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ABSTRACT

In this paper we study the nonoscillatory behaviour of

even order functional differential inequalities and equations

with continuous distributed retarded and advanced arguments.

For arguments we give some conditions under which these,

inequalities only have nonoaciilatory solutions of degree 0
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1. INTRODUCTION

In this paper we are concerned with nonoscillatory behaviour caused

by retarded and advanced arguments for the following differential inequalitie

and equations;

wn. ?*> -I

f fi-f^Kf- ̂ -^^ -?- *•

(1.2)

(1.3)

(1.4)

where n is even.

Below the following conditions are assumed to hold:

(1) p > 0 , g(t) ft , h(t)>t, g(t) and h(t) are continuous, g(t,5 )£t,

h(t, O ^ t , lim g(t) =oo, limg{t,£ ) -rr for?e[a,b];

(2) o = [a,b I'd is a nondecreasing function;

(3) integrals in (1.3) and (1.4) are Stieltjes integrals;

(4) g(t, C I and h(t, C) are continuous nondecreasing functions with t

or 5 respectively;

(5) there exists <y{t, C ) , x t * . 5 ' such that cp(cp (t, 5 ), t ) = g(t,5 ),

* ( <Kt, C), O - h(t, t ) , lim <p(t, 5) =. lim (t, 5 ) = • , <p(t, E )
t -+ w t "* °*

and ^ (t, C) are nondecreasing functions with t or K respectively.

Definition 1' If y(t) is a nonoseillatory solution of (1.1) (1.4),

also there are an even integer H € { 0,2,...,n} and a number t > 0 such
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that

U),y(t)y (t) > 0, on [t , *>) for 0 6 i ±

(- i)1" J ty(t)yU )( t) >0 on [ t ,<*) for { t l / i ^

(1.5)

then such a y(t) is said to be a nonoscillatory solution of degree M,

and the set of all solutions of someone of (1.1) — (1.4) is denoted by

Suppose the set of all nonoscillatory solutions of someone of

(1.1),— (1.4) is denoted by A ~ *

Lemma 1 : We have

(1.6)

The proof of this Lemma is similar to the proof in [2] .

In this paper we give some sufficient conditions under which

Af - « (i.e. -V-Aj^for (1.1),(i,3) and V = * (i .e./V* V ) for (1.2). (1.4).

For variatory classes of g(t), g(t, (,) or h(t), h{t, 5) we obtain

variatory nonoscillatory criteria for (1.1) (1.4)• We generalized

results in [1 ] . On the other hand^we also give some nonogcillatory criteria

for general superlinear inequalities:

J A> -
flv

(1.7)

(1.8)

. i$, H -

(1.7)'

f

-...(1.6)
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Definition 2: Nonlinear function f(x) ie said to be super-linear if

We shall make use of the following results of one-order inequaliti

which were obtained by the author in [ 3 ] .

Set

(1.10)

(l.ii)

(1.12)

<v (1.13)

(H;)

*-*»•

(1.14)

(1.15)

(1.16)

Lemma 2. If conditions (H ) and {H ) are satisfied, then (1.10) has no

nonoacillatory solution.

Lemma 3. If conditions (H') and (H') are satisfied, then (1.11) has no
-™——— 1 2
nonoscillatory solution.

2. RETARDED INEQUALITIES AND EQUATIONS

Here we are interested in the situation in which there is no non-

oscillatory solution of degree 0 of (1.1) or (1.3) 4V* = •) or all non-
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oscillatory solutions of (1.1) or (1,3) are of degree n (//=Y^).

Theorem i: If g(t)^:kt, for some k6(0,l) and all t>T, then there

Is no nonoscillatory solution of degree 0 of (1.1)(A£ = » ) .

Proof. Case 1- In the case g(t) = kt for some k6(0,l) and all t >T.

Let y(t) be a nonoscillatory positive solution of degree 0 of (1.1). So

y(t) >0, y'(t) <0, y"(t) >0, .... y " (t) >0, for t >.tQ. Set

* ^

(2.1)

We have

We choose positive constants U •••• u
n g > s u c h t h a t

Kr a,-

that is, Un_2-l/k
#. V 3

Notice

••' uo
= 1/k*

n(n-l)
2

(2.2)



and

(2.3)

Then we can obtain that J(t) is a negative solution of (2.3). But

i.e. Conditions (H ) and (H ) are satisfied. So using Lemma 2 we can see

that there is no -negative solution of {2.3). This led to a contradiction.

The proof for y(t) <0 being similar.

Case 2. In the case g(t)<kt for same ke(O,l) and all t J O .

If there is a positive solution of degree 0 y(t) >0 for (i.i), then

y'(t) <0, i.e. y [g(t) ]> y [kt] , So we have

From the proof in Case 1, we are also led to a contradiction. The proof for

y(t) <0 being similar. The proof of Theorem 1 is complete.

Theorem 2 If g(t) <t-1' for some (>0 and all ^ >,t , then

the condition

(2.4)

implies ttiat'.l.l) has no nonosc i l la tory so lu t ion of degree 0 (/vl = * ) .

Proof. Case 1. Tf g ( t ) = t - *f f ° r some "f > 0 a n d a l ! * ?*•>• t h e n

Kusamo [1 ] has proved t h i s r e s u l t .

Case 2. If g ( t ) < t - T for some T > 0 and a l l tstn' t h e n

- 5 -

we can suppose there is a nonoscillatory positive solution of degree 0,

y(t) >0 of (1.1). So we have y"(t) <0, y[g(t)]>y(t - f), and

From the proof of Case 1 we can deduce that the condition (2.4) implies the

inequality

has no nonoscillatory positive solution. This led to a contradiction. The

proof for y(t)<0 being similar. We proved this Theorem.

Remarkl Using Theorems 1, 2, we have the following

results. If g(t) iB taken forms as t (0<v<l), \n t, then for all p

(1.1) has no nonoscillatory solution of degree 0. Also if gCt) are taken

as t - Isintl , then for some p, which satisfies i/p -pr C > d

(1.1) has no nonoscillatory solution of degree 0. But if g(t) is taken

as t " £ , t - - then we need the condition as follows.

for some i£(0, 1, ..., n - 1 } , to assume that (1.1) has no nonoscillatory

solution of degree 0,

Theorem 3. For (1.3)

conditions is satisfied

U /Y • If in (1-3) o n e ° f following

( i i ) $1*>D&K*! -fey $*•»*- K ,

f€-r«-i]. And aJU irztt,

C< « f < I , ( 2 . 6 )

then for (1.3) //* = • , A'-A"* . For (2.2! ,V! = * ; //= V .

O n O n

Proof. (1) In UTP csee (1.3) . Otherwise, let y(t! be, a nonosci Llatory solution of

(1.3) of degree ( , 0t ? < n. We may assume that y(t)X> for t j.tQ.
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Take t such that

is bounded. In fact we may choose t such that

For t £t we have

S ^̂+ C "̂

It follows that y (t) as t *« . But from y (t) >0,

y U + 1 ){t) >0, we have yU)(t)<f y U )(t Q) = const.

This led to a contradiction. So we obtain f U/V"1

(2) .l-Sppose condition (2 ,5 ) i s s a t i s f i e d . F i r s t l y , suppose

for t t [ a , b ] , t >,t , ( b > a > 0 ) . Set

We have

As in Theorem 2, if y(t) is a nonoscillatory positive solution of degree 0

of

- 7 -

then we have y(t)>0, y'(t) <0, y"{t)> 0, y (t)< O, y (t)> 0,

that is, z(t) is a nonoscillatory negative solution of

Using t h e c o n d i t i o n n ^ p - e >l from Lemma 2 ^ h i s f a c t l e d t o a c o n t r a -

d i c t i o n . S e c o n d l y , suppose g ( t , [ ) < t - £ f o r ^ [ a , b ] ; t j t , «a can

o b t a i n

-pft - ft

i.e.

where y(t) is a nonoscillatory positive solution of degree 0 of (1.3),

i.e. >tt*»r !'*><*. 9£tC~-$lf*.ULH-lt*}>f6t-fl-L-:--M.
As in Theorem 2 , we can e a s i l y o b t a i n a c o n t r a d i c t i o n .

2 . Suppose condition (2.6)is satisfied. F i r s t l y , suppose g ( t , ? ) = kt

for some k, which s a t i s f i e d 0 < k { < l , ? e [ a , b 1, b > a > 0 , t ^ t . Set

= t^h, -p%.> f* y^'i

where p* =

So we have

n-1

2 , k* =
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From Lemma 2, we can obtain a contradiction. .Secondly, suppose g(t,5 )

for some k, which satisfies 0 < k ; < l , Efe[a,b] , and all t >t , then we

can easily obtain that

where y(t) is a positive solution of degree 0 of (1.3), i.e.

If we choose U , U O , . . . . U , U such that
n-2 n-3 1 0

As in Theorem 1, we can easily obtain a contradiction.

(3).In the case (2.2). From Theorem 1, we obtain AC = •

have V ^ V*. The proof of Theorem 3 is complete,
n

. So we

-for ̂ .t [*.M , i=
then we have

Theorem 4. For the superlinear inequality (1.7) or (1.7)1 if (2.5)

or (2.6) is satisfied, then V=Y • i.e. Af = •

Notice there exists a large enough X > 0 such that

f ( y ( g ( t ) ) ) >,• *y(g( t ) ) ,we easily prove Theorem 4 for ( 1 . 7 ) . Similar ly for

( 1 . 7 ) ' we have

— [**.r,)l.hi - -I?*])

where \ >O is a large enough number.

Suppose y(t) is a positive solution of the following inequality:
3. ADVANCED INEQUALITIES AND EQUATIONS

Then we can obtain that ft^t) is a positive solution of

Now we turn to {1.2) and (1.4). Our object is to give some sufficient

condition under which -V = t ,/\/=A/ for (1.2) or (1.4).
n 0

- 9 - - 10 -



Theorem 5. If h(t))nt for some u >1 and all t >T, then all

nonoscillatory solutions of (1,2) are of degree 0. (/V'=V i.e. V' = ± ).
0 n

Proof. (1) In case h(t) =»t, for some u > 1 and al L t j T. Let y(t) be

a nonoscillatory positive solution of degree n> 0 of (1.2). Proceeding

exactly as in the proof of Theorem 3, we see that I = n, that is, y(t) -0,

y'(t)>0, ..., y (t)>0 for all large t, say t > t >, T. Notice

';'*>, (3.1)

Define

where

are some constants.

Then we have

If we choose positive constants U , 11 U which satisfy the following
0 1 n-2

conditions

i ~ U-t — 0

that is

0-2)

So z(t) is a positive solution of (3.2). But

- 11 -

that is, conditions (H*')and (Hj') are satisfied.

So using Lemma 3 we can see that there is no a positive solution of (3.2),

This led to a contradiction.

(2). In the caseh(t)> ut for some oi > 1 and all t >T. If there is

a positive solution y(t)> 0 of degreee i> 0 for (1.2), then y'(t)>0

i.e. y[h(t)]>y[o),t] . So we have

From the proof in tha case hft)- wtr we can obtain a contradiction. The

proof of Theorem 5 is complete.

Theorem 6. If h(t)>^t+f for some T > 0 and ail t >̂ T then the

condition

-§-*>' (3.3)

implies that (1.2) has no nonoscillatory solution of degree n. ^//n — $ )-

Proof. In the case h{t) = t + f for some T > 0 and all t>,T. Suppose

(3.3) is satisfied. Otherwise, suppose there is a nonoscillatory positive

solution y(t)> 0 of degree n of (1.2). So we have y'(t)> 0

i.e. y[h(t)J >y(t - T) and

if M/*> -P

From the proof in case (1) of Theorem 5, we can deduce that condition (3,3)

implies the inequality

- 12 -



has no nonoscillatory positive solution. This led to a contradiction. As in case 2.

of Theorem 5, for h(t)>frftwe are led to a contradiction. We proved Theorem 6.

Theorem 7: Tor ( 1 . 4 ) , / / = Vl lV^- If in (1.4) one of following

conditions is satisfied

(i) h ( t , 6 ) : j . t + £ for a l l t >,1, i e [a,bj , b > a

and ny/"p* - e > l (3.4)
n

( l i ) h ( t , £ ) > k t £ for some k, which sa t i s f ies

k£ > 1, 5 6 [a,b] , and a l l t yy T;

then for (1.4) V = • , M = V .
n ' 0

For (3.1), Y = •• V = JV" .
n 0

Proof. (l)In the case{1.4) notice that in the proof of Theorem 3 we only

need that lim g(t, % ) = + on, i ;{a, b}
t -7+«j

If g(t, S) is changed by h(t, (.) , then results can alsu be proved.

(2) 1. In the case (1.4). Suppose condition (3.4) is satisfied.Firstly suppose

h(t, 5 )= t + 5 for I fe[ a,b ] t >T, b >a > 0.

Set

then we have y(t) >O, y'(t) > 0, y"(t! >0, ... y " l (t)> 0, y " (t)> O,

that is, is a nonoscillatory positjve solution of

Using the condition ip^ - e >1, from lemma 3 this led to a contradiction.

Secondly, suppose h(t, £)> t+£ for 5 g [ a,b], b >a >0, t >T.

Then we can easily obtain

where y(t) is a nonoscillatory positive solution of degree n of (1.4)

i.e. y(t) >0, y'(t) >0,... y " (t)

As In Theorem 6 , we can e a s i l y o b t a i n a c o n t r a d i c t i o n ,

2 . Suppcse (3.5)is satisfied . F i r s t l y , suppose h ( t ,

u , which s a t i s f i e s out > 1, C g , ( a , b j , t >.T. S e t ,

for some

where p* =

So we have

.,J

As in Theorem 6, if y(t) is a nonoscillatary positive solution of degree

n of

where p* = fp ( u«a) , u i * - V " J , U , ^ , . . . u , u

n-2 n-3 l' 0

are positive constants, y(t) is a n>jr.osci 1J atory positive solution of

degree n of (1.4) of h(t, K) ̂  u t C , i.e. y(t) > 0 , y'(t) >0,... y

So we have

(t) >0.

- 13 - - 14 -
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If we choose ^n_^, " n 3'---. Ujf "Q. which satisfies

then we have

So we deduce that z{t) is a ncnoscillatory positive solution of the following

inequality.

Using Lemma 3, we can obtain a contradiction.

Secondly, suppose h(t, K ) >u t £ , for some u , which satisfies iot

for E^[a,b], and all t JT, then we can gasilji obtain that

- 15 -

o $

where y(t) is a positive solution of degrse n of (1.4), i.e.

As in theorem 5, we can easily obtain a contradiction.

(3) In tte case (1.2), lbs proof of the Theorem is obvious. Proof of Theorem 7

is complete.

Theorem 8. For the general superlinear inequality (1.8)', if (3-4)

or (3.5) is satisfied, then we have V - 0 , /V =tf •
n O

The proof of Theorem 8 is similar to Theorem 4.

Remark. From Theorem 4 and Theorem 8 we can see that if deviating arguments

are taken forms as t a(a>O,a £ l), tnt; t -|sin t|, t /(t+1) , e , t/(t-l).

then for superlinear inequality (2.4) ,V = • , A/- !•/ and for (3,4)
,y" = =/</'. Notice that for the auperlinear case we do not need

°suchsuch
conditions'as (2.4), (3,3) to have JV = p , //- V

n 0

4. EQUATIONS WITH ADVANCED AND RETARDED ARGUMENTS.

In this section we are concerned with the differential equations

with both retarded and advanced arguments,

(4.1)

where p >0, q >0, a ( O and n-(?) are continuous nondecreasing functions.

Theorem 9. For the equation (4.1) / ' / ' - - / / UA'l If one of following
0 ~

conditions i s sa t i s f ied :

(i)
- 16 -



then for (4.1) >V = /!/*.
n

Also if one of the following conditions is'safIsfied:

(iii)

<iv> -&X, I) > tJjt I for some (i), which satisfie» OJ? > ( . * £ fja. lol

and all fr V T ,

then for (4.1) V = ,V .

If conditions (i), (ii) conditions (iii)and (iv)are satisfied, then

(4.1) is oscillatory.

Proof. Notice

-8Xc*,r,%fa -J,

Using Theorem 3 and Theorem 7 we ran eseily obtain results of Theorem 9 . The

proof of Theorem 9 is complete. From Theorem 9 we can easily obtain results

for

+ (4.2)

where p > 0 , q > 0 . Here these results are omitted.

5. SOME EXAMPLES.

. In t h e follcwing examples suppose n i s even

Example 1

where p > 0 , b > a > 0 . Lf *fp ~ e > 1, t h e n f o r ( 5 . 1 ) / V *

(5.1)

- 17 -

We consider the following inequalityr

? o (5.1)'

If n = 2 , then we have

L * 1 *

where a.*- - a, b*= - b. For any n

••R f?
« have

where a*= — a , b*= — b , p*= p (b-a)

Notice that

So we can obtain that if p> 0, t> > a> 0. \f$* — e > 1, then for {5-1)
n

Example 2

(5.2)

w h e r e p > 0 , b > a > 0 . I f k i s s u c h t h a t k b < l , t h e n f o r ( 5 . 2 } / \ 4 v V . I f
n

k is such that k a > l , then for (5.2) /y".~. /V.

Example 3

(5.3)

If n ^ f e >1, then for (5.3) • V' = V" (P>Q. b > a > O)
n O

- 18 -



w h e r e p > 0 , q > 0 , b . > a . > 0 ( i = l , 2 ) . 0 < k b < l , k a > l . T h e n ( 5 . 4 )

o s c i l l a t e s .

E x a m p l e 5 .

(s>5)

where f and f are superlinear. Then {5.5) oscillates.
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