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1. INTRODUCTION

In this paper we are concerned with nonoscillatory behaviour caused
by retarded and advanced arguments for the following differential inequalities

and equations,;

{yu,’f)_py{g,(tg} Sgn ?[z,mj z 0 (1.1}

{?'7*)—.03[{1*’]}:3& ylkw] 2 o (1.2)

{fh-pfo 910t g, 1) 2 Mdecty - dovs}
: S?“f [.\ ‘“L $L-- e 1l 6, -1 L) dew) "'dcr(f-)} >0

(1.3}
{§b-pft LIRCQRED, 1,1, L)dott) - d e},
.ggn f’:...[:y[{[u-fgct.hu, !L}, “'], ;"}dd-”‘) "'dd-(f"} #0, (1.4}

where n is even.

Below the following conditions are assumed to hold:
(1) p»0, glt) <t , hit} >t, g(t) and h(t) are continuous, g{t,& J&t,
h(t, £)zt, lim g(t) =w, limelt,8) -« rforfelanl;
{2z} o=[a,b ]+ is a nondecreasing function;
(3) integrals in (1.3) and (1.4) are Stieltjes integrals;
(4) glt, £) and hi{t, £) are continuous nondecreasing functions with t
or £ respectively;

(5) there exists {t, ), x(t, &) such that Pipit, £},8) = gltf),

v W, €], &) = n{t, £), lim ¢lt, £) = 1im (£,6) = = ,@(t, L)
t -+ t >
and ¢ (t, £) are nondecreasmg functions with t or § respectively.

Definition 1* If y(t) 1is a nonoscillatory soclution of (1.1)— {1.4),

also there are an even integer & & { 0,2,...,n} and a number t1> 0 such

that

y(t)y(i)(t) >0, on [tl, o) for 06is €

(1.5)

(—i)i_ly(t)y(i)(t)>0 on[tl.cﬂ for £+1£1i4n

then such a y(t) is said to be a nonoscillatory solution of degree ﬂ,
and the set of all solutions of somecne of (1.1} =—— (1.4} i3 denoted by
Y .-

Suppose the set of all nonoscillatory solutions of someone of

{1.1)eee {1.4) is denoted by A/”

Lemma 1°: We have

/\/—-/\/ U/\/U-- U N (1.6)

The proof of this Lemma is similar to the proof in [2] .

In this paper we give some sufficient conditions under which
v = ¢ {ive. VaAQMor (1.1),(1.3) and A7 = o (i.e. AL for (1.2), (1.4).
For variatory classes of g(t), glt, &) or h(t), h{t, £) we obtain
variatory nonoscillatory criteria far (1.1)e=——-{1.4). We generalized

resuits in [1 ]. On the other hand,we alsc give some nonoscillatory criteria

for general superlinear inequalities:

{ ) f(y[gu::])} Sgny{gen) 2o, (1.7}
{ Q‘ﬁtt—f{ﬂ'{wﬂ)}s&n gk 3 o (1.8)

fff'?”hf:mﬁ Fealalsl-- Dote 1), f=-7,"'l?’.])dd!,) ---t(rr!.)}-
.53,4”:...5'3(9&[...ﬂgtt.f-]], ol )detty et 30

(.

fyd-f-fo fOATRE TAEET, 6], t) o) -d et}
sﬂ"‘ f g:-. .-g: f‘yi‘[‘['--ﬁft’,ﬁﬂ, fy]’-. -]' I-J)drffn’u.dﬂf.j}& 0

e (1.8}



Definition 2: Nonlinear function f(x) is said to be superlinear if oscillatory solutions of (1.1) or (1.3) are of degree n (M=/‘fn).

! tx))
gt fazl =2, (1.9) Theorem 17 Tf g(t) ¢kt, for some k&(D,1) and all t>T, then there
Izl =@ e

is no nonoscillatery solution of degree 0 of {1.1)(f\6 =t ).

W : _ . e
e shall make use of the following results of one-order inequalitie Proof. Case 1- In the case g(t) = kt for some k&(0,1) and all t32T.

which were obtained by the author in [3 ). Let y(t) be a nonoscillatery positive solution of degree O of (1.1}, So

Set {n}
: y(t) >0, y'(t) <0, y"'(t) >0, ..., ¥y (t)>0, for t >.t0. Set

n“l“-’ L

’ b b -
{;;:H[Apm,ng‘{grtt&do—m} sgaf, g vldatir S o (1.10) Y, ,_Kf"’ sz*"x z

r

S * ta-t) 2 -3 e ) —
{}&)—{:P(t}’}f{lsz’} dot !)} SF‘:}[{(:,!)] o) 20, 3'(*) ‘y‘ (’;—J —/’ ‘f...x-# (Kff)-l- 'P"aa-} '

(1.11)
a=i -2 h-i At
\..+P" "{Jg’(k* ‘t)_.P" g{.#{% x—) (2.1)
b
E(t)——- g&}’(f,t)dc-(f), (1.12)
We have
(8} it (¥ (t.13)
1 - ﬁ-ﬂ'-ff _E(SJJ.S > l/e ’ 3 1
tnes M ' 3= 4t —ptu, K ;“"Qﬂ};-rp"‘u.-,k*g"‘“’{a"i)—-
(H,) . I*‘ ds (1.14)
s Limin Besy >0 .. ML gad § n-i RN, At
**“f pek, 1) ' S Tl 7 t)—f woK Gkt ),
H' . +,a {1.
( 1) Lim tn.fff( ’B(S)ds >‘S/€, , (1.18)
ity We choose positive constants UO'Ul’ e Un__2 , such that
(Hy) Lim c'-ff:'*'“’zmols >0 (1.16) L —x*d, , =0
wroe
»
KUy~ they= 0
Lemma 2. If conditions (Hl) and (HE) are satisfied, then (1.10)} has no A
nenoscillatory solution. K”"-L - U=0
Lemma 3. If conditions (Hil and (H)} are satisfied, then (1.11) has no d, — K" ly=0
noncscillatory solution.
n(n-1}
3 2
. - 1/k" = ey = 1/Kk* .
that is, Un—2- 1sk, Un—3 1/%" U0 1/k
2, RETARDED TNEQUALITIES AND BQUATIONS Notice
Here we are interested in the situation -in which there is no non- ?“(,t) _..-P y[(r];,o . (2.2)

oscillatory solution of degree ¢ of (1.1) or (1.3) FV('J =¢) or all non-



nfn-—t

Feraprande) = g'“,!n_.p*'x__trzgr[x*?e}

Pa— ]

=Ywr~pylkt] 2o (2.3)
Then we can obtain that s(t) is a negative sclution of {2.3). But
1‘ I - —
e iRt R A Y

Rivisf plt-fEt)me 2o 5 o

t~ree

i.e. Conditions (Hl) and (Hz) are satisfied, $Sc using Lemma 2 we can see
that there is rno -negative solution of {2.3). This led to a contradicticn.
The proof for y(t) <0 being similar.

Case 2. In the case g{t) <kt for some %kg(0,1) and all t20.
If there is a positive solution of degree O y(t} >0 for (1.1), then

y'{t) <0, i.e. y [e(t)]>y [kt] . BSo we have
0 $ $ t—pI3eh] < Yl —p YK %]

From the proof in Case 1, we are also led to a contradiction. The proof for

y(£) <0 being similar. The proof of Theorem 1 is complete.

Theorem 2 If g{t) £t -7 for some (>0 and all t >"t0’ then

the conditicen

W-f'e > I,

{(2.4)
implies thet {1.1) has no nonoscillatory solution of degree 0 (Na =0 J.
Proof. Case 1. Tf g(t) = t - for some T >0 and all t ;to. then

Kusano [1 ] has proved this result .

Case 2. If g{t)<t - T for some T>0 and all t;to, then

-5 -

we can suppose there is a nenoscillatory positive solution of degree O,

y{t) >0 of {1.1). So we have y'(t) <0, ylg(t)]>y(t -« ), and

O #r—pylaw] <y - gt4-T),

From the proaf of Case 1 we can deduce that the condition (2.4) implies the

inequality

$°u) —pyit-t) 20,

has no nonoscillatory positive solution. This led to a contradiction. The
proof for y{(t}e O being similar. We proved this Theorem.
Remark. Using Theorems 1, ?, we have the following
Ay
results. If g{t) is taken forms as t {0<v<1)}, g t, then for ail p
(1.1} has no nonoscillatory solution of degree 0. Also if g(t) are taken
. 2 oo MY
as t - [sint), < then for some p, which satisfies P& e >4

{1.1) has no nonoscillatory sclution of degree 0. But if g(t) is taken

-t 1
as t -8 , t - i then we need the condition as follows.

’zi"f.‘.‘f’.';»"’*.ﬁ; f;:ls-!mr"fw’*?“’f s>t

for some i€{0, 1, ..., n - 11, to assume that (1.1) has no nonascillatory

solution of degres D,

Theorem 3. For (1.3) N‘:Afo U ,y;. If in (1.3) one of following

conditions is satisfied

?&.f’S t~F (b-ara) f.r olf xrzty, fffﬂnﬁl, n‘J
wpte=t
(ii) FEI g k] for seme k|, wiicd Saat‘l.fjfd ec ki<l (2.8)
FE€La:d), and atl 2214,
then for (1.3) N <4, A=A . For (2.2 A= 8 N

(i) (2.5)

Proof. (1) Tn the cese (1.3).0therwise, let y{t! be a nonoscillatery solution of

{1.3) of degree !, 0< £ ¢ n. We may assumc that y(t)»0 for t 2tg.

-5 -



Take t2 such that

ll&_ a
1 MU S E 2 RkELy M8 P L.y 7 ) I
is bounded. In fact we may choose ¢, such that ? F"(" f"} ! f.dsd) ﬂ[d‘({,) Z9,
{n-1} (n)
then we have y(t)>0, y'(t) <0, y'"{(t)> 0, ..., ¥y (t)< O, ¥y {tI> o,
man §Lal- gt A0, 1, 2.] 2 £, _ _ . ,
Yo €[ab) . that ia, z{t} is a nonoscillatory negative solution of

At 2,

For t 3t_ we have / b

-} ;at}"'?*fui’f-f‘f)a(;;g
R} o )
r-gtey = Z ki 2 )L, f* ot 5"

Judwer GeR)1 £ m#ﬂ-}{‘)dé Using the condition n Jp E e »>1 from Lemma 2 this fact led to a contra-
diction. Secondly, suppose g(t, £) <t - ¢ for £ [a,b] ; t;to. wa can
Rel g
) ¥ t’ (-5 obtain
—
o E et (LI Lo e b »
' " - p i fl LU Ll L ), 2l ety A otdh)
2yt LI B S wogdath) 2 o0
-4~ ! /#{t’ —Pf "'r g'ft'ft s’a, j’n)da_(flj 40. - '
9 (,t,) + P o ] f -5" P ’
)-d b e
Ei Lty F[(. (kg dots, s T g
Pe. gebre, yrby e,
t 9”:1:») = - (1‘-1“).—1 '
i o p [ bttt L
) . where y(t) is a nonoscillatory positive scluticn of degree O of {(1.3),
. ye ’
y But f ') >0, e J@re i <o, AL QgRINEL- 18] > Yor-dfm - 1),
It follows that y {t) += as o= . ut from y As in Thecrem 2, we can easily obtain a contradiction.
uﬂ)(t} >(Q, we have ( )(t‘n< y(“(to) = const.
2. Supose conditi B isfied. Fi ly, t, =k
This led to a contradiction. So we obtain /V'=/VE)U,‘V” tion (2.6}is satisfied. Firstly, suppose gl(t, g} tg
for some k, which satisfied 0<keg<l, gegla,b], b>ra>0, t>,t0. Set
(2}).1.8xxp0se condition (2,5) is satisfied. Firstly , suppose g{t,f)=t-¢ '
£ ), t2t , (b>a>0). Set ]
er telam]y vk (braxe). se FO = g, P, (14O et ) +
) en=t) - 1eb . 3 b -1} L2
F = "l () e o dett )+ pr L gt - deetydeng, ) . Py (24T B )d et doth) -
N A A o ' - 5 At
e A n e - Acth.,), —~ P [0 [ ¢ it B )dotd) R )
We have n _n-—_]: n
: where p* = yp (k*a) 2 . k* = R .
4 b arh b
)y - —
3 +P"'L_ p-DAF = yeu)—pr LL b -1 )deg) ) o) So we have

As in Theorem 2, if y(t) is a nonoscillatery positive solution of degree O

of

-8 -
-7 -

- o

P



s p* [* 20dng) doct) 3 0.

Secondly, suppose gf{t,f£ ) <kt

gf(t)‘___, yh}l‘)—-

é -
Pru K[ 5,80 f 0 daer ) +
L >
FP U [ e ) b, dTtiodorf ) — - -
’ From Lemma 2, we can obtain a contradiction.

for some k&, which satisfies O0<kEg <1, Ee.[a,b] , and all t'>t0, then we

'_P*hl'tg ! :‘__ y:. % AR #’(K'.-} [ XA "'f,.-- )J{ﬂsﬁ)"'d?(;’._,)
3,2{.; +Fo‘[¢: }[K‘tf)dd“lf)j= can easily obtain that
= #“'h‘)-ﬁf"’[f:(r-l{..‘l(“!’)#h—:)(kftfr)oLd‘/ffJ]+ P #“zt)—Pf:,"'J.: #[9[9[.__[1'9#;!,]])...]’ fﬁ]dﬂ‘(ﬂ)""{-‘ﬂ-i’n)

$ YO~ [ fy gt~ 5, =~ fuddetin - - datin)

0 of (1.3), i.e.

b 1 a
*P*‘UJJ Uny kY5, 0, —tloey J 002 183 Jdtid ot h)) + -
g rb & -
PP L b 8 g b, g detpye detg ) -
__P#‘k‘[[:f:, f‘(i’}ﬂ ’)’a )dd,.”')_“#{f;)] where y{t) is a positive solution of degree
yrzo, 400, YL - Lot 4], 5], - LI B YA )
As in Theorem 1, we can easily obtain a contradiction.
. S0 we

(3).Tn the case (2.2). From Theorem 1, we obtain /V'O = 3

seen h that
If we chooge Un—2’ Un-3' Ul, UO suc a
= - = futq )3 - 2t/ 7= i
f&.q—(ﬁ"ﬁ.) ' ““3—(.( a) T U= (k"FA) 2 ’ have ‘v Afn The proof of Theorem 3 is complete,
l.8. F N < N [ .
"'“n-xk*f,.{a) neg x*;’,}"_ —~ e 2 0 T Theorem 4. For the superlinear inequality (1.7) or (1.7} if (2.5)
e or {2.6) is satisfied, then N’:-’V; . i.e. /VO =¢
=il AF Y o] or ¥.&fa 4] (=12, n
LA A , f L [as], ’ A Notice there exists a large enough A > 0 such that
then we have ’ .
fly{g(t))) 2-ay(g(t)),we easily prove Theorem 4 for (1.7}. Similarly for
) {(1.7)' we have
Feeripr [ty (i
7
> ol : {‘- { ¢) R . :f(%ﬂ}[---[w,!,)],;,],--J,}.J)
e " ke )T uFe 4 *
7 ¢t —pr (K% ) - [OHO R et b -daed,)
\ R f-\- e Z ;\:{[9[3["'[}dlfll?,ﬂ]/"']o;h] ,
= ”'/.H
PW—p [~ [ txts, - 3 stz det
f" ! ; } %) 4 fﬁ)- where A >0 iz a large enough humber.
Suppose y(t) is a positive solution of the following inequality:
3. ADVANCED INEQUALITIES AND EQUATIONS
Now we turn to {1.2) and (1.4). Our object is to give some sufficient
condition under which /V’n= ] .}\/:/VO for (1.2) or (1.4).

y“kﬂ-#f:---f: ¥l T oloep) - dard, ) =z o,

Then we can obtain that k(t) is a positive solution of
- 10 -

_9 -



Theorem 5. If h(t) > wt for some w>1 and all t >T, then all

nonoscillatory solutions of (1.2} are of degree 0. (/V‘='V£j ie. ¥ o= gl
n

Progf. (1) In case h(t) =wt, for scme w >1 and all t3>T. Let y(t) be

a nonoscillatory positive sclution of degree >0 of (1.2). Proceeding

exactly as in the proof of Theorem 3, we see that ¢ = n, that is, y(i! .0,

{n-1}
¥ (t)>Q for all large ¢, say t3zt 37T. Notice

y'iler>a, ...,
1 ¥

»

Y —pyrwr)] zo. (3.1)

Define o T
}(t)= ?m?’h*'f‘“""l ?"“Al)“ff)-f /0'““*-3 5“4)(4\1*?)1" e
A=y -
P Y (A ) 5,
” T LI

where P*'z,["p'u) v, Wl , HUe (uome f .. n—2)

are some constants.
Then we have

5*’?‘}""*’*}"“%.,#“"%JfJ+F*f(n3y’*"’(:,ﬂ‘t)+ .

P U g )

If we choose positive constants u,u., ...,U which satisfy the following

o' "1 n-2
conditions
‘U*“n-; - f =0 ,
PR _
g ~tl,= 0, (3.2)
3.2
i
U — Uy =
that is Unr= Il 4y = VN"’ Dl = gt T

’

So  z(t) is a positive solution of (3.2). But

- 11 -

L. a ) =
*_;f}’(a: )= oo s 1y,

_,ﬁr‘mr':jf (far At —F )=t oz > 4

X2roo

.

that is, conditions (Hl')and {Ho') are satisfied.
So using Lemma 3 we can see that there is no a positive solution of (3.2).
This led to a contradictiocn.

{2). In the case h(t)> ut for some w>1 and all t3T. If there is
a positive solution y{t}> 0 of degreee &> O for (1.2}, then y'(t)>0

i.e. y[h{t)Pylw,t] . So we have

OS YoUr—pyl o)) Sy ™) —pUTert]

Frem the proof in the case hit)= wt, we can obtain a contradiction. The

procf of Theorem 5 is complete.

Theorem 6. If hit)zt +7 for some T>0 and all t 2T then the

conditicn
4 (4
/P = e » |/ (3.3)

implies that {1.2) has no nonoscillatory solution of degree n. Wh = ¢ ).
Proof. In the case h{t) = t + T for some T >0 and all t> T. Suppose
(3.3) is Sa-tisfied. Otherwise, suppose there is a noncscillatory positive
solution y(t)> 0 of degree n of (1.2). So we have y'(t)>0

i.e.  ylhit)] »y(t - ) and

0 < Y @prmp ylA]< § Mitr—p Y (24 T

From the prcaf in case (1) of Theorem 5, we can deduce that condition (3.3)

implies the inequality

ity —pytd+c) 20

- 12 -

I



has no ncnoscillatory positive solution, This led tc a contradiction, As in case 2,

of Theorem 5, for hit}>teTwe are led to a contradiction. We proved Theorem 6.

Theorem 7: For (1.4), A'= A{)U/v‘n- If in {1.,4) one of following
conditions is satisfied
(i) h(t, &)2t+ & for all t»T, £E€(a,b]l , b>a

a
and nJp = el (3.4)

{(i1) h{t, & )» kté& for some k, which satisfies

kE »1, £ €& [a,b], and 811 t = T;

then for (1.4) & = ¢, A =N .
For (3.1}, ‘Yn = b, M:Mo,
Proof. (1)In the case{1.4) notice that in the proof of Theorem 3 we only
need that lim g(t,E) = +oy & (&, b]
t=r+oc

If git, £) is changed by h{(t, £), then results can alsa be proved.

(2) 1. In the case {(1.4). Suppose condition {3.4) is satisfied.Firstly suppose
hit, E)=t +& for Egla,b}t 2T, b>a>0.

Set

301= §%he) P [P 40 nat ) drthy+ P 2 kg yologydats)
+-set F‘ab'f:f: gledefr v fo ) dotf)--- d atpse )

where p* =nJ; >0.

So we have
300 = gler+ PF 2 4 Pua g yolath) +p% ‘f,f (2458, s peprolottydess)
b Pt f: Fetste st ot b ddaty) - dotfe )

30— [ 3 1)dg =" [P yctege e p)d ety dotsn)

As in Theorem 6, if y(t) is a nonoscillatory positive solution of degree

n of T

- 13 -

3

. y(n_l)(t)l> o, y(“ (t)> o,

then we have y(t) >0, y'{t) >0, y"{t) >0,

that is, '%,(t) is a nonoscillatory positive solution of

30 —p* [ 3irerdf 3 0,

[ ——-1 .
Using the condition ﬁ;‘r_x e »1, from lemma 3 this led to a contradiction.
Secondly, suppose h(t, £)> t+¢ for Eg[a,b], b>a>0, t >T.

Then we can easily obtain

o ¢ bomp (Lo (LIl K12 4D LY. 1, 8. ]t ) Aol )

< yf'-fd.,_Pf:.-.f:g weftfot s Fddatd, ) -dotsa)

where y({t) 1is a nonoscillatory positive sclution of degree n of (1.4)

i y(t) 20, y' () 50,... v (1) »o.

YLLIR L [L L0 0], L] Z gl fide - #3n]

As in Theorem 6, we can easily obtain a contradiction.

2. Suppose (3.5)is satisfied . Firstly, suppose h{t, £) =wt £ for some

w, which satisfies wf{ > 1, ¢ g¢la,b], £t2T. Set,

3 = YUt Pl 2 Aoty d )P (g g )
Pt P LR ) deth - datlg)
A= . b
+F" udf&-- .fﬂ- #(J"_’/t-f! "'j’;,-l}d“fl)"'ddf*r)

_n{n-1)
n
where p* = ¥p ( w*a) wr = Yw U u
P ' ' Tn-2' n-237 o
are positive constants, y{(t) is a nonoscillatory positive solution of

degree n of (1.4) of hi{t, £} = wt& , i.e. y(t} >0, y'(t)>0,... y(n)(t):-o.

e U, U

So we have

- 14 -



Y — p* (P50 pdetd)
== YU+ P (st £, DG Y F e 2 M)
+ P2 g6 F g, = s Jp ML )TN Ao )+ 4
PR [P todd TG e — )Y CP L S, e M)A

'_P"" ”’j:"'f.: Gler g, L0 )datd) - AL )

If w h i igfi
e choose Un_z. Un-a""'___u_l' UO' which satisfies
Wyy = 1 i = .-
z /LJ"& , n-J /{&J‘«.)’, P
— #in-p)
Uy = for®e) Y

; N N ah
Leos BN F O, et —lly, 2 0, e ot f =iy 2 Y,
then we have

For P P3lFep)dett> 2 y“‘k)—/r“?afa)—h@f;- - Lfyxd;r, -4 otp)--d ot f,)

é
= Yol ~p [ ot L oy dettn) 2 0,

So we deduce that z{t) i a mwnoscillatory positive solution of the following

ineguality.

yer—p f: 3t )ity 2 0,

Using Lemma 3, we can obtain a contradiction.

Secondly, suppose h(t, £)»wt £, for some w , which satisfies wf>1,

for Eegla,b], and all t 3T, thep we can easily obtain that

~ 15 -

0K #hrp [P fLYIRIAL QU H BL 1L 1 Aoty -d T2gn)

Sl—p o Byttt fe g )dots) - d et ),
where y(t) is a positive soclution of degr=e n of (1.4}, i.e.
bthrzo, g@??a ,
HLALL [ 3 B8], 12.) > (4L ).
As in thecrem 5, we canm easily obtain a contradiction.
(3) In the case {1.2). The proof of the Theorem is obvicus. Proof of Theorem 7

is complete.

Theorem 8. For the general superlinear inequality (1.8)', if (3.4)
or {3.5) is satisfied, then we have /\/'n = ¢ ,A/‘:,n‘\fo.
The proof of Theorem 8 is similar to Theorem 4.

Remark. From Theorem 4 and Theorem 8 we can see that if deviating arguments
a . 2 t 3

are taken forms as t (a>0,a # 1}, ent; t —{sin t|, t /(t+1) , e, t/(t-1},

then for superlinear inequality {(2.4) .\;é =4 , N= Iv'n and for (3,4)

N = ¢, =A . Notice that for the superlinear case we do not need

such
conditions /as (2.4}, (3.3) to have ¥ - .A/:/\/O

4. EQUATIONS WITH ADVANCED AND RETARDED ARGUMENTS.

In this section we are concerned with the differential equations
with both retarded and advanced arguments,

$o =pfl [aterpr. 2 1]15.) - 111 datl-- Aot )
+§ R Ik fr 22301~ 2, £,0d 508 dsige)

(4.1)

where p >0, q >0, 01( £) and az(i) are continuous nondecreasing functicns.

Thecrem 9. For the equation (4.1} A ’:uN:_)U/\f‘n— If one of following

conditions is satisfied:

(D g <t =1, ferf€Labl boaro, all +27 and "J}_;,Le =1,
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) g 3)< KAY FO¥ Some k| wieek sa&‘sfr‘ea( K} & o.1),
Telas), ard all 22T,

then for (4.1) N‘:/v;l.

Also if one of the following conditions is*satisfied:
(i) Lesgooke}, for TEfab1. brasoand all £2T, and S5 le > (|
s

(iv) ;f‘,c,;) > aJ,t; for some (), which satisfies w; > i, 3& Ce lc]
1]
and all £ » 1)

then for (4.1}A° = N&.

If conditions (i), ('1'1)) conditions {iiiland {iv)are satisfied, then
(4.1} is oscillatory.

Prcof. Notice

¥lo—p Lf~— Lt #3038 Jptt 0. 053], 2, Ildaitt ) -d gig) 3 o
Wio-pob .y gt [oer BEL <1, LIdsit)- Aty 2o,

Using Theorem 3 and Thecrem 7 we con _asiiy obtain results of Theorem 9 . The

proof of Theorem 9 is complete. From Theorem 9 we can easily obtain results

for
{7l = pylptl) +F gI4oe)]
, (4.2)
where p >0, q >0Q. Here these results are omitted.
5. SOME EXAMPLES.
. Tn the folluwing examples suppose n is even
Example 1
in} b b
[or—plav fL 46 =5,— - g )d g d dL ]
{5.1)

Sgn ([P (s 65—~ 1) gt AL ] 5 0

n R
where p >0, b >a>0. If ﬁ?; e >1, then for (5.1) A= W

- 17 -

We consider the following inequality:

{‘J“é’:-?f:#»(E—Ddf;'}f—(f'ﬂ{ﬁ#fﬂ-—ndxi};,' o (5.1)"

If n = 2, then we have

F*dﬁ}w-n—{u b P40 dgty =pam) (Y-l

where at*= l a, b*= é_,b. For any n we have
4R i2
P*gj"gi QCE—Z.‘?;—“‘f..)dI.‘u; "'d(n
< PFo-ay™ (" deE-1)dg =pf* gz -4rolf
A o :
where  a%*= -ln—a . b*‘:f—?lr b, p*=p (b-a)_{nhl).

Notice that

R N T L R A
7 $—p 2 pex-pdy,

So we can obtain that if p>0, b>a>0, "YE* — e>1, then for (5.1) ASA/.
n n

Example 2
{,n&,’_f r:..-f:y(xt}}‘s"..)dr(f,r--afﬂf-.)}'

Sy ff:, f: #fkff.*--!n)ia‘[f.)-.-drf,r,,;} z0, {5.2)

where p> ¢, b>a> 0. If k is such that kh< 1, then for (5.2} MA. I
n

k is such that ka> 1, then for (5.2) ~'» /Vé-

Example 3
{ ?hbh -Pf:-"f: #(tl*a_*__“* L. )"L?J d'fh}
LR I IO PR SPL R A P (5.3)

»

a
It "J’EE e ”1, then for (5.3) A=Y, (p 70, b>a>0),

- 18 -



Emla g
#oo= Pf:""f: SO LI+ f o o Wt L A A, (5.4)

where p >0, q >0, b, »a, >0 (i=1,2}). 0O<kb<1, ka_>1. Then (5.4)
i i 1 22

oacillates.

Example 5.
Fikr=p o [ fgrtti- e p3yag - 4,
FEL D R s f )], e A,

(5.5}

’

where fl and f2 are superlinear. Then {5.5) oscillates.
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