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ABSTRACT

The identification of gravitation with the massless spin 2 gauge field
(the gauge group is the group of translations) requires to restrict the solu-
tions of Einstein’s equations to the class of topologically trivial manifolds.
It is shown that the validity of this restriction in nature is supported by
the present-day empirical facts. The identification has a drastic impact on
cosmology, because the fulfilment of the cosmological principle is claimed
to be improbable.

AHHOTAUMS

HOEHTHUYHOCTS TPaABNTAIINN M GE€3MACCOBOrO MONA CO CI'MHOM nBa (XaNMHGPOBOUYHOR
TPYNNOA ABAAETCA IPYNNA TPAHCAAUMNH) TPEeOGYET OrpaHHuYHTDh PeueHHn YPaBHeHHA DAH-
MTeflia KXJIACCOM TONONOTMYECKM TPraHANBHHX npocTaHcTe. lloxa’awo, ¥TO cOuiBanMue
3TOrD OrPAHHYEHMA B IPHPOLAEe B HACTOAMEEe BPeMA MNOATREPARAETCA IMIHPHYECKHMK dar-
TamM, 3Ta MOEHTRYHOCTD HMEET NPACTHYECKOE IINAHMNE HA KOCMOJMIOrHM, NOTOMY 4YTO
cOupanyue KOCMONIOMYECKOro NMPMHLKNIA ABNAECTCA HEeBEPOATHHM.

KIVONAT

A gravit&cibd &s a kettes spinii témegnélkili mezS (a mértékcsoport az el-
tolési csoport) azonosit&sa megklveteli, hogy az Einstein egyenletek megoldé-
sait a topolbgiailag trivi&lis sokas&gok osztllyéra korl&tozzuk. Rémutatunk
arra, hogy e korl&toz&s teljeslilését a természetben a mai empirikus tapaszta-
latok al&t&masztjfk, Az azonosit&s hatésa a kozmolbégifira nézve drasztikus,
miv 1 a kozmolbégiai elv teljesliilése ezekut&n valészinlitlen.

[ —————
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INTRODUCTION

Einstein’s theory of gravitation may be obtained in various ways (sece,
e.g., (1], Box.17.2). One of the possible derivation is the field-theoretic
route, which is in essence based on the identification of the massless spin 2
field with the gravitation. Numerous papers discuss this identification (see
{2j-{23] and the references of {21] and [22]). The situation is reviewed in
{22], where the results of the field-theoretic route to the Einstein’s theory
of gravitation are summerized, too. These results are the following: a) the
approach immediately leads to Einstein’s theory, where one necessarily has to
take a zero cosmological constant, if one identifies the gravitation with the
massless spin 2 field; b) the Riemannian structure of space-time is explained;
c) the route predicts that the gravitational constant is positive; d) the
route uses only the standard notions of field theory.

Gei.eral relativity allows non-zero cosmological constant, but the identi-
fication of the gravitatior with the massless spin 2 field needs a zero cons-
tant. Thus this identification leads to a restriction in general relativity,
which can be empirically tested. Naturally the question arises: does this
identification lead to further restrictions in generai relativity?

The first purpose of this paper is to seasich for an answer to this ques-
tion. It is shown that beside the zero cosmological te.m there is also a second
restriction in general relativity, accord!. ‘o which: if the gravitation is
identical to the massless spin 2 field, tiL ‘he solutions of Einstein’s equa~-
tions are restricted to topologically triviai manifolds. The validity of this
restriction must be decided empirically; the second purpose of this paper is
to show that this restriction is indeed supported by the obscrvations of the
investigated part of the Universe, Thus it seems that one may doubtlessly
identify the gravitation with the massless spin 2 field, The drastic impact
of this identification on cosmology 1is also shortly discussed.

We shall proceed as follows: In Section 1, we build the theory of the
massless spin 2 field. It is shown that from this theory the second restric-
tion-mentioned above-follows, and it is studied in Section 2. Finally the
results of paper are summerized.

We use the system fi=c=1,



-2 -

1. THE THEORY OF THE MASSLESS SPIN 2 FIELD

Here we build up theory of the massless spin 2 field. We remain in the
classical limit. The purpose is to search for the differences between Einstein’s
theory and the theory of massless spin 2 field.

We choose a procedure which seems to be the most logical one. We assume
that we have never heard of gravitation. Thus we imagine that the mathenatical
theory of curved spaces is well-known, but we have never heard of curved space-
~times used in physics. In the flat space-time one may use the inertial and
non-incrtial frames, as it is the case (c.f., e.g., [24], Chapt.I.,III1.). Tn
constructing the theory of the massless spin 2 field we use three things: the
assumption that the theory is similar to electrodynamics as fas as pcssible;
the Ockam’s razor (nature likes things as simple as possible); the standard
theory of the gauge and matter fields. No empirical or theoretical facts about
gravitation are used. Our heuristic route to Einstein’s gravity essentially
differs from the previous routes in two aspects: first, in our approach the
immediate appointment of the gauge group is essential; second, no facts about
gravitation are used (compare, e.g., wi.h the procedures of (6},(9],[10},[16}
or [20]). The advantage nf our route consists in the fact that the Yang-Mills i
character of the massless spin 2 field is especially raised. (Note that sever- f
al attempts were done to give a gauge formulation of the Einstein’s gravity; i
c.f., {25]-({35] and the references therein; nevertheless from these papers
the massless spin 2 field character of gravitation is not so obvious, and our
approach is to »e considered as proper one to solve this.)

We begin to work in an inertial frame (x), in which the Minkowski tensor
has the form nij = nij £ diag(1,-1,-1,-1). Along the paper the coordinate
system (x) decnotes a frame of axes --<x1<-: Latin indices take the values
0,1,2,3; dependence on x denotes the dependence on the four coordinates.)

The massless spin 2 free field equations are [6] (Uij(x)-UjL(x))

outdn - B s um e s WP, - aue) = o, (1.1)
where an index after a comma denotes partial derivative Uitx) =U(x) and ()
denotes symmetrization without the factor 1/2 (i.e. Uk(i(x)’j) - v (x)'j +
+ Ukj(l)'1 ). Equations (1.1) are the analogue of Maxwell’s equations:

ol () - Aj(x)"j =0, (1.2)
where Aitx) is the vector-potential. Requiring the maximum similarity to elec-
trodynamics the massless spin 2 field should also be a gauge field, and thus
we have to determine the corresponding gauge group. We know that the global
symmetry transformations of U(l) group leads, by means of the first Noether
theorem, to the conservation of charge. This charge may be obtained from the
four-current Ji(x) by integration over a Cauchy surface. The source J‘(x)
emerges on the right-hand-side of (1.2). Similarly to electrodynamics the
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source of the massless spin 2 field has to emerge on the right-hand-side of
{1.1). This must be a symmetric tensor tij(x)ﬂtji(x) with property tij(x),j=0
as it is obvious from the left-hand-side of (1.1). Thus by integration over a
Cauchy surface one has to obtain a conserved four-vector Pi. The global sym-
metry transformations of the gauge group G have to lead, via the first Noether

thecrem, to this Pi, too. Thereiore, the gauge group G is a four-parameter

symmetry group, whose global symmetry transformations lead to P1 while the
local symmetry transformations has to require the introduction of the massless
spin 2 field. As far as it is known today, there is only one symmetry with
the required properties: the symmetry of flat space-time under the four-trans-
lations. Thus, if the massless spin 2 field is highly similar to the massless
spin 1 field, then the relevant gauge group G is the external symmetry group
of translations.

We attempt to introduce the massless spin 2 field by a standard way of
Yang-Mills fields. The general gauge transformations are the local transla-
tions

i

ix) = xt + alx), (1.3)

k] i

where ai(x)'s are supposed to be C° functions, and -~<x <=, --<;1<- hold. If

the metric tensor
—f4 - zi ol |
blj(x) o 3x (x) ax”(x) o nij

=
x™ x™

+ all 3, ai(x),n aj(x),n ™ (1.4)

in the system (x) is not of the form nlj, then (x) is already a non-inertial
frame. Thus the gauge transformations (1.3) are in fact the coordinate trans-
formations of the flat space-time among inertial and non-inertial reference

i + ai(x)) . Nevertheless, the coordinate systems

frames (one may write fl(x)zx
are restricted by the condition --<x1<-, —acxlca (for example, spherical
coordinates cannot be used). In the followings only the coordinate systems
of flat space-time connected by (1.3) are considered,

Considers now the neutral spin 1 field ("Proca’s field") as a matter
field. The Lagrangian in an arbitrary (x) frame (here (x) may be inertial or
non-inertial frame too) is given by ({36], Chapt. 3.3)

o 1 .im in mz i3
Ly = =3 b0 BITX) wilx), o (W (x) = wolx) )+ 3= b (x) wy (x)wy (x), .
) (1.5)

where w, (x) is the vector-potential, m is the mass of field, bij(x) is the
metric tensor in the system (x) and semicolon denotes covariant derivative
with respect to the the metric tensor bij(x). (It is not prohibited to write
down the physical laws in flat space~time for the non-inertial frames too;
this question is f{llustrated in detail in, e.qg., [(24], Chapt.I11.1,) In accor-
dance with the standard pattern of the Yang-Mills fields Lcl’ is not yet gauge
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invariant (i.e. it has different forms in the various coordinate systems con-
nected by (1.3)), and it will be gauge invariant after the introducing the
massless spin 2 gauge field. (1.5) is already invariant under the (1.3) gauge
transformations, except for the form of metric tensor (i.e. the metric tensor
is nij in an inertial frame and bij(x) } nij in a non-inertial frame). The
introduction of the massless spin 2 gauge f‘eld has to remove also the various
form of the metric tensor in (1.5), and in the systems connected by the gauge
transformations (1.3) the metric tensor has to have the same form. But, of
course, the removal of the various forms of the metric tensor of flat space-
-time is not possible, if the space-time remains flat. The meiric tensor in
the flat space-time is defined once for all, and if the space-time remains
flat, the metric tensor remains unchanged. The difference of the forms of the
metric tensor of the flat space-time is a basic property and is connected to
the frames in flat space-time. Thus introducing the massless spin 2 gauge
field the space-time cannot remain flat.

Indeed, there must be a metric tensor in the presence of the massless
spin 2 field too (at least in classical 1limit). It is physically reasonable
to require that it would be possible to define time, distances, geodetical
motion, etc... in the presence of the massless spin 2 gauge field too, i.e.
that it would be possible to define a metric temsor. Thus introducing this
gauge field the metric tensor of the flat space-time necessarily changes into
a metric tensor of a non-flat space-time. What is the structure of this non-
-flat space-time? (Our considerations lead to a non-flat space-time, but this
space-time need not necessarily be 1 curved Riemannian manifold.) To answer
this gquestion we refer to Thirring’s papers [6], which gave arguments in fa-
vour of Riemannian structure. In [22] this choice is also suggested. Therefore
we accept the assumption that the non-flat space-time is a Riemannian curved
manifold.

Now we introduce the massless spin 2 gauge field. First, similarly to
any physical field, we must define .he Uij(x) = Uji(x) potentials in an arbit-
ratily chosen reference frame (x) on the flat space-time background. Similarly
to any physical fields Ulj(x) + O holds in the asymptotic regions of the
Cauchy surfaces. (A Cauchy surface is for example the x° = const. hypersurface,
and the asymptotic regions are given by I(xl)2 + (xz)2 + (33)2| + = ). This
condition is necessary for any reasonaple field theory, because it is required
by the existence of the dynamical invariants and by the Fourier decomposition
of potentials. Second, we suppose that the ten Uij(x)'s change the metric
tensor of the flat space~time background into a metric tensor of a curved
Riemannian space-time. In accordance with Ockam’s razor we suppose that in an
arbitrarily chosen (x) reference frame the contravariant metric tensor of the
curved space-time gij(x) has the form

gdix) = i + g 0¥l (x), €40, (1.6)

where £ is a constant of dimension of length, because gij(x) is dimensionless
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and U3 (x)’s have the dimension (length)~! similarly to any Bose field. It
is obvious that a much simple chang: of the metric tensor is not possible.
The decomposition (1.6) of the contravariant metric tensor is clearly Lorentz
covariant and gauge invariant. The transformation formulae of the potentials
Uij(x) under the (1.3) gauge transformations are the following:

i3 = pate0 I 4 W™ aten, ate. + ™Mool s atoo, ) v adin, ).

(1.7

These equations immediately follow from the transformation formulae of the
contravariant metric tensor. In contrast to qij(x) the potentials uij (x) are
not the components of a tensor defined in the curved space-time.

In the infinite space-like regions 3 (x)’s and vid(x)’s go to zero and
therefore in these regions either ai(x) ‘s are infinitesimal or (1.3) define
the global symmetry transformations of the Poincaré group. Obviously in (1.7)
23(x)’s ana UtV (x)’s are infinitesimal, if and only if al(x)’s are infinite-
simal or (1.3) determines an inhomogeneous global Lorentz transformation.

Having defined the contravariant metric tensor by (1.6) one needs its
covariant form too. One has

13
g (x) = 2%_(_11 . (1.8)
i3 det g 7 (x)

and therefore gij(x) as functions of Uij(x) ‘s are given by infinite series.
The curved Riemannian manifold R determined by the metric tensor (1.6)
and (1.8) has the same topological and global properties as the flat Minkowski
space~time M. This follows from the fact that on the flat background M are
defined the potentials Uij(x). R and M arecovered by the same coordinate chart
--<xi<-, and thus there is an one-one map between the points of R and M. In
addition to, R is asymptotically flat -~ i.e. qij {x) ~» nij holds in the asymp-
totic regions of any Cauchy surface — and thus R goes into M in the infinite
space~like regions.
Having defined the metric tensor in the presence of the massless spin 2
gauge field the Lagrangian (1.5) changes into
L im In nz i3
1= -39 (%) g7 (x) wi(');j (vm(u)",l - wn(x) ill) + 5~ g 7(x) vi(x) wj(x) =

(1,9)
=19 + Lint (odd(xy, wlix)),

where the indices are moved and the covariant derivatives are defined by the
metric tensor (1.6) and (1.8). (L] is given by (1.5) if b'I(x) = n4 no1a).
The potentials vi(x) give a vector in the curved space-time R.
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We have considered the Proca’s field as matter field. But this choicewas
not essential. One may consider arbitrary set of matter fields (denoted for-
mally b v) in the flat space-time background determined by a Lagrangian L%(v).
This Lagrangian is obviously invariant under the gauge transformations (1.3),
except for the form of metric tensor. Introducing the massless spin 2 field
and thus the metric tensor of the curved space-time R by (1.6) and (1.8) the
Lagrangian of the interacting matter and massless spin 2 gauge field owes the
form

L = 1%(v) + uitt(uid, ). (1.10)

Following this pattern we strive to obtain Lg(uij), which is determined
by the massless spirn 2 field itself, and which must be added to (1.10) as it
is reqvired by the standard pattern of the Yang-Mills theory. Obviously in a
reference frame (x) in the flat space-time equations (1.1) follows from the
Lagrangian

o,,i3, o 1,43 ik R 3 ij;k
Lz(U ) !(" {x) u (x);k 2077 (x)u Uiy (x) +

i3 |

(1.11}

s 2w g - vt o ),

where the indices are moved and the covariant derivatives are defined by the
metric tensor bij(x) of the flat space~-time. Now, it seems, one may identify
biI(x) with gl3(x) given by (1.6), and express v} (x) by (1.6), too. Unfor-
tunately, this pattern does not work here, because Uij(x) = (91j(x) - n‘j)/f
is not a tensor in curved space-time, and therefore it is not clear, how to
define its covariant derivatives.

In order to solve this problem let us first consider a special case of
the massless spin 2 gauge field. Let fuij(x)'s be infinitesimal on the whole
Minkowskian background. Then we can omit the prodncis containing three or more
terms fuij(x) in Lg . In this special case the indices are moved by nij and
gy the co:atiant derivatives may be sub:gitnted b{jpartialigorivativts and
therefore L, has the form (we substitute U “(x) = (g7 7(x) - n V/£)

Lg = —l,(qu(x)'k 911(“)'k -2 gu(x)'k g“(x),j +
£ (1.12)

i3 n - 13 k mn
+2g9g (X),j n 9nn(“),1 g ’(x)’ 9.n‘“’,k ngy ).

Now we have to generalize Lg to the general case of the massless spin 2
field, i.e. for fuld(x)’s that are not infinitesimal. In (1.12) the partial
derivatives cannot be substituted by covariant derivatives. If one made it,
Lg would become identically zero. Thus one ad hoc has to assume that Lg is

already given by (1.12) in the general case too, and only n" ‘"15’ is sub-
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stituted by (1.6) (by (1.8)). The argument for this assumption follows from
the Ockam’s razor: One can hardly have a simpler not identically zero Lg.
One has

ij 1 ij 9
L0 = —5ta " * (g 00y - 2 gy a0, + PN g0 (2¢'30m, -

(1.13)

: - = -2 gik n s DS, ]

where ri.'t are the Christoffel symbols corresponding to the metric tensor (1.6)
and (1.8). ngij)' as a function of the Ulj(x) ’s, becomes an infinite series.
Thus the massless spin 2 gauge field is self-interacting. This is nothing new
in the theory of Yang-Mills fields. The complete Lagrangian of the matter
fields and of the massless spin 2 gauge field is following:

L= Lo(v) + l.mt

tv.uld) + i), (1.14) l
We have heuristically constructed a theory of the massless spin 2 gauge '

field. Of course, we did not prove that there were no other possible theories 2

of the massless spin 2 gauge field. We have used the Ockam’s razor and the

assumption that the massless spin 2 field was highly similar to electro-

dynamics. In principle, there may be a theory of the massless spin 2 field,

which is for example not so similar to electrodynamics.

2. THE SPIN 2 CHARACTER OF GRAVITATION

In this section we compare the theory of Section 1. with the theories of
gravitation.

it is obvious that the theory of the massless spin 2 field is essentially
Einstein’s theory of gravitation, if fz = 321G, where G is the gravitational
constant. (Thus we have proved again, that the gravitational constant is posi-
tive, if the gravitation is a massless spin 2 field.) Nevertheless, there are
dif ferences between the theory of massless spin 2 field and the usual Einstein’s
theory. These differences are:

a. In the theory of the massless spin 2 field the cosmological constant
does not emerge, whereas usual Einstein’s theory allows for a non-zero cosmo- '
logical term too.

b. The potentials Uij(x)’s were introduced on the flat background, and
therefore the massless spin 2 field is defined on an unobservable flat back-
ground. In ‘he presence of the massless spin 2.field the curved space-time
has same topological and global properties as Minkowski space~time. On the
other hand, Einstein’s theory allows also the existence of space-times with
complicated topology (for example the closed Priemann Universe-model).




¢. In the presence of the massless spin 2 field the curved space-time is
asymptotically flat, and the usual dynamical iavariants of fieldAtheory are
defined. On the other hand, in Einstein’s theory the asymptotic flatness is
not necessary (for example the Friedmann Universe-models are not asymptotically
flat).

Point a. is not new, and shall not discussed here (interesting discussions
on this question are given, e.qg., in [10jor (22]). we remark only that, as it
is well-known, there is no empirical evidence for a non-zero cosmological term.

Both b. and c. are new. They follow immediately from the route of Section
1., and in fact are highly reasonable. For example the decomposition (1.6)-has
a meaning only in the case of curved manifolds for which the unobservable
Minkowskian background may be introduced. Nevertheless, the decomposition (1.6)
was essential to our theory, and actually in the Lorentz covariant quantum
gravity it plays a central role, too [20]. One can hardly interpret a curved
manifold, for which the unobservable flat background cannot be introduced, as
a system of the matter and gauge field. The asymptotic flatness is a necessary
condition for the Fourier decomposition of the potentials and for the existence
of dynamical invariants, and thus without this restriction one hardly .an
construct a reasonable field theory. The asymptotically flat curved manifolds,
for which the unobservable Minkowkian background may be introduced, are called
as "curved manifold with trivial topology” or "topologically tri-—rial man 7 _1s".

From b. and c¢. it follows: the gravitation is a massless spin 2 ¢
field, if the solutions of Einstein’s equations are restricted in nature ..
the topologically trivial manifolds. The requirement of the zero cosmological
term need not be emphasized, because a non-zero cosmological term does not
allow the existence of topologically trivial manifolds.

Indeed, it was conjectured: if the gravitation is a massless spin 2 field,
then the gravitation must be defined on a flat background. E.g. in {32] it is
shown that the simplest gauge theory of gravitation is the Einstein’s one de-
fined on a flat background. Various other papers speak about the gravitation
on a flat background (e.g., [61,(10],(20],[22]). Nevertheless, as far as it is
known, it is never claimed that the occurence of a curved manifold with non-
-trivial topology contradicts to the identification of gravitation with the
massless spin 2 field.

In Einstein’s theory the topologically trivial manifolds determine a very
special class of the solutions of Einstein’s equations. Obviously the question
of the existence of a topologically non-trivial manifold in nature must be
answered empirically. The search for a topologically non-trivial space-time
may decide whether gravitation is a massless spin 2 field or not. Indeed, this
search can reject this identification (if a non-trivial topology is detected),
but the identification can never be confirmed with certainty,

Of course, there are other possibilities too, to male this decision. The
best confirmation would be the direct observation of the massless spin 2 par-
ticles, i.e. of the gravitons. The empirical verification of Einstein’s theory
is in fact a furrher test of this identification. In this paper these other
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possibilities of the empirical verifications of the identification of gravi-
tation with the mas:tless spin 2 field are not discussed. We remark only that
the present-day empi. ical facts about gravitation do not contradict to the
Einstein’s theory wit. zero cosmological constant; for a survey of this gues-
tion see, e.g., [37] o. [38]); from the more recent works we mention [39] (about
the gravitational radiation of binary pulsar), [40] (instruments for the detec-
tion of gravitational waves), [41]) (test of the Newton’s law) and [42] (about
the gravitational lenses).

In the followings we shall consider the empirical facts and shall study
the question: is there any indication in the observed part of nature for a
non-trivial topology?

It is obvious that from the scales of experimental particle physics to
the scales of the Solar system - these scales are already studied experimen-
tally - there is no evidence for a non-trivial topology. In these scales the
linearized Einstein’s theory is a good approximation, and this theory considers
only topologically trivial manifolds too. Note here that there are known some
speculations [43]1-(44] suggesting non-trivial topology on scales comparable
with Planck’s radius. Nevertheless, these speculations are very far from the
possibility of empirical confirmation, and thus have no relevance for our
purpose,

In the search for a non-trivial topology we have to consider astronomical
observations. Pirst we consider the scales much smaller than the Hubble radius.
Any object with larger sizes than the relevant gravitational radius may roughly
by described by a primitive “"central body - vacuum exterior” model. In other
words, these astronomical bodies may roughly be taken as bodies immersed in
the Minkowskian vacuum. Therefore, for these objects the occurence of a ncn-
-trivial topology is excluded. The only objects, that can lead to a non-trivial
topology, are the collapsed bodies, because here the occurence of the extended
Schwarzschild or Kerr metric (see [45]), p.149-168) is in princip. -llowed. On
the other nand, for a collapsed body the "central body ~ vacuum exterior” model
is allowed too., The observational investigatior of black holes is still in fact
at the beginning (see, e.g., [(46]), and for our purpose it is essential that
there is no observational evidence for the occurence of any non-trivial topology.

We consider the scales comparable with the Hubble radius now. It is usu-
ally believed that the complete physical Universe is in first approximation
described by a Friedmann universe model. If this were true, then there would
be a non-trivial topology. Nevertheless, the usual Friedmann model is cosmology
is only a model of the observable part of the Universe, i.e. of tre metagalaxy.
This obvious fact is often overlooked, nevertheless in the precise cosmological
considerations it is particularly stressed (see, e.g., (45], p.135 or (47},
p.274). Under the notion "Universe” of cosmology one has to understand the
metagalaxy, i.e. a limited part of the complete physical Universe. Th: meta-
galaxy is in principlc limited by the present particle horizon. Therefore, the
fulfilment of the cosmological principle is not so obv.ous as it is usually
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believed. The cosmological principle (the formulation see in (48], p.13) hav-
ing a great philosophical significance is in fact an assumption that the meta-
galaxy is homogeneous and isotropic on the scales larger than -100 Mpc, and
that these properties of the metagalaxy may be extrapolated beyond the particle
horizon to the complete physical Universe. Nevertheless; the extrapolating of
the properties of metagalaxy beyond the particle horizon it a fully open ques-
tion which cannot be studied by direct observations. It is not necessary that
the properties of the metagalaxy be valid in the complete physical Universe,
because the existence of an edge of matter beyond the present particle horizon
is not prohibited (see [49], p.293). In other words, the cosmological princip-
le may be - but need not be - fulfilled beyond the particle horizon. rhis fact
alone is enough to conclude that the present-day cosmology does not prove the
existence of a non-trivial topology in nature. One cannct exclude the possi-
bility that the metagalaxy is an interior of a giant "island"” having an edge
beyond “he particle horizon ({47),p.297).

Moreover, some new cosmological studies support a more strict claim. The
paper [49] calls for a non-friedmannian model of the metagalaxy itself, because
on? can hardly explain some anisotropies of the cosmic background radiation |
in the standard Friedmann model of the metalagaxy. In [50] it is shown that |
the anticollapse~island model »f the metagalaxy seems to be better than the

standard Friedmann one. The anticollapse-island model of the metagalaxy in
essence'supposes that the metagalaxy is the interior of a giant anticollapsing
body - of an anticollapsing "island” -, and in the exterior of this body there
is a vacuum, (The anticollapse is a gravitational collapse with reversed sense
of time.) In other words, the existence of the edge of the matter beyond the
particle horizon aeems to be probable. The papers [47],{49] and [50] suggest
that the cosmological principle, i.e. the assumption of the homogeneity and
isotropy, is hardly fulfilled already even in the metagalaxy. (We note here
that the observational evidence of homogeneity in the metagalaxy was never
satisfactory. As far as Shapley [51] querried the uniform density of galaxy
distribution; the history and the survey of this guestion may be found in [48].
In any case the emergence of an inhomogeneous model of metagalaxy is not fully
unexpected.) We may claim: "some cosmological considerations support the exis-
tence of an edge beyond the particle horizon", which is more strict than "the
existence of an edge beyond the particle horizon is not prohibited”. The rough
"central body - vacuum exterior"” model seems to be plausible for the scales
larger than the Hubble radius.

Summarizing one may claim that there is no empirical evidence for the
occurence of any non-trivial topology. The restriction to the class of topolo-
gically trivial manifolds is supported on the scales of nature that we empiri-
cally study. Of course, it is not proved yet that a non-trivial topology does
not exist. Nevertheless, it is remarkable that the most primitive "central
body - vacuum exterior” model is highly satisfactofy from the regions of
experimental particle physics to the scales larger than the Hubble radius.
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It seems that the empirically supported non-existence of the non-trivial topo-
logy is not a chance, but as a matter of fact there is a prohibition of the
occurence of any non-trivial topology, and this prohibition is the consequence
of the identity of gravitation with a massless spin 2 field.

This identity has a drastic impact on cosmology. The existehce of an edge
of the matter beyond the particle horizon is then required and thus the meta-
galaxy necessarily is an interior of an "island”. Therefore the symmetry pro-
perties of the metagalaxy cannot be extrapolated to the complete physical
Universe, because in the exterior of the "island” there is a vacuum. Thus the
cosmological principle breaks down in some regions beyond the particle horizon.
In principle the homogeneous mean matter density may still exist in the meta-
galaxy, nevertheless this possibility is improbable because of the following
reason: the uniform density in the interior of any astronomical body is in
principle allowed, but from the physical point of view is improbable (see [52],
Chapt.11.5). Therefore the mean density is hardly homogeneous in the metaga-
laxy, and in it the fulfilment of the assumption of the homogeneous density
is improbable. Thus the fulfilment of the cosmological principle is anywhere
maximally questionable. As it was mentioned in the connection with the papers
{47],(49] and [50], this possibility is suqgested by the present-day cosmolo-
gical observations, too.

CONCLUSIONS

It was known that the identification of gravitation with the massless
spin 2 field required a zero cosmological constant in Einstein’s theory of
gravitation. Thus the Einstein’s theory and the theory of the massless spin 2
field are not precisely identical, because in general relativity the non-zero
cosmological term is allowed too. Wo attempt to search for other differences
between the Einstein’s theory and the theory of the massless spin 2 field. For
this end we again rederive Eins*=in’s theory by a field-theoretic route. Our
approach differs from the previous routes. The first result of this paper
immediately follows from this rederivation: the symmetry group of translations
seems to be the gauge group of the massless spin 2 gauge field. The second
result follows from our approach too: it is shown that the identification nf
gravitation with a massless spin 2 gauge field requires the restriction of the
curved manifolds to the class of topologically trivial space-times. It is
obvious that the validity of this restriction may be decided empirically only.
Therefore we survey the present-day empirical facts (mainly from cosmology).
It is shown - and this is the third and maybe the main result of paper - that
there is no empirical evidence for a non-trivial topology in nature. Thus the
identification of the gravitation with a massless spin 2 field is empirically
supported, and this identification may doubtlessly be done. The fourth result
follows from this identification: the fulfilment of the cosmological principle
is proclaimed to be improbable.
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