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Abstract

It is shown that the Hamiltonian H of the hydrogenic anion has no
bound state at threshold in the triplet S-sector. This extends s result
of R.N. Hill (1977) who showed that H has only essential spectrum in
the triplet sector.
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We consider the Schrédinger operatoyr describing the hydrogenic anion
BRe - — - — - — - —_—r — 1)
2 1 k) - i = - -
on L%(R®,dx dx,), x, € R, r, lxil (i=1,2), r, lxl le. A few
years ago R.N. Hill (1977) has shown amoung other vesults that there is
no bound state ¢ in the triplet S-gector satisfying (H-E)p = O for

B < - 1/2. By bound state we mean L2-solution and by triplet S-sector

ve denote rbe restriction of LZ2(R®) to the class of functions
- 2(mb - - -
M=({f€ LR .dx‘dx2)|f(x|,x2) f(x2"|)' f f(rl,rz,rn)) . (2)

Note that H has essential spectrum [~ %,. .

In this note we extend the above result in the following way:

Theorem 1: Suppose $ € M, ¥ # 0 and satisfies
(e 2% =0 )

on R® with H giver by (1). Then ¢ ¢ L2(RS),

Before giving the proof of the Theorem some remarks might be
appropriate:

(i) F.H. Stillinger (1966) conjectured this result on numerical grounds.
(ii) Theorem ) should be compared to a result obtained by M. Hoffmann-
Ostenhof et al, (1983): In this paper the Hamiltonian H(A) =
S e S N N WPy :

5 3 T '2 rn on L“(R .dxldxz) has been considered
with the smallest A > 0, so that H(A) has only essential spectrus.
It was proven that H(A) has an L?-solution at the bottom of its
spectrum, Critical for this result was that A > 1 (because the
hydrogen ion has s bound state). This fact was used to show that
(loosely speaking) an electron far from the nucleus feels an
effective potential by which binding could be deduced. However, in

the present case no such mechanism will be available,




Proof of Theorem !: Suppose indirectly that ¢ € LZ(R®) Since ¥ solves

(3) it follows (see e.g. Simon (1982)) that v € HZ(R®), the domain of
the Hamiltonian H. (For a definition of the Sobolev space Hz(lle) see

e.g. Reed and Simon (1975).) Then due to Hill's result (1977) we have

- ing {0LAD _ (9l *)

1
2 £ € H2nW (£,£) (v¥) °

But obviously f(r‘.rz,rlz) =0 forr = T, for all f € M. This together

with (4) implies that ¢ is the groun(ll state of the Dirichlet probles (3)
in the domain 'xl' > 'le (resp. 'x|| < Ile). Such a ground state is
nondegenerate and can be chosen to be nonnegative (see e.g. Reed and
Simon (1978)). Further by Harnack's inequality (see Aizenman and Simon
{1982)) it is positive. Therefore we can choose ¥ > O for !xl| > Ile
and ¢ < 0 for |x|i < |le.

Next we need the following

Lemma 1: Let g: R3x R} » R vith g - g(r|,r2.9), vhere tig = rf + rg -

- 2r,r,cos 8, -~ ¥ <6 <15 and define

12
i
[g](r',rz) -3 -]' g d cos O, (5)
Let
f(r,,r) = exp{ln ¥(r ,1,,8)] for r, <r, (6)
wvhere ¢ € c’(((xl.xz) € n’.o T, < t'}) and ¥ > 0 for £, < Ty then
l%!] :9{!. for pear, . (7

Proof: This lemms is analogous to a result derived by Lieb (1981, Lemms
7.17). Taking into account that for realvalued g € C?
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v8)? = [ (G +— Gg) ) (9)
i=} i ¢
i
(see e.g. Hylleraas (1964)) the proof runs in the same way as Lieb's
proof.

Applying Lemma i to equation (3) and noting that

f[—) e— for r,cr (10)
r2 r, 2 1!
we obtain
(-8, -8,+1-23>0 for r,cr (1)
) 2 T, - 2 )’
Nov we consider
(- A -—2-01) ¢(r,) = O with 0(1')-—|-e-r2 (12)
2 2 2 :

2 /r

Multiplying inequality (11) from the left by ¢ and integrating over

Ixz! < r, it is straightforvard to calculate that

y &L . ¥

- 2 - 22
8, |xI|<r of dxz + lowrlo(rl 3'1 3r2) e >0. (13)
2'="1 21
In the folloving we shall denote
vir)= ¢f dx, . (14)
) 2
Xyi<r,

By s result of Kato (1957) |Vy] is bounded in R6. Therefrom it follows
easily that

eI ) ] <C for r,>R>0, (13)
14 ir - ) -
! 2 jr,er
T2
since
af y f(r',r,-h) ] v(rl,rl~h,0)
ar, « lim —— o~ s ~ exp [In lim —‘-—-—'-;———'—l .
- r2-r' h--0 h+0 ('6)



= - exp [In(- ————) ]
3:2 r,=r
27
and analogously for %%— . Inserving (15) into (13) and taking into
lir,=r
21
account (12) we arrive at
-or,
P A >0 for T, >R (7,

with some O < @ < | and R large enough.

Next we need

Lemma 2: L2t v be given according to (14), then for arbitrarily smsll
§ > 0 and sufficiently large R, there is some C(R), such that

-érl
v(tl) 2 C(R) e for r >R . (18)

Proof: First we note that for O<r
which solves the Dirichlet problems

22 - -
(- 8, Tt | a‘)o. 4] (19)

2
in the ball B (0) = {x, € R?|r, <R}, with some &, > 0. Due to the
variational principle 68 + 0 for R + =, Define

up(ry) = [ #g v dx, (20)

with ¢ given according to (3). Obviously uy ? 0 for r, > R . Since ¢

obeys (3) and is by assumption in L2 it follows from a result of Simon

(1982) that ¢ » O for r' - » and therefore Ug +0forr, + » Nov ve

]
can use the same differential inequality techniques as derived by T.
Hof fmann~Ostenhof (1979) to obtain (~ A' * 6)ul > 0 for all &8 > 6., with

LIRS P P sufficiently large, from which

1 4
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foliows for some C(R) > 0. Finally ve shall show that

v(r,) > C(R) up(r)) for r >R (22)

for some C(R) > O which together with (21) verifies (18): Evidently

vir) > [ of dx, > inf % / ¢dx, for r, >R >R.
Ix,I<k Ix, | <R ]x, |<R
23

Let B = {(x},x;) € Rix m3, 'x; °x||20 lxilz < R?) and let 0 = {(x) x5 <

2
€ RI x ll’,rz < rl), then for v, > R, > R we have B C Q. Since § > O in

| |
1 and obeys (3) we obtain by Harnack's inequality (Aizenman and Simoo

(1982)) for some C(R) > O

inf .("l"‘i) > inf ¥ > C(R) sup ¥ >

lxilik B 8 (26)
2 C(R) sup (x,x3) > C(R) ¥(x ,x,)) for r, <R<R <1 .
Ixyl<R
Combining (23) with (24) we arrive at
v(r,) > C(R) ¥(x,,x,) for r; <R<T, (25)

with some C(R) > 0. Multiplying (25) by 0. and integrating over X, an
results. C

Applying lLesma 2 to inequality (17) we arrive at

-fr
}

“8 v e v20 for r >R (26)

- . .
with some 0 < B < I, Let w» rv and uy*r c,m> O with .v-u.)(r_)> o
for some LI > 0 with suitable L 0. Then

- " -fr

‘e vw>0, u s e® o for r>r. ,8>0 (27)

-

for LI sufficiently large, We are going to show nov that w > v, for r2ry:




Suppose indirectly that there is sore ;- >, such that (u.-v) (;-) =0,
uy < w for L <r « L and (u.-u)‘(r-) > 0. Then uy v is monotonously
nondecreasing for LIRS SO since due to (27) it cannot have a maximum
there. But u " O forr »=and w > 0, therefore w + 0 for r + », Hence
u v O for r + = which is & contradiction.

Thus we have shown that v ¢ LZ(R3).

By Jensen's inequality (see e.g. Hayman and Kennedy (1976))

v} > ¢ for r,cr . (28)

By (28) and by Cauchy-Schwarz's inequality we conclude

r
-5
( vidx dx, > .n)3 f(f oledr? 4r.)2 12 4r, > vidx, =
!-{!:R !xil:r, Ve 4 ror |x{l:ﬂ '

Hence ¢ € L°(R®), which contradicts our assumption. o]
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