - |(G + G)xH (2.3d) 

R * - GoG - GoG £ HoH + HoH (2.3e) 

where + stands for sgn (f). Here all the tensorial operations are 
meant with respect to the metric g,k of the background space. Now, 
eqs. (2.3b,d) are integrability conditions for some scalers B,<ps 

B ' i " € i k i ( A k | 1 - w 4 , 1 , £ / 9 

ф ' 1 " € i k l w J t , l f 2 / 9 + 2 < B V i * A o B ' i } 

(2.4) 

so one can define two complex scalars [12], [14], [15] 
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e « f - фф + iq> 
(2.5) 

ф - A 0 + iB 

by means of which the remaining of eqs. (2.3) get the form 

(Ree + фф)Де = (Ve + 2фУф)7е 

(Ree •!• фф)Дф - (Ve + 2+V+)V*-
(2.6) 

Rik * " I ( R e E * ••)" 2 R e<e» iÉr k + 2ФФ»1Е»к
 + 

+ 2**»кЕг1 - 4(Рее)ф,±ф,к} 

The form of these formulae is independent of the sign of f=K K wj 
the + signs in eqs. (2.3) are required because the definition of 
H contains a square root. 

Eqe. (2.6) are called Ernst equations, because they were 
found first by Ernst for the stationary axieymmetric problem [16]. 
They remain valid even if there is only one symmetry [14], but 
for two symmetries the metric in them is flat (in cylindric coor­
dinates) , while now it should be calculated from the last of eq. 
(2.6). 

Now, it is useful to introduce new field quantities instead 
of e and <p as 

(2.7) 
• - & 

Then the first two of eqs. (2.6) get the form 

(Cf + qq - 1)ДС - 2(ÉVÉ + qVq)V5 
(2.8) 

(Cf • qq - Daq - 2(?V5 • qVq)Vq 

Let us assume that, for some reason, 6 * aH, and none of them 
vanishes. This means that 



5 

q - q(C) (2.9) 

Substituting this into the second of eqs. (2.8) one gets Ччгг"0» 
i.e. 

q - С + K(C + 1) (2.10) 
С and К being constant. But the second term yield only a constant 
in the potential ф, which can be removed, according to eqs. 
(2.4-5). Thus there remains 

q • q Q • const. (2.11) 

and then the f i r s t of eqs. (2.8) becomes [12] 

ill + q o q 0 - DAC - 2-ÉÍVÉ)2 (2.12) 

If |q0| < 1, the substitution 

leads to the vacuum Ernst equation for л. Thus the <>aH,|q |<l 
metrics are called the Ernst counterparts of the corresponding va­
cuum solutions. They can be generated in an almost trivial way 
from the vacuum metrics, since only f and <p get new expressions, 
9ik r e r o e i n * unchanged. 

If |q0l>l» such a generation is possible, but not from the 
vacuum solutions. So |q0|>l metrics ax9 not Ernst counterparts 
of the vacuum line elements. In fact, for stationärIty, some such 
solutions are explicitly known [7], [121. 

The case |q0J£l is not possible for spacelike symmetry, 

because then f • Ree + ф$ would not be negative (cf. eq. (2.7)). 
So for f<0 all the О « аН metrics are Ernst counterparts of 
vacuum solutions. 
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3. THE SPIN COEFFICIENT EQUATIONS 

The complete set of field equations in tensorial form is 
given in eq. (2.3). Hence we can proceed as in Ref. 5, by intro­
ducing a complex basic vector triad. The result is a system of 
spin coefficient equations (cf. Ref. 15). If the real vector of 
the triad is chosen a tangent to the eigenray congruence, then 
one component of G, G_, is 0. In contrast to the stationary case, 
now there are some exceptional cases when eigenrays do not exist 
[5], [15]. However, here we assume that eigenrays do exist, both 
for the G and for the H fields. After choosing the triad suitably, 
the spin coefficient € can be made 0 by permitted triad rotation 
[51, [15]. 

According to our fundamental assumption, G and H possess 
common eigenrays, so there exists such a triad gauge that 

€ « G_ - H_ - 0 (3.1) 

and, since in the investigated class the eigenrays are geodesic 
and shearing, 

o M « 0 (3.2) 

Then the nontrivial equations are as follow (cf. Ref. 15): 

2 - 2 
Op « ~p* - 0 0 - у' (3.3a) 

Do • -(p+p)o (3.3b) 

DT - - рт + от - G0G_ - H0H_ (3.3c) 

6p - 1o » 2ат - GJS. - H H. (3.3d) 
о • о • 

ÍT + Зт - -2тт - со • рр - у2 - G 45_ - Н+Й_ (З.Зе) 

DG 0 - (-2р • G 0)G 0 - Y 2 (3.3f) 
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D H 0 « (-2? + | G O > | G O ) H O (3.3g) 

6GQ - DG+ « (p + G 0 )G + + HQH+ (3.3h) 

6H 0 - DH+ « (p + | G 0 • i G o )H + - \ G +H o (3 .3 i ) 

IGQ - aG+ - G_G0 - H__H0 (3.3k) 

6H0 = ÖH+ - j G_H0 (3.31) 

&3+ - (p - p)6 - TG+ - G_G+ - H_H+ (3.3m) 

5Н+ - (p - p)H 0 - (T + i GJH + (3.3n) 

where, as a shorthand n o t a t i o n , 

У2 ' 6 o 5 o + Н о Й о ( 3 ' 4 ) 

If H «0, then, from eq. (3.31), H +»0 too, which is the 
vacuum case not investigated here (cf. Ref. 8). Thus H^O. But 
then у ДО, and, from eq. (3.3f), G^O too. 

The differential operators D, 6 and Z commute as [5] 

D6 - 6D + рб + об - О (3.5a) 

66 - 66 - T« + TJ + (p - p)D - О (3.5b) 

From eq. (3.3b) 

D(a/ő) - 0 (3.6) 

Such a phase factor can be removed from о by means fo the remain­
ing triad rotations [5], [15], so from here о is real and posi­
tive, and the triad is completely fixed. 
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4. THE PROOF OF THE PROPORTIONALITY BETWEEN fi AND Ц 

The steps follow here are some amalgam of the calculations 
in Refs. 6, 8 and 12, so it'is needless to go into details of the 
identical steps. First we apply the commutator (3.5a) on InG x 

6(ln(Go0)) « G + - 2т (4Л) 

just as in the vacuum case [8]. Applying it on In H the result 
is 

6(ln(Ho0)) « £ G + - 2т + -g-^ (4.2) 
о 

and then the propagation laws for у are 

Dy « -(p + p)Y (4.3a) 

«Y 2 - -(2т • 61no)y2 + (G0G_ + H0ii_)a (4.3b) 

2 Taking the mixed derivatives of у one gets 

Y2(3?p + 5p + 26o) + O « Y 2 - 0 (4.4) 

again as in Refs. 6, 8 and 12. Hence the steps of Ref. 6 can be 
repeated, with the redefinition of 6 + according to Ref. 12, ar­
riving again at ~* 

во • 6y - 6p • 6*p « О (4,5) 

The only nonvanishing component of GxH is 

x " Go H+ * Ho G+ ( 4 ' 6 ) 

Eqe. (3.3) yield the propagation laws for X as 

DX - | (-2p + G 0 - G0)X 

Jx - -(T + | S_)X 
(4.7) 
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From eqs. (3.3d), (4.3b) and (4.5) 

2 2 
(a* - Y )т » О 

(4.8) 
2YT - G 0G + + H oH + 

whence 

XX « Y2(G+G__ + H+H_ - 4TT) (4.9) 

If T=0, eqs. (4.8-9) immediately yield X - 0. If not, a2 , 2, 
and, from the Ő derivative of eq. (3.3d) one gets 

6т « -Зт2 + i(p - p)o (4.10) 

Acting on th i s equation by D, 

XX + Y 2 ( O 2 + y2 - p 2 ) « 0 (4.11) 

Hence p is real. Now, taking the mixed derivatives of eH~ . |4.7)t 

61nX « | G + - 7T (4.12) 

Applying now the commutator (3.5b) on In X, the result is 

Y 2 + a2 - p 2 (4.13) 

But then, compared this to eq. (4.11) 

X - 0 

that is, G and H are proportional vectors. 
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5. THE SOLUTIONS 

Me showed in Sect. 2 that in the space-like symmetric case 
if G and H are proportional vectors, then the solution is an Ernst 
counterpart of the corresponding vacuum solution, '''he vacuum 
solutions are given in Ref. 8, and there is no reason to ex­
plicitly list the counterparts here, being the generation process 
is trivial [12]. As it can be seen by investigating the vacuum 
solutions, there are 3 subclasses. The first possesses 3 Killir.g 
vectors with the commutation 

[KX,K2] - -2Y°QK3 

[KlfK3] - 0 (5.1) 

[K 2,K 3] - о 

where y° and Q are constant parameters of the solution. By redefin­
ing the Killing vectors the right hand side coefficient in eq. 
(5.1) can be made 1, if it is not O. Such a symmetry group does 
not seem to imply obvious physical meaning, except the case Q-0, 
when the vacuum solution is the Kasner Universe. 

In the second case there are two commuting space-like Killing 
vectors. Until now, no physical interpretation has been found for 
these solutions. 

The same is true for the third case, which possesses only 
one spatial Killing vector, which was originally assumed for the 
decomposition. 

REFERENCES 

[1] Newman E.T., Penrose R.t J. Math. Phye. 3, 566 (1962) 
[2] Newman E.T., Tamburino L., Unti T.W.s J. Math. Phye. 4, 

915 (1963) 
[3] Unti Т.Н., Torrance R.J.» J. Math. Phys. Т., 535 (1966) 
[4] Perjés Z.i J. Math. Phys. 11, 3383 (1970) 



- i l ­

ls] Lukács В.: Acta Phys. Hung. 41, 137 (1976) 

[6] Kóta J., Perjés Z.: J. Math. Phys. 13, 1695 (1972) 
nd 

[7] K6ta J., Lukács В., Perjés Z.: Proc. 2 Marcel Grossmann 
Meeting, Nort-Holland, 1982, p.203 

[8] Lukács B.t Acta Phys. Slovaca 33, 225 (1983) 
[9] Lukács B.t Acta Phys. Hung. 54, 155 (1983) 
[10] Lukács B.t KFKI-74-87 
[11] Lukács В., Newman E.T., Sparling G., Winicour J.t Gen. Rel. 

Grav. 15, 567 (1983) 
[12] Lukács В., Perjés Z.t Gen. Rel. Grav. ±, (1973) 
[13] Newman E.T. et al.t J. Math. Phys. 6, 918 (1968) 
[14] Perjés Z.t Commun. Math. Phys. 12, 275 (1969) 
[15] Lukács B.t KFKI-73-26 
[16] Ernst F.J.t Phys. Rev. 168, 1415 (1968) 



Kiadja a Központi rizikai Kutató Intézet 
Г«1а1ба kiadó« 8zeg6 Károly 
Szakmai lektort Llndeiaz Ferenc 
Nyelvi lektort Dióal Lajos 
Gépeltei Balezer Györgyné 
Példányi »ám» 345 Torzaszám 83-655 
Kéazttlt а КГК1 aokazoroaitó Özemében 
PelelSa vezetőt Nagy Károly 
Budapest, 1983. október hó 


