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ABSTRACT

The spatially symmetric electrovac problem is investigated in the Gen-
eral Relativity, with common, geodesic and shearing eigenrays. It is shown

that all these solutions are Ernst counterparts of the corresponding vacuum
solutions.

AHHOTAUNA

H3yvyens NPOCTPANCTIO-CEMMETDMUNHNE DONSHHA ypasieHHs JfmureRna-Maxcsenna
¢ comnanamgiMi reomesnNdecky¥Mi COCGCTIEHMHME JNYyYaMy Co casuroM. lloxazamo, uTO
3TH PeneHMs ANIANTCA NapaMl IPHCTA COOTIETCTIYIMMX BAKYYMHLHX DEWeHHf,

KI1VONAT

Az 8ltalénos relativitéselméletben vizsghljuk a térszerlien szimmetrikus,
kOzts geodetikus nyir6é sajétsugarakkal rendslkezl elektrovékuusmegoldésokat.
Az adbédik, hogy e megoldésok mind a megfeleld vékuummegoldésok Ernst-plrjai.




1. INTRODUCTION

The spin coefficient technique has led to many new solutions
of the Einstein equation of General Relativity, Without assuming
any symmetry, the 4-dimensional Newman-Penrose equations can be
solved for geodesic rays, and the Kerr solution is among these
solutions, belonging to a special subclass, where the shear of the
rays vanishes too (1], [2], [3]. when the space-time possesses a
non-null Killinc symmetry, the problem is essentially 3-dimen-
sional, and after a decomposition

2

as? = £(dy + w ax)? - f'lg“dx’dx‘ (1.1)

i=1,2,3

it can be reformulated in a 3-dimensional background space or
space-time, whose metric tensor is qik(x“) (4], [(S] Then the
eigenrays play a role analogous to that of the rays in 4-dimen-
sions. (The definition of eigenrays can I' -“ound in Refs. 4 and
5; they are projections of rays if the r& : are sheurfree.) Being
the dimensionality of the background space smaller, more cases
can be analytically handled there, in fact, all the classes ko=0
have been integrated in vacuum both for stationarity and for
space~like symmetry. Since the class x=0=0 is known from the 4-di-
mensional calculation, this means o¥x=0 and x¥o=0 as new solu-
tions. (When 0#O, the eigenrays do not coincide with the projec-
tions of the shears, so, even 1f they are geodesic, the rays are
not.) Unfortunately, none of these new classes contains any gen-
eralization of the Kerr metric [6-9].

In the presence of material fields the problem is more com-
plicated, but it is interesting that for stationary, rigidly ro-
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tating dust the same xo=0O classes have been integrated [10].
With pressure the integration has been successful only for
k=0=0 [11].

The electrovac case shows some structural similarities with
the vacuum problem. Nevertheless, the equations are more compli-
cated, and generally their integration is still not performed..
However, there is a special case, i.e. when the gravitational
field G (produced by the decomposition process) and the electro-
magnetic field H have common eigenrays, which can be handled in
the same way as the vacuum. The condition that the eigenrays of
the two field coincide can be formulated algebraically as [12]

(exH)? = 0 (1.2)

Here G and H are defined in a rather complicated way, the actual
forms will be discussed in Sect. 2.

For stationarity the integration was successful in each case
when the vacuum equations could be integrated (7], [12], and the
class k=0=0 ccatains the electrified generalization of the Kerr
solution [13]. There is a strong tendency to get the Ernst counter-
parts of the vacuum solutions, nevertheless, only when the strength
of the G field dominates that of the H fielc (7], [12].

For space-like symmetry the 0=0, x¥0 solutions are known,
containing only Ernst counterparts of the vacuum metrics [9]. So
there remains the case 0¥0, x=0 as promising for integration.

Here we show that this class contains also Ernst counterparts
only. Having done this, the process of integrating the ko=0,
(gxg)zso metrics essentially ends, except producing explicit forms
for special line elements, if necessary. 8ince the Kerr and Kerr-
-Newman solutions are isolated among the xo=0 metrics, obviously
the x¥0, 00 class should be investigated in order to get asympto-~
tically flat solutions, however, until now constructive methods
are not known for handling this class.
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2. THE FIELD EQUATIONS FOR ELECTROVAC

Consider the 3+1 decomposition for stationary space-times as
in eq. (1l.1). A complex vector field G

G = 2¢(VE - 1£27xw) (2.1)

can be introduced, instead of the aerivatives of f and w. From the
electromagnetic potential A a complex three-vector

L

/gl

can be constructed, and then the sourcefree Einstein-Maxweli equ-
ations contain f, w, A, and A only in these combinations [12],
{14], (15]. In fact, the field equations have the form

H===[VA, + 1(VxA - wxVA )f] (2.2)

(Vv - G)G = fiH + GG (2.3a)

VxG = HxH + GxG (2.3b)

(V - GH = %(g - &H (2.3c)

VxH = - (G + S)xH (2.3d)

R = - GoG - GoG # Hofl + HoH (2.3e)

~where + stands for sgn (f). Here all the tensorial operations are

meant with respect to the metric 9ix of the background space. Now,
eqs. (2.3b,d) are integrability conditions for some scalars B,ps

- ksl _  k, 5l
Byy = €1 (A w A, )&/g
(2.4)
- ksl,2 _
@iy = € g0 f /q + 2(BA AOB,i)

so one can define two complex scalars [12], [14], (15]
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€= f - ¢¢ + i

(2.5)
¢ = Ao + iB
by means of which the remaining of egs. (2.3) get the form
(Ree + ¢§)Ac = (Ve + 23V9) Ve
(Rec + 93)Ad = (Ve + 28V9) V¢
(2.6)

1 = =2 - -
Ry = - 7(Ree + ¢%) “Refe, &, + 203,5c,, +

+ Zos,kc,i - 4(3&5)’,1"k)

The form of these formulae is independent of the sign of f=K K3
the + signs in eqs. (2.3) are required because the definition of
H contains a square root.

Egs. (2.6) are called Ernst equations, because they were
found first by Ernst for the stationary axisymmetric problem [16].
They remain valid even if there is only one symmetry [14], but
for two symmetries the metric in them is flat (in cylindric coor-
dinates), while now it should be calculated from the last of eq.
(2.6).

Now, it is useful to introduce new field quantities instead
of ¢ and ¢ as

£ = :1
(2.7)
R
Then the first two of egs. (2.6) get the form
(EE + qq ~ 1)8E = 2(EvE + gVq) VE
(2.8)

(EE + qq - 1)Ag = 2(Ev¢ + gqVq)Vq

Let us assume that, for some reason, G = al, and none of them
vanishes. This means that
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q=ql(f) (2.9)

Substituting this into the second of egs. (2.8) one gets QQEE'O:

l.e.
q=C + K(E + 1) (2.10)

C and K being constant. But the second term yield onl& a constant
in the potential ¢, which can be removed, according to egs.
(2.4-5). Thus there remains

q9 = q, = const, (2.11)
and then the first of egs. (2.8) becomes [12]
(6E + qa, - DAE = 2-E(ve)? (2.12)

If |q,| < 1, the substitution
E=/1-qu,n (2.13)

leads to the vacuum Ernst equation for n. Thus the §9a§,|q°|<1
metrics are called the Ernst counterparts of the corresponding va-
cuum solutions. They can be generated in an almost trivial way
from the vacuum metrics, since only £ and ¢ get new expressions,
9yx remains unchanged.

1f |q°|3;, such a generation is possible, but not from the
vacuum solutions. So |q,|>1 metrics are not Emst counterparts
of the vacuum line elements. In fact, for stationarity, some such
solutions are explicitly known (7], [12].

The case [g,{>1 is not possible for spacelike symmetry,
because then f = Rec + ¢§ would not be negative (cf. eq. (2.7)).
So for £<0 all the G = oH metrics are Ernst countsrparts of
vacuum solutions.
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3. THE SPIN COEFFICIENT EQUATIONS

The complete set of field equations in tensorial form is
given in eq. (2.3). Hence we can proceed as in Ref. 5, by intro-
ducing a complex basic vactor triad. The result is a system of
spin coefficient equations (cf. Ref. 15). If the real vector of
the triad is chosen a tangent to the eigenray congruence, then
one component of G, G_, is 0. In contrast to the stationary case,
now there are some exceptional cases when eigenrays do not exist
(5], (15]). However, here we assume that eigenrays do exist, both
for the G and for the H fields. After choosing the triad suitably,
the spin coefficient € can be made O by permitted triad rotation
(s}, [15].

According to our fundamental assumption, G and H possess
common eigenrays, so there exists such a triad gauge that

€E=G_ =H_ =0 (3.1)

and, since in the investigated class the eigenrays are geodesic
and shearing,

c¥ k=0 (3.2)

Then the nontrivial equations are as follow (cf. Ref. 15):

Go = -p - 05 - v | (3.3a)

Do = =(p+p)o (3.3b)

DT = - pT + 0T - GG_ - H H_ (3.3c)

8p - 30 = 207 = .6, - B H, (3.34)

8t + 71 = =217 - 00 4 pF - y° ~ 6,8 ~uf_ (3.3e)
2

DG, = (=2p + GO)Go -y (3.31)
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DH = (-2p + 2 G_ - 1 &)H (3.3q)
2 0 2 0o -39
GGO - DG+ = (p + Go)G+ + Hol-l+ (3.3h)
sH_-pH, = (5 +2¢_+1G)u -Lam (3.31)
o + ' 2% 277+ T2 %+o y
86, = oG, - G G, - H H (3.3kx)
3H_ = oH, - & G_H (3.31)
o + 2 o *
%, = (p - p)G, - 16, - GG, - A H, (3.3m)
- 1 =
S, = (p - PIH_ - (T + 5 G )H, . (3.3n)
where, as a shorthand notzation,
2 - -
Y* = 6 G + Hl (3.4)

If H -o, then, from eq. (3.31), H =0 too, which is the
vacuum case not investigated here (cf. Ref 8) . Thus Hofo But
then vy #0, and, from eq. (3.3f), Gofo too.

The differential operators D, § and § commute as [5]

DS - 8D + p& + 08 = O (3.5a)
6§ ~ 36 -186+ T8+ (p=-p)D=0 (3.5b)

From eg. (3.3b)
D(0/0) = O (3.6)

Such a phase factor can be removed from ¢ by means fo the remain-~
ing triad rotations [5], [{15], so from here ¢ is real and posi-
tive, and the triad is completely fixed.



4. THE PROOF OF THE PROPORTIONALITY BETWEEN E_AND H

The steps follow here are some amalgam of the calculations
in Refs. 6, 8 and 12, s0 it is needless to go into details of the
identical steps. First we apply the cammutator (3.5a) on lncoz

§(1n(G,0)) = G, - 2T (4.1)

just as in the vacuum case [8]. Applying it on 1ln Ho the result
is

$(In(H o)) = § G, - 2T + u;:° (4.2)
and then the propagation laws for y are
Dy = =(p + p)y (4.3a)
8v2 = -(27 + 81no)y? + (G &_ + H_fi_)o (4.3b)

Taking the mixed derivatives of yz one gets

2-

v2(3%p + 85 + 260) + o6y2 = 0 (4.4)

again as in Refs. 6, 8 and 12. Hence the steps of Ref. 6 can be
repeated, with the redefinition of 6+ according to Ref. 12, ar-
riving again at -

o=8y=8p=% =0 (4,5)
The only nonvanishing component of GxH is
X=GCH, -HG, (4.6)
Egs. (3.3) yield the propagation laws for X as
DX = 3 (<25 + G, - &)X

(4.7)
Ix = =(1 + -g- éHx




From eqs. (3.3d), (4.3b) and (4.5)

(02 - yz)t = 0
(4.8)
2yt = GG, + HH,
whence
xX = v2(6,5_+ n,fi_ - 417) (4.9)
If 1=0, eqs. (4.8-9) immediately yield X = O. If not, 02 [2,
and, from the § derivative of eq. (3.3d) ome gets
St = -3t 4+ %(p - po (4.10)
Acting on this equation by D,
XX + yz(o2 + yz - 52) =0 (4.11)

Hence p is real. Now, taking the mixed derivatives of ey.. 4.7):
§lnX = 2 G, - 7% (4.12)
2 4+ °

Applying now the commutator (3.5b) on 1ln X, the result is

v2 + 0% = p? (4.13)
But then, compared this to eq. (4.11)

X=0

that is, G and H are proportional vectors.
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S. THE SOLUTIONS

We showed in Sect. 2 that in the space-like symmetric case
if G and H are proportional vectors, then the solution is an Ernst
counterpart of the corresponding vacuum solution. The vacuum
solutions are given in Ref. 8, and there is no reason to ex-
plicitly 1ist the counterparts here, being the generation process
is trivial [12]. As it can be seen by investigating the vacuum
solutions, there are 3 subclasses. The first possesses 3 Killirg
vectors with the commutation

o)
[xl,x3] =0 (5.1)
[xz,x3] = 0

vhere Y° and Q are constant parameters of the solution. By redefin-
ing the Killing vectors the right hand side coefficient in eq.
(5.1) can be made 1, if it is not O. Such a symmetry group does

not seem to imply obvious physical meaning, except the case Q=0,
wher. the vacuum solution is the Kasner Universe.

In the second case there are two commuting space-like Killing
vectors. Until now, no physical interpretation has been found for
these solutions.

The same is true for the third case, which possesses only
one spatial Killing vector, which was originally assumed for the
decomposition.
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