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ABSTRACT

In this paper we consider first order linear and non-

linear functional differential equations with continuous distributed

retarded and advanced arguments. We give some goad conditions
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I. INTRODUCTION

111 this paper we consider first order linear and nonlinear T'mcti

d i f ft>rt?nti al equations with continuous distributed retarded arĵ umon t:s

jf'tu* .1)

R e c e n t l y 0 . L u d a s - a n t l U P . S t . s v r o u - I ak LR f 1 | <>*->ta\r\'i<l n u f f ir . i i n h n o n r J i M o n 3

u n d e r w h i c h a l t s o l u t i o n s o f l i n e a r R . F . D . E . a n d A . f ' . D . E . « i t h v a r i a b l e c o e f f i ^ if;ni;-
Lvo

find constant delay are oscillatory. Thr- fo "I j owi nc/3 fvm.ir; :,re due to fl. i.adas and

I,P. Stavroulakis.

Lfimma 1. Consider the differential equation with retarded arguments

and the advanced type

Oscillations of these equations are studied.

Bslow we shall moke the following assumptions:

< V p: J?fXftt,y^ ? f ^ continuous , %*=[<>,
(H ) ff~% £#. jj 1 — * V is a nondecreasing function;

(H ) The integrals in equations are Stieltjes integrals;

J * J
is continuous, jP^_£-£( +0oJ

t or C respectively;

(1.2)

(1.3)

ti?)is a n o n d e c r easing function with

is continuous, f,(i S ) i B a nondecreasing function with t or f respectively;

(Hg) There exists function f (t, C ) such that f (f{tj ),%)=• frfr,'?) f(+J)

is a nondecreasing function with t or £ respectively;

(H ) There*e^ists function * it, I.) such that ]L ( l/'ff, J}f ̂  ) = = '^•{'t, X) J^t

is a nondecreasing function with t or S respectively;

and assume that p.(t)> 0; r. > 0 and

Then each one of the following conditions :

where

* •=!

(1.5)

(1.6)

1.7)

(1.8)

(1-9)

^

implies that every solution of (1.5) oscillates.

Lemma 2. Consider the differential equation with advanced arguments

I (1.11)
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and assume that p. (t)JO, f. 4-0 and

t** HI ff
t

Then each one of the following conditions

•T fr

1.14)

(1-15)

implies that every solution of (1,11) oscillates.

The author of Kef.[2] obtained some sufficient conditions under which

all solutions of (l.l) and (1.2) are oscillatory.

In this paper tie shall generalize and improve these results for very

general linear and nonlinear equations (l.l)-(1.4) with continuous distributed

retarded or advanced arguments-

In section II we obtain sufficient conditions under which all solutions

of R.F.D.E. (1.1) and (1.2) oscillate. In section III we study A.F.D.E, (1.3) and

that
(1.4). In section IV we give some examples to show/oW" results are very good and

useful.

II. O S C I L L A T O R Y C R I T E R I O N S FOR R . F . D . E . ( 1 . 1 ) AND ( 1 . 2 )

We d e f i n e a . ( i = 0 , 1 , 2 , . . , n ) s u c h t h a t a = a < a < a < . . . < a < a - b ,
i 0 1 2 n — 1 n

and0"(Ois continuous in t^ (i = 0, 1, 2, .... n). Also set

Suppose the following conditions

(V
for each 5*^ fa,b ] , for which when

and when

then CT(^) t const for each sufficient small S>otS<>

(c2)

for some i, 1 = 1 , 2, 3... n;

(2.1)

(2.2),

(2.2.)

(2.3)

(2.4)

(2.5)

[ 2. 6 )
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Theorem 1. Conditions (£.3) and (2.4) imply that

(1.1),

has no eventually positive solution and

has no eventually negative solutions.

Also if condition (2.3) is satisfied, then each one of (2.4)-(2.7)

implies that every solution of (1.1) oscillates.
of

Proof, Here we only present detailsxihe proof when (2.3) and each one of

(2.4)-(2.7) is satisfied. Another two results can be treated by a similar fashion

in Ref.[2].

Part 1• The fact that conditions(2.3) and (2.4) imply that all solutions

of Eq. (1.1) oscillate is due to Eef.[2].

Part 2. The proof of sufficient condition (2.4) is obvious. We only

notice that from Eq. (1.1) we obtain

4
i . . tfTo.,,. •* TM/r., i — : ? I Yt$i\ftL1res, Vl^'^i/

J.s)

(2 .9)

for the i for which (2.5) holds.
that

As in [ 2 | »e can prove/every solution of (1.1) oscillates.

Part 3. We present the proof when the condition (2.6) is satisfied. To

this end suppose that thei-e exists a solution y(t) of (l.l) such that Tor t

sufficiently large,

Choose a t >t such that y [g(t, I ) \>0, for I. > t and thus, from (1.1), y'(t)<0

for t >t . Next choose t >t such that y(t)< ,y [ g(t, £ ) 1 , for t > t . Set

•b>-k.

Define

also n
and /assume th=it a l l of them are f i n i t e or for some £*t[ a ,b ] , J : ( 5 * ) i s i n f i n i t e .

Case 1. All cf J?( 5 ) , ?fe[a,b] are f i n i t e . Dividing both s ides of (1.1)

by y ( t ) , we obtain

(2.10)

Integrating both sides of (2.10) from g(t, n ) to t, we find

(2.12)

Taking limit interiors on both sides of the above equation for t * » , we obtain

f
Jtt.p
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Set the functional

we obtain z(l) >, o ,

Also set

then I{Z) has a maximum because

0 '
7 -

i.e.

which contradicts (2.6).

Case 2. For some £*€[a,b], jl\

we have

{(*) is infinite. From equation (1.1)

ft f*. Wlfa^L *<> "ftp*
Dividing both sides of/above inequality first by y(t) and then by y[(p{t,5*)]

we obtain, respectively Q

(2-14)

and

liil 1+
s. vj

( 2 . 1 5 )

From ( 3 . 1 4 ) and J({^"') b",im': inri inte, ve oV'tain

%-l k-Hf IjnJnvJJ



From (2.15) and/( £*) being infinite, ve obtain

r

the above last inequality leads to a contradiction.

Part 4. We present the proof when the condition (2.7) is satisfied.

Otherwise there e.iistja solution y(t) of (1.1) such that for t sufficiently
the °

large y(t) > 0, t> t . As in part Z of/proof of this Theorem we can define

(t, n ) and J/l T\ ), and also obtain (supposeJ({ n ) is finite for

Integrating both sides of above equation from a to b in n , we obtain

ff

- 9 -

As in part 3 of the proof of this Theorem we obtain

Define

f

We have

Notice that the functional

has a maximum 0 when I ( n ) = e, because if I (n)= e then

= --T= <• 0

) •
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So we have

\

This last Inequality leadjto a contradiction with (2,7). As in Part 3, when for

some £*jP (5*) = + ", we are also led to a contradiction. Therefore, the proof

of the theorem is complete.

Remark 1. Notice that in condition (2,3) £* must satisfy SOme

condition, otherwise (2.3) is not satisfied.

Remark 2. If (1.1) is as (1.5), then conditions (C )-(C ) change into
0 4

(1.6)-(1.7) respectively.

If
£ o is some constant) and T(t, £ , 0)= 0 , then non-linear function -fit, £ ,]/)

is "bounded linear". are^sa

Theorem 2. If the condition (2.3) and one of the conditions of (2.U)-(

also J- (t, I ,]/ ) of (1.2) is "bounded linear", then every solution of (1.2)

oscillates.

Proof,

one can obtain

Otherwise there exists nonoscillatory solution y(t)> 0,

By the results of Theorem 1 we can obtain (1.1L has no eventually positive solution

and lead to contradictions. Also if there exists nonoscillatory solution y(t) < 0,

then we can obtain

By a similar reason it will lead to contradictions. The proof of Theorem 2 is

complete ,

III. OSCILLATORY CRITERIONS FOR A.F.D.E.(1.3) and (1.4).

As in Section II, we define a., a ( £ ), V. ( r ) , V (S).{i = l,2,...n).
1 1 * 1 •» -1-

Set

(3.1)

for each 5 *e [ a,b)t for which when E^[5*-6, b] , then a { C ) i const,

and when £fc[;* - s, 5 * + 6' ] then a (?) ̂  const, for each sufficient small

S >0,<5' > 0;

(3.2)

(3.3)1 :r I *
for some i, i = 1, 2, ...n

(V
(3.4)

»-̂ f
(3.5)

Theorem 3. If the condition (3.1) is satisfied, then the condition (3.2)

implies that

(1.3),

has no eventually negative solutions. Also each one of (3.2)-(3.5) implies that

every solution of (3.1) oscillates.

- 11 -
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Proof. We only prove when conditions (3.1) and (3.4) are satisfied.

Otherwise there exists a nonoscillatory positive solution y(t)> 0, (t> t ).

Then y'(t) > 0 for t > t . Hence y $ t , O ) jy(t) , for t > t . Set

(3.6)

and

(3.7)

Then 7"(t: , £ ) > 1, and X ( i ) >. 1. Dividing both sides of (1.3) by y(t), for

t > t. Ue obtain

Integrating the last equation from t to -f{_(t, n ) for TIC[ a,b j , we have

(3.8)

\-Jc now connid^r the fol_1oving t~*fo caKes:

C a s j ^ . * ( ? ) < » for each t*-[a,b] . Then (3.8) yields

Taking limit interiors on both sides of the above equation for t + •» , we obtain

rb r . ttit.it )^

As in Theorem 1, we can jjbtain

inequation contradicts with (3.4).

Case 2. \ (̂ *) =«for some ^^^[s^ . From the equation (1,3) we have

As in case 2 of Theorem 1, we prove

Jf-

'17
This inequality can lead to contradiction. Theorem 3 is proved.

Theorem 4. If the condition (3.1) and one of (3.2)-(3.5) are satisfied,

also f(t, E. l/) of (1.4) is "bounded linear", then every solution of (1.4)

oscillates.

Proof. As in Theorem 2, otherwise- there exists nonoscillatory solution

y(t) > 0, one can obtain

tjiat

By the results of Theorem 3, we find/'l.^)., has no eventually positive solution

arid ieadQto contradictions. If there exists nonoscillatory solution y(t) < 0,

we can obtain ,

- 13 -

By the results of Theorem 3, we find (1.3) has i.a eventually negative solutions

and leadsto contr'adictions. The proof of Theorem 4is complete.

IV. SOME EXAMPLES

Example 1.

_f

'-2

"been ..

This example has /presented in Ref.[2],Tt is .viown that if p>~, then each solution

of (4.2) oscillates; if p^ — - then there exists nonoscillatory solution, but

when < p.<~, in [ 2 ] it is not pointed that each solution of (4,1) oscillates.
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(I) We can nowuse condition (2-5) to obtain this result. Notice that If

we set a - - 2, a = T, a - -1, then (2.5) is

Set p = k -. Sol ) k > - , U - <2, that is if we take T such that 2> T> - j. 1,

then the condition (2.5) is satisfied, so each solution of (4,1) oscillates.

(IL). Note that condition (2.6.) is

'-2
that is ? —I

It is pointed that if - e < p^e , then oscillations of (4.1) cannot

be obtained by (2:6).

(III). Note the condition (2.7) is

that is

r>
So if e J. p > e , then each solution of (4.1) oscillates. But if

9 O-4 /2)

-1 ip >e , then oscillations of (4.2) cannot be obtained by (2.7).
g (9-4 /2)

Example 2.

(9
that is

,= 7

(I), The condition (2.5) is not satisfied. Notice that

(II). The condition (2.4) is satisfied. Notice that

(III). The condition (2.6) is satisfied. Notice that

(IV). The condition (2.7) Is satisfied. Notice that

r,=L

j;f
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Example 3 .

(I). The condition (2.7) is satisfied. Notice that

r,=i rry-v 1**1*1 -/

(II). The condition (2.4) is not satisfied. Notice that

(111). (2.5) is n<: i. Notice.that

(IV). The condition (2.6) is satisfied. Notice that

It

From Example; 1, i> and 3 we caji easily attain examples of advanced

type equations.

Kxample 4.

(4.4)

If p > ~ then the condition (3.3) is satisfied and ear.h solution of (4.4)

oscillates; if ~~ e then the condition (3.2) is satisfied and each

solution of (4.4) oscillates but the condition (3.3) is not satisfied. If

- e~ < p 4'e~ , then the condition (3.4) is not satisfied and the oscillation
3 L -1 -1
of (4.4) cannot be obtained by (3.4). If e :> P > e , then the

- (9-4/2)

condition (3.50 is not satisfied.

Example 5.

The condition (3,3) is not satisfied. But conditions (3.2), (3.4),

(3.5) are all satisfied and each solution of (4.5) oscillates.

Example 6.

%.S)

Conditions (3.2), (3.3) are not satisfied. But conditions (3.4), (3.5) are

satisfied. So each solution of (4.6) oscillates.
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