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1. INTRODUCT1O0N
In this paper we consider first order linear and nonlinear Ponctional

differential equations with continuous distributed retarded acgument:

, b
fot [ P o glgen]dog) =0 (b>a)

1)
; b
#(t)-ff‘ff*:?,ﬁ’fﬁ(*iiﬂ)d”‘(?)-——o, (b>a ) o
and the advanced type
g’(f)-ffmf,g)3‘[;@(15,;;]0(@;)._—:0, (b>2) s

}f}w-f,bf(t,;’, FLRee, 3)))drip)y=0, (b>a) - 19

Oscillations of these eguations are studied.
Bslow we shall make the followlng assumptions:
) p, £+x[a,b]—>2+ ](+:[o,+oo) ;
(H2) T.[a, bJ“""R is a nondecreasing function;
(HS) The integrals in equations are Stlelt,]es integrals;
) git,1)<t, yela.b]  F. ¢ *xrab]— "
is continuous, E—_—-Efo,"'w),

t or { respectively;

v Rt 1)zt ZTERE], R pfaras]— T

is continuous,

is continuous ;

g(-ﬁf}'}ls a nondecreasing function with

-ﬁ[{-’{) is a nondecreasing function with t or g respectively;

(HG) There exists function ¥ (t, & ) such that 5‘9(%{'})'?):3({' ;), ?H_’}-)

is a nondecreasing function with t or £ respectively;

:ei'l r;erfy{ Pue ’I)} ==too

(H_) There exists function v [+, £)

is a nondecreasing function with t or £ respectively;

Lo min i, 7)f==+00

t-se JE[a,b]

such that %[%(f i), 1) ﬁ(‘f ?) I)L(f ;)

Recently (. Ladag-and 1.9, Stavrouwlakis [ 1| oktainagd nufficient aondltions
antd AF.D.E, with

Lwo
The fotdnwineflerman ape due fe G

under which all solutions of linear R.F.D.E.
and constant delay are oscillatory. Ladnas and
1.F. Stavroulakis.

Lemma 1. Consider the differential equation with retarded arguments

; n
it = B fe-¥)=0
» =l

(1.5)
and assume that pi(t)) Q; ri » 0 and
JQ‘”" ‘”‘ff F(5)0(5>0 , A=z (1.6)
£t i-
Then each one of the following conditions:
%Y 0{5 ——!— for same 4 t=—f 2 (1.7)
-[;--)oa -‘:
ot L s )
_ﬂLm '“f'f r%ﬂ[s)d 7
where
r-:——“min{lﬁ, v Yﬂ} (1.8)
. ¢ |
[‘H‘(E&.J/""’ - [t_r_Ps‘”)AsU ary (1.9
o=l J=1 e J
or
ds .ﬂm- = |5)°’5 } 7
"r{'.% {['P/"'“ ‘"TJ fees) J[ f[np j (1 10)
t—roeo

7

implies that every sclution of (1.5) oscillates.

Lemma 2. Consider the differential equation with advanced arguments

g'({)—z“ ) §etr)=0
A=t

(1.11)

yariahle coeflinients



and assume that pi (t)z0, ri 20 and

%
tt

.'R.m U‘f’ 2(9)0!5 >0

t—ooe

L=z, - n (1.12)

Then each one of the following conditions

Hh | r some ,{; ==f{ 2z - N (1.13)
ﬂ/‘/'“wlf K.U)"ls 7_..6—. ;fé , * P .
£—re

t+f "
fv‘f'f P(s)ols >—_ WLWQ. r—"’—"m“n{n'ﬂ"“n}(l.l“
h Aacdacy v oes .
t+r; 4 |
n J L
= Him in f g JS >
'n_: (_-,.-r /P.t_.,,.,f t E[s) -)] € (1.15}
or ' n [[j f-['rP JS)(% ‘“f/' P [,)0(5) %27_[
F;Zkl -f;.—:.:ff (%) trewo t 7 € 4 16)

implies that every solution of (1.11) osciilates.
The suthor of Ref.[2] obtained some sufficient conditions under which
all solutions of (1.1) end (1.2) are oscillatory.

- In this paper we shall generalize and improve these results for very
general linear and nonlinear equations (1.1)-(1.4) with continuous distributed
retarded or advarnced arguments-

In section II we obtain sufficient conditions under which all solutions
of R,F.D.E. {1.1) and (1.2) oscillate. 1In section II1I we study A.F.D.E. {1.3) and

. that
(1.4). In section IV we give some examples to showlo'ﬁir results are very good and

useful.
1T, OSCILLATQORY CRITERIONS FOR R.F.D.E. (1.1) AND (1.2)
. i = . = < < <, <a = b,
We define ai(l 0, 1, 2,..yn) such that a a <8 <8, <a ,“a b
-3 -

and{Jg)is continuous in 2, (i =0, 2, ..., 0}. Alsc set

I\———-[“ - “‘J
)_ﬂ{m;) 3el;
O"(a g <A (2.1
Tlagy, T>0;

F“)—"'I s, ;)9{0‘(}’) (2.2)

f(s)_-—_—_LFrs.f)J"'tz)

(2.2.)2
Suppose the following conditions
+ i 0 .
(c,) .,Q/w“ " , P(s I)JU};)JS >0 (2.3)
toe P37
for each E*¢ fa b] , for which when
7 Efa, 7748] | Hhen O(3)=E et
and when £ P
Tel1%s, 7457
then g (§) ,‘- const for each sufficient small >0, 82 0.
(C_} +
! _,Q,(‘m it f(f}ﬁu >_éL X (2.2)
£t #(tib) : ’
(C } .b ‘
2
Lim Mf/ firs)d-'»'?-é* p (2.5)

for some i, 1 =1, 2, 3 ... n;

f’g"JUa waj;é )?tsq)olsdr(;jolaq)—{-[clﬂ'(?)

(2.6)
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€0 b b t f2 “ ds o(o"czwhfr
/ S P(;}})JS ~[£IM' ]L[ F”'{) J
LLE%‘:WJL[W,']) J t>oo fre1)

> %

Theorem 1. Conditions {2.3) and (2.4) imply that

g}(f)""fﬁbf(f,f)éf[j’(f;fﬂo{ﬁi)éo (1.3),

has no eventually positive solution and

) b
gfmﬁﬂ e,y Lgee, 3] doig) 20 G,

has no eventually negative solutions.

Also if condition (2.3) is satisfied, then each one of (2.4)-(2.7)
implies that every solution of (1.1} oscillates.

Proof, Here we only present debails%%e proef when (2.3) and each cne of
{(2.4)-(2.7} i3 satisfied. Another two results can be treated by a similar fashion
in Ref.{2].

Part 1. The fact that conditions;(2.3) and (2.4) imply that all solutions
of Eq. {1.1) oscillate is due to Ref.[2].

Part 2. The proof of sufficient condition (2.4) is obvious. We only

notice that from Eq. {1.1) we obtain

j.P;s pfﬂg(s i})dﬂc;)_»zfﬂsz)#[jts 5)10(5 (I) o

gf(‘f)'{f:?(s’,i)#[g(%;)dﬁ(z)éo (2.9)

for the i for which (2.%) holds.
that
As in [HJ we can prove/every solution of (1.1) oscillates.
.
Part 3. We present the proof when the condition (2.6} is satisfied. To
this end suppose that there exists a sclution y{t)} of (1.1} such that for tO

sufficiently large,

gtt—)?t)’ f?*e

Choose a tl >tO such that y [glt, £} }>C, for L> tl and thus, from (1.1}, y'(t) <0

for t >t1. Next choose t2 >t1 such that yv{t)< vy [gl{t, £}] ,for t > tE' Set

. ylgt 1] .

Big)== Lim"f Wit 1)

t=— oo

Def'ine

alsc
and Zassume that all of them are finite or for some (*€[ a,b] ,.P( E%¥) is infinite.

Case 1. All cf ,Q( £),8&(a,bb] are finite. Dividing both sides of (1.1)

by y(t), we obtain

L{p[ Pe, 1y wit,3) A0 )==0

3‘-({:) A

Integrating both sides of (2.10) from gl(t,n ) to t, we find

(2.10}

¢
JOJ Yooy —Rog gL rp]ﬂa”?ff P oy, Jo{s—(z_f)

Aog Wit 0= f £f fs 1yWis 1013 ]d s =0
gy

Taking limit interiors on both s;de% of thc abave equation for t + « , we obtain
Wes 3 )de,y 7 d
Jyg Ropy= A0t fmgj fiss)Wes, 5 )eldiy )] o s
g st e deden
£t o J

fi ftr’(s-r)er,r)JS driy)

A t—=eo gbff

(2.12)



—-“[ /a""""f{W(f (t), I)jgft Pj’ U a(S' dffz)

fuw- o} Wi, U [,e,w-f[ f’rsz)JSJa/m)
_—[«Qtv [,thuf[ Frfz)a!fjo(mz)

So

[ lipdy 2 J, [l de ot i)

= [4ef]; imnﬁfﬂﬂphdﬂﬂJdﬁT)

Set the functional

b 0 Fr; )dﬂ(fryj}a[m )
p),__[ {};{),Qr«?)rﬂ(r()[glt_mf e U‘? /
we obtain 1(R) 3 0. (Z {3)

"Also set

gy iyt e[ iop [ P55 470, ]

1)
dE) __p

c»l«? fﬁmt"f[ Fes, )0(5 doz,y==0
e .P(rl) &t f04,7 )

So if

- ¥
,Qn])-*{f,? ﬁffp)( 1) r?)j /
then I{£) has a maximum because
m ____( == 0 T‘m-t i<

oLP £
3‘({7
;o

Frs ;)afjoffq) 0’”?7}

sy dsd
Set ﬁ*(.?)__:___.[f‘w f’fq) 7407)

£ .1

[e. Lb,eogf??)o{ﬂ}?)-f-[a 0{,017)‘“0

which contradicts (2.6).

Case 2, For some £*€ [a,b] dp{ £ is infinite. From equation (1,1)

we have

gff) g[(f’!ffjj‘f“[f, /ﬁc})#[ﬁ(;fjo/ﬁ;)dS—O »

Lhe
Dividing both sides of /above inequality first by y(t) and then by y[lﬁ{t,i')]

we cbtain, respectlvely
4yt i f 2l g ds< 0
Ft) 3t 7R (2.24)

and

. . xte
_.%IL_@)_%/'F/& f;fr;})mﬁ & dog)ds<0
Froyw, 141 Vit 1%)a drpee i) (2.1%)
From (2.14) and ,P(g boring infinite, we o‘:-t:':.'Tn f+o

. 7
5{:[5@(’&2’!] = |+ @L[@ t,3%) | [ Fs 1) Aflf)‘ls
g({-) J‘w({-)ﬁ J 4

oy Ry
L/ fgferwzd}f ot m d
/lel t—:,..,.,_-,. £ po P(f'f)

t—> e #ﬁ}

S ot foye 'y

£ o ﬁ'(—{:)



From (2. 1_:) and IP( £ *) being infinite, we obtain

Y RGE ypds <o S
f% sz Drs. 3 c‘fflf’(f Z@o[o‘(j_) s Hfre,3%))

M P(s Aaf 0{5 JLH}
&W‘f iﬁ‘) Ih‘; ,,}f 1)9°(3) g’[f({- f)j

{j;m it ﬂxﬁﬂi} {1 o ief |

o c?'flptffjj t>oo Pit,77)%a
g#[f(f, %)) f
’-€:—>mf 5'(1:) ]

s :ﬂgu M)
£ 6’[‘}9(1‘ }*J -E_H'o .

Because

drye, 177

the above last inequality leads to a contradiction.

Part 4. We present the proof when the condition (2.7) is satisfied.
" Otherwise there existsa solutjon y(t) of (1.1) such that for to sufficiently
. the
large y(t) > 0, t> to. As in part 2 of/proof of this Theorem we can define

"W k) and ,P( n), and also obtain (suppose .,P( n) is finite for all
nglab ] ) .

{f q)

Integrating both sides of above equatlon from a to b in n , we obtain

Iﬁojﬁ(v‘)dc‘[q)-—— { s Mff Eff’(; f)Mr})o{Fr})Joff}o(a‘,V

[ Pf’f)dﬂ?p""j}

),

As in part 3 of the proof of this Thecrem we obtain

{](t r()

.{lbﬁ'@(q)ﬂ[b[rl)//} {f,@ff)[fl..... { F(S]‘)JSY‘JQ‘[” 0/0?!)

Define

JIaR f P(fz)sk

+ - 0 6rffr

('] W:m)"‘“ww) |

H(}rl)f

f gjﬂt \ﬂ) o{ﬂ v[) =

_ gb b_J‘Fl(}'[) p(,,)H(V] T)]Arz)dﬁ‘u])
Lop) Ay
R i
{y() jpl"i)
ffﬂq)Ht-m doi3) AT )

Notice that the functional :
b ,Pftﬁflﬁ) [ J
_ -—— O_(
Ifﬁ)_ L[ j“’[) eJ 7)
has a maximum O when 2 (n} = e, because if & (n)= e then

fgd 4 __ gl
-;(Jp—[’%- e‘]/ =t £* /ﬁe-__o

2 I _
_,_QLT[,E*,ﬁ A [,, _gi‘_g%f”j_‘()/} =—_e’_?<:,o
=e

S‘o f((’)“o, r-e.



So we have
b

b b
‘—ef—-faa{d‘(,?) ;L LJH”',?)H(,{’-H JWlf)OIW(”)

This last inequality leadsto a contradiction with (2.7). As in Part 3, when for
some g‘;ﬂ (£*)

of the theorem is complete.

= +«, we are alsc led to a contradiction. Therefore, the proof
Remark 1. Notice that in condition (2.3} g * must satisfy some
condition, otherwise (2.3) is not satisfied.

Remark 2. If {1.1) is as (1.5), then conditions (CO)—(CA) change into

(1.6)-(1,7) respectively.

I+ {frttl,v)l?’?rm)/b’l (1Vf{=cCe

Co is some constant) and f(t, £, 0)= ¢, then non-linear f‘unctionf(t, £, )
is "bounded linear", are satisfied,

Theorem 2. If the cendition (2.3} and one of the conditions of (2.4)-{2. T)}
alsc % {(t, £.,1') of {(1.2) is "bounded linear", then every solution of (1.2)
ogcillates,

Proof. (therwise there exists nonoscillatory solution y(tl> ¢,

cone can obtain

b
p=Hkst [ ftt3 frge1s])d o)
?’5’&)*[:’{’&,5; Hlg,1)] doz)

By the results of Theorem 1 we can obtain {l.i)l has no eventually positive soluticn
and lead to contradictions, Also if there exists nonoscillatory solution y(t) < 0,

then we can cbtain

0 za"(f)«“f%ft,? Fegie1)])dra)
< feort [ e gge]drg)

By a similar reason it will lead to contradictions. The proof of Theorem 2 is

complete

- 11 -~
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III.  OSCILLATORY CRITERIONS FOR A.F.D.E.{1.3) and (1.4).
As in Section II, we define a , o (% ),Yi(_’»). Pisri=1,2,...m.

Set

(c ) ,Eﬂ"”‘ff mf)f Prs,1)dogyds

R Sl e

{3.1)

for each ¢ *e| an)r for which when E&£[£*-¢, b], theno {g ) £ const.

and when ref[f* = &, £* + 5' Jtheng{t) £ const. for each sufficient small

& >0,8'>0Q;
E(fz‘) ’
ey Jim mj—f Pesyols 3 (3.2)
t o0
{ ! nu t"f‘ J' ' & S'}é’ 37"—" (3.3)
£ e

or some i, i = 1, 2, il o
ey [‘&‘7[{}'”‘"{- Pes. 7)A§JF(f}]AFf7)

-l-f do‘u?) >0 (3.4)
£t

" ba
o P et [ R Tz,

tooe

l . 5.9)
)

Theorem 3. If the condition (3.1} is satisfied, then the condition (3.2)

implies that

b
gfr(t)’f‘ F(t,?)ﬂﬁff,i)_]“{fq)%}ﬁ (1.3,

has no eventually negative solutions. Also each one of (3.2}~(3.5) implies that

every sclution of (3.1) oscillates,

- 12 -
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Proof, We only prove when conditions (2.1} and (3.4) are satisfied.
Otherwise there exists a nonoscillatory positive solution y(t}> 0, (t> tr\)'
o

Then y’(t) >0 for t » tO. Hence y ﬁt, £)]zyit), for t>t,O. Set

for t >t fé[o\,b] (3.6)

and

(3.7)

A=At iet) 7€ (4]

Then Z(t. ,E)> 1, and x (£ ) 2 1. Dividing both sides of (1.3} by y(t), fer
{

t >t we Jbtaln
[m 1)d1t.3)d00; )=
}f(—t
Integrating the last equation from t to -'ﬁ(t n) for n€[ a,b ], we have
g i, 1)]——»‘9"33‘(*2*’[

We now considser the folleowing two cases:

kit ’l oS
P(S}’)J’[g f) 38)

Case 1. 1 {E )< = for each {&€[a,b] . Then {3.8) yields

Rt b
-@{qg'{f,?{)._——:ft' [P:s})}(f I)JJ',UJS

Taking 1imit interiors on both sides of the above equation for t + « , we obtain

b i M)
ﬁcﬁ/\”’)?( A(;)[,B:m—ff ® !Prs,z)ol'ﬁj Ay )
As m Theorem 1, we can btaln

I Ja’[f ﬂw .-f—f Jﬁ;y’)didﬂ})Ja[D}q)”{'f o/lfu )= [)
This mequatmn LOntr‘EldlCtS with (3.4).

Case 2. (g*) = =for some (*E_ a,b ] ., From the equation (1.3) we have

g0 ﬂfwf i IW A Fr'f 1drgds =
#it) A 7

As in case 2 of Theorem 1, we prove,
10 _
.,?,‘w inf 5[1“ 1 + oo

£ 00 #t)

- 13 -

fleo we hove b
| o 175/
[— j_.‘i_’._.__ - _ﬂ&‘_@l ﬂ ’ Fm)o’m}d‘; Z0 -
i) e e
This inequality can lead to contradiclion. Theorem 3 is proved.

Theorem 4. 1f the condition {3.1) and one of {3.2)-(3.5) are satisfied,

also f(t, ¢ ]/) of {1.4) is "bounded lineur", then every solution of (1.4)
’
oscillates.
Froof. As in Theorem 2, ctherwise there exists nonoscillatory solution

y(t) > 0, one can obtain
b :
o.—:g'(f)«*fa"fff,f, ?fﬁft?)””{‘r(f)
< )= [ Pep ki, 1] AT

th d.
By the results of Theurem 3, we find /71 , has po eventually positive solution
and leadsto contradictions. If there exists nenoscillatory seolution y(t) < 0,

we can obtain

0’*!/{*)'[ fit,7, rffﬁ(f 7;]0[077)
7}7’&)*[“ Post) % (t,f}jdﬂf}

By the results of Theorem 3, we find (1..3,1? has Lo eventually negative solutions

and leadsto contradictions. The proof of Theorem 4is complete.

Iv. SOME EXAMPLES
Example 1.
f -1 o \
g('f)'ff P#'(HU f'"_'t . (4.1}
-2
been 1
This example has[presented in Ref.{2],Tt is 'wwn that if p> o then each solution

1 1 . :
of [4.2) oscillates; if pg 5 = ihen there exists nonoscillatory soluticn, but
e

1 . :
when ‘;‘ L. p<—, in[2] it is not pointed that each solution of (4,1) oscillates.
e e

- 14 -



(I) We can now'use condition (2.5) to obtain this result. Notice that if

we set = = 2, = a = =1, t]
a a1 T, 5 hen (2.5) is

L i me Pols=a, {9——1‘?7

+— o bt
1 1 1
Set p =k ;. So 1 2 k>5 , 1€ ;<2, that is if we take T such that E>T>;>1,
then the condition (2.5) is satisfied, so each solution of {4.1) oscillates.

(IL). Note that condition {2.6) is

I-’{Bn[f pei- r)Jf]'HfM?O

that is

dy(pt >0, prie

—=!

- -1
It is pointed that if 3¢ < pfe 7, then oscillations of (4.1) cannot
be obtained by (2:6)}.

(III). Note the condition {2.7) is
] - / 2 /
f'f [Ft»f})]"[?t~r{}‘of747>z
iy ]

that is

FU ﬁ,{u 7(? ¢r}P>-’~

! - / fpf
N -—
fj e & o, e N""[ 4p 6{ ;>> 2 €
1T(?"4JEJ
. -1 1 -1
So if e Zp > ‘Z‘f*“*“* e , then each splution of (4.1} oscillates. But if
g (9-4 72}
-1 -1 N .
e P %2p>e , then oscillatiomof (4.2) cannot be obtained by {(2.7).
3 (8-2 /2)
Example 2.

%f-&)‘['/ i(f‘fz)#{ff?)df"r/ [—p)(}ﬁ)ﬁwﬂ)u
=

2)

that is

- 15 -

(I). The cond:tlon (2. 5) is not satisfied. Netice that

f

yis wf-f [f Z(pt2)d] Jds— Z <
-+ > o f

S cf! HZ)&H]J'S"———<-—~
“Q"é_.wf'[ [_22

(II). The COHdlthn (2.4) is satisfied. Notice that

J_— [ [{ -—(z+z)df+/ —“(i’+2)dijd5- 2 )

6?
e

(ITI). The condltlon (2. 6) is satisfied. Notice that

[ ,&7[[ t~j)(- )(r’—fz)di]a/v]-ﬁf ~15s (7+2)J}'],,{7
‘f'f_ Ar,_-:[»ﬁfj[l{v’(frq/}a{? fﬂcjlﬁd7:.€cjlg>0

(Iv). The cond:tlon (2. 7) is satisfied. Notice that

fﬁlj [=9)(3 )(Ffz)]/:.{(ﬁz){_ ﬂ'?'“’ﬂ ZJ?JV
:“[fWJvﬂ e 2y b
f [( q)—sz)]/;[( f)(-——(?rf-z)J Jf,;!yf
U Ve i) == =(2)"
Iz—-~2f NG )“fz/]/"'[ﬁj) 2 oqe2)] Pyl
—~—[r~-£m(z - E
T2 [ TR NCSPES 17>

- 16 -
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Example 3.

{ " ) ~—L ‘ sj =
g(+)+f—7%#rt+?)a(j+[l;g(f’“’+ PR AAN Ut 0

{I). The condition (2.7) is satisfied. Notice that

I7I'-—'f f ((*7)2é]/‘[r-?) ’&d;aiv]»——,mzc;e >e

is not satisfied. Notice that

(Jt2+55 01 s = -~ 7 <

€

{IT}. The condition

-2 ]
tP t“f/f [Jf 6’?+i{
ty oo £l
{II1}. The condl‘t'un (2.5) is not satljled NGLAc‘iLthat
od § =<
mt“f{ f re(f'f‘?f‘ Jol§
1:—9 [=d = | oj ‘I S .
\Ll"‘" l"‘{_ t?— [ Ze Z

{1V The LQﬂdl*lon (” £} is satislied. Notice thqt

r

[ aglle D AT] M+f B[l g 2t 5l 1 oy

_ %
—ff:}'o(?-::. bt [ Lteylp4 5 0df = b | =0

Trom Examples 1, 2 and 3 we can eaziiy obtain examples of advanced

i L1,
type equations.

2
fror- [ teepdy =

1
If p> = then the condition (3.3) is satiasfied and each solution of (4.4)
e

1 -1 -1 : ;
oscillates; if 5% f“pse then the condition {3.2) is satisfied and each

solution of {4.4) oscillates but the condition (3.3) is not satisfied, If

2 -1 s 1 .
— e <pge , then the condition (3.4} is not satigfied and the oscillation

3
1 -1 -1
of (4.4) cannct be obtained by (3.4), If e s»p>e , then the

A
—- (-4 42
- )
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condition (3.5%) is not satisfied.

Example 5

f{(f;[ ([-z)(?(ff;)d; [(—-)f;-z}d‘t(ﬁpol}—v

The condition {3.3) is not satisfied. But conditions (3.2), (3.4),

{3.5) are all satisfied and each sclution of (4.5) oscillates.

Example 6.

& fzeg‘tf?)"’] f (- ZT*})#H;)J;*

(4.8)

Conditions (3.2}, (3.3) are not satisfied. But conditions (3.4}, (3.5) are

satisfied. So each seclutien of (4.8) oscillates.
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