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Abstract 

It is shown that the Hamiltonian H of the hydrogenic anion has no 
bound state at threshold in the triplet S-sector. This extends a result 
of R.N. Hill (1977) who showed that H has only essential spectrua in 
the triplet sector. 
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Ve consider the Schrödinger operator describing the hydrogenic anion 

2 2 rl r2 rl2 
on ^(R^.dXjdXj), %i G F 3, r. - |x. | (i - 1,2), r ( 2 - |x( -x 2|. A few 
years ago R.N. Hill (1977) has shown amoung other results that there is 
no bound state * in the triplet S-sector satisfying (H-E)*> « 0 for 
E < - 1/2. By bound state we aean L2-solution and by triplet S-sector 
we denote the restriction of L 2 ( K 6 ) to the class of functions 

M - {f € L 2(» 6,dx 1dx 2)|f(x 1,x 2) - - fCxj.x,), f - f<r 1,r 2,r J 2)) . (2) 

Note that H has essential spectrins [- ?,•*). 
In this note we extend the above result in the following way: 

Theorem 1: Suppose • 6 M, f f 0 and satisfies 

(H • j ) * - O (3) 

on »* with H giver, by (I). Then * I I 2(It 6). 
Before giving the proof of the Theorem some remarks might be 

appropriate: 
(i) F.H. Stillinger (1966) conjectured this result on numerical grounds. 
(ii) Theorem I should be compared to a result obtained by M. Hoffmann-

Ostenhof et al. (1983): In this paper the llamiltonian H(A) -
Aj *2 | i A 

•--* s — —— - •— • — on L 2(F 6, dx.dx.) has been considered 
i i r, r 2 r J 2 i i 

with the smallest A > 0, so that H(A) has only essential spectrum. 
It was proven that H(A) has an L2-solution at the bottom of its 
spectrum. Critical for this result was that A > I (because the 
hydrogen ion has a bound state). This fact was used to show that 
(loosely speaking) an electron far from the nucleus feels an 
effective potential by which binding could be deduced. However, in 
the present case no such mcchanissi will be available. 
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Proof of Theorea 1; Suppose indirectly that i € L 2 (F 6 ) Since * solves 
<t) it follows (see e.g. Simon (1982)) that * € H 2 ( K 6 ) , the doaain of 
the Hauiltonian H (For a definition of the Sobolev rpace H 2 ( R 6 ) see 
e.g. Reed and Siaon (1975).} Then due to Hill's result (1977) we have 

2 t €
1 ^ (f.f) (*.*) * { k ) 

But obviously f(r ,r 2,r J 2) • O for r. - r« for all f € M. This together 
with (4) implies that v is the ground state of the Dirichlet prohlea (3) 
in the doaain |x | > Ix»! (reap. |x | < |x_|). Such a ground state is 
nondegenerate and can be chosen to be nonnegative (see e.g. Reed and 
Siaon (1978)). Further by Harnack's inequality (see Aixenaan and Siaoo 
(1982)) it is positive. Therefore we can choose • > 0 for |x.| > |xj 
and « < 0 for jxj < |x2|. 

Next we need the following 

Lena» I: Let g: R 3 * R 3 •* 9. with g - g(r.,r 2,0), where r 2 * ri * r 2 " 
- 2r.r.cos © f - * f. 8 <_ t and define 

Ig)(r.,r,) - j / g d cos 6 . (5) 
1 * -1 

Let 

f(r J tr 2) - exp[ln •(r|,»2,e)J for r ? < tx (6) 

where * £ C 2({(x | tx 2) f » 3 , 0 < r 2 < r ]}) and * > 0 for r 2 < r , then 

fyl 1 T f o r r 2 * ri ' < 7 ) 

Proof: This leans is analogous to a result derived by Lieb (1981, Le 
7.17). Taking into account that for realvalued % € C 2 

i i-l r? " i 

and 
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i»l i rf l 

(see e.g. Hylleraas (1964)) the proof runs in the sane way at Lieb'a 
proof. 

Applying Leuna I to equation (3) and noting that 

lT~] " 7" f o r r2 * ri • ( l 0 ) 

r | 2 r, i. i 
we obtain 

(- «j - A 2 • I - ̂ -)£ > 0 for r 2 < r, . (11) 

Mow we consider 

2 1 " r 2 (- A - -7- • I) #(r 7) - 0 with *(r,) - — e * . (12) z r 2 i. i ^ 

Multiplying inequality (II) from the left by $ and integrating over 
\xA < r. it is straightforward to calculate that 

- a / *f dx • «w r2,( r )(|1- . |L-)j > o . (13) 

In the following we shall denote 

v(r . ) - / + f dx. (14) 
' l*2li', 2 

By a result of Kato (1957) |v^| is bounded in R 6. Therefrom it follows 
easily that 

K i f — l r M I 5 C for r > R > 0 , (13) 
3 t l 8 r 2 (r^r, ' 

since 

" . , ' ( r , . r , -h ) »(r , ,r , -h ,0) 
— • I I B —-. " - exp [In list r J • 
* 2 V l ** ^ (.6) 



a*(r,,r,,e) 
« - exp [ l n ( \—± ) | ] 

2 "V. 
and analogously for -r—{ . Inserting (15) into (13) and taking into 

»iv r i 
account (12) we arrive at 

~°rl 
- 4, » • e £ 0 for r, i * ( , 7> 

with aoae 0 < a < I and R large enough. 
Next we need 

Lewa 2; L»t v be given according to (14), then for arbitrarily saall 
6 > 0 and sufficiently large R, there is SOB« C(R), such that 

-«r 
v(r,)>.C(R)e for r, £ R . (18) i n f 

Proof; First we note that for 0<r 2 <R<« there i s a v-Cr-) > 0 , ( • R . * R ) " I 
which solves the Dirichlet problem) ~ 

<" A2 " T2* ' ~ V*» - ° <"> 

in the ball B R(0) - {x, € K 3 |r, <. R), with aoae < R > 0. Due to the 
variational principle 6_ *• 0 for R + •». Define 

u R(r,) - / T R V « 1 « 2 (20) 

with v given according to (3). Obviously u > 0 for r > R . Since * 
obeys(3) and is by assuiaption in L 2 it follows froa a result of Siaon 
(1982) that # •» 0 for r. •» • and therefore u_ •» 0 for r. * •. Now we 
can use the saae differential inequality techniques as derived by T. 
Hoffaann-Ostenhof (1979) to obtain (- o, • <)u. >. 0 for all 4 > 6 R, with 
r > r,, r, sufficiently large, from which 

u R(r,) >_ C(R) e " 6 r for t} > R (21) 



5 

follows for some C(R) > 0. Finally we shall show that 

v(r}) > C(R) u^fr,) for r ; > R (22) 

for some C(R) > 0 which together with (21) verifies (18): Evidently 

v(r.) > / *f dx > inf • / *dx, for r > R, > t . 
1 -|«,l<« 2 " i»2!<* U 2 l i*

 2 ' " ' 
1 z * (23) 

Let B - {(xj.xp € B 3 * R 3 , |x| - x j 2 * |x'( 2 <_ R 2) and let 0 - {(x,,x > f-

e H 3 « R 3, r, < r }, then for r >_ R. > R we have B C n. since tf> > 0 \n 

n and obeys (3) we obtain by Hernack's inequality (Aizenman and Simon 

(1982)) for some C(R) > 0 

inf + (x ,x') 1 inf • >. C(R) sup + >. 
!x2iiR " B B ( 2 4 ) 

> C(R) sup (x,,xl) > C(R) +(x.,x.) for r, < R < R. < r . 
|x'|<l ' 2 " ' 2 2 " ' ' 

Combining (23) with (24) we arrive at 

v(r,) >C(R) *(x,,x2) for r 2 <. R <_ r, (25) 

with soaa C(R) > 0. Multiplying (25) by •_ and integrating over x , (22) 

results. £ 

Applying Leaau 2 to inequality (17) we arrive at 

- Aj v • e » > 0 for r >, R (26) 

with sot» 0 < ß < I. Let w - rv and u • r c , • > 0 with (w-u ) ( r )> C 

for SOBS r > 0 with suitable c > 0. Then 
• • 

- w" • e " 6 r w > 0 , - u" • e ~ e r u < 0 for r > r , m > 0 (27) 

for r sufficiently large. We art going to show now that w > u for r >r 
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Suppose indirectly that there is sone r > r such that (u -w)(r ) - 0, 
tt M Si Si 

u < w for r < r < r and (u -w)'(r ) > 0. Then u -w i» monotonously 
• — • a a a a nondecreasing for r > r , since due to (27) it cannot have a aaxiaua • ~ o 
there. But u -* 0 for r -» • and w > 0, therefore v •* 0 for r • ». Hence 
u - w * 0 for r * • which is a contradiction. 

Thus we have shown that v ( L 2 ( * J ) . 
By Jensen's inequality (see e.g. Hayman and Kennedy (1976)) 

[*) ^ f for r 2 1 r, . (28) 

By (28) and by Cauchy-Schwarz's inequality we conclude 
- r l 

/ / ^ d x d x , > t » ) 3 /(/ *UUl dr,) 2 rf dr » / v 2dx -
!•,!* i*2lir, * 2 Eo 2 2 ! ' |K,|>R ' 

Hence * I L 2 ( B 6 ) , which contradicts our assumption. O 
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