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ABSTRACT

In Ugq theory of gravitation Cartan’s contorsion is determined, among
other extraordinary fields, by a pair of standard massless spin 2 self-inter-

acting fields.

AHHOTALNA

B Teopum rpasutauuu Ug XOHTOPIMA KapTana, HapARy C HECKOMLKUMH IPYTHMH
nonAMH C HeOCHYHHMM CBORCTBaMM, onpeneneHa MNapof CTAHQAPHNX Ge3MAacCopHX CaMo-
BO3NEACTRY!MMX MONER CO crn¥HOM Misa,

KIVONAT

A gravitécib U -es elméletében a Cartan-féle kontorzib, tébb egyéb szokat-
lan saj&tosségu mez8 mellett, egy kettes spinl tUmegnélkiili Bnk8lcstnhatd me-
z0pArral adott.




INTRODUCT 1ON

At present the old Einstein-Cartan’s theory of gravitation is intensively
studied again (for a review cf. {1], for some new aspects see [2]). The theory
assumes that the real space-time is an U4 manifold, and the connection is
gi-ren by

<1 _ .4 £ 4 -
rye= Myt 7 K £ = /320G, (1)

where rijkare the Christoffel symbols defined by the gij metric tensor in the

usual manner and Kijk = -Kjik

are the components of contorsion with respect
to a coordinate basis. Here the gravitational constant G has the dimension of
(lenqth)z, because we use the natural system fi=c=1.

Cartan’s contorsion is the gauge field of Lorentz group [l]. Nevertheless,
the physical character of this field is still a fully open question. (The
standard Yang-Mills gauge fields of internal symmetry groups are spin 1 fields;
Einstein’s gravity is a spin 2 field. But what about the contorsion?)

The purpose of this paper is to show that contorsion is determined in

general case by two self-interacting massless spin 2 fields.

1. DECOMPOSITION OF THE CONTORSION TENSOR

4
Let F“jk = -Pjik be the components of an antisymmet-ic tensor in U4 mani-
fold. Then one has (see Appendix A.):

13k _ k(4531 , 43pm .k S
F W 4y 2 m W =2 =0, (1.1)

where a semicoulon denotes partial derivatives and [ ] denotes antisymmetriza-
tion without the factor %. pijpm are the components of the fully antisymmetric
tensor (uijpm = (=det 4_:;1‘,‘)-1 eijpm' e°123 = =1)., Thus for the contorsion tensor

13k _ ok[133) , i3pm ok ki ok
K v +u Vome U =V =0 (1.2)
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hold, which is in fact an infinite series of the form T !n.(...). To show
this it is enough to express n=0

£ £
Uhips ™ Yarg = (Fheg* 3 Kxdlny = (Fig* 7 K1V (1.3)

and substitute (1.2) into Kijk' Then the new terms fz Kijk arise; substitut-
ing (1.2) into fz xijk the new terms f3 xijk arise; etc. The same procedure

is to be done for vij;k' too.

2. CONTORSION AS THE PAIR OF MASSLESS SPIN 2 FIELDS

In U, theory the Einstein’s Lagrangian changes into (1]

ik,=m 3 _ 23 =3
(rijr* rlk rllj) (2.1)

Consider now a special case, when the following restrictions hold:
a. In (1.2) U“j = 0 and V[ij] =0, i.e. Uij and Vij are symmetric.

b. U, is a Weitzenblck space Ty i.e. the Riemannian part of curvature

tensor is zero. Then the metric tensor has the form 91j = "ij £ diag(l,-1,-1,-1).

c. fKijk are infinitesimally small, the therefore in (1.2) the covariant
derivatives may be substituted by partial derivatives,
The Lagran;ian (2.1) takes the form

/i = onddik _
+ 20 u:,k 203Xy

L ik’3

R T R Rikk) = 3utd-ky

(0) jki 3 i3’k

Y 1,19 1k _ ouldk Cwrdy ) a
oty + gtk e avdvg,, vty vty

(2.2)
= Ligy (V) + L V),

where we introduced the term

1,45,k ik _ ,idk o el
Ligy () = (072750, 40y + 207700, = 2070700, = 070,41,

(2.3)

-

and omitted the four-divergencies. Note now that the formulas
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ujifj“:'k = qu'kUjk'l + four-divergence,
(2.4)
ijkm - adk M i,k m j,k .m
¢ €iprs ap‘[ras] M 6rdlsﬁp] * 6salparl

we e used. Lagrangian (2.3) is the standard Lagrangian of a free massless
spin 2 field {3]. Therefore, L(o)
fields. Of course, in (2.2) - (2.4) we can use the relations

describes two free massless spin 2 fields.

i3

i3
v'l,. =v ‘5

= 0, 2.5
’5 (2.5)

however, the relations are convenient for the demonstration of massless spin
2 character {(compare with {3]).

The massless spin 2 fielcs, described by potentials Uij and V1j ("u-field”
and "V-field”), should change under the infinitesimal gauge transformatinns
as (see [3])

gl - pid 4 a3 G o i3, plid) (2.6)

where Ai anad B1 are infinjtesimally small components of four-vectors, and

wheve ( ) denotes symmetrjization without the factor % . Therefore, the contor-

sion should change under the infinitesimal gauge transformations as follows:

gidk o gk(1.3) , oidpm gk _ pidk | pl4,30k , ijpm 5 Kk _
pm p’'m

(2.7)
ij,k i3 i

+ W ’ w = -w .

The infinitesimal uij are the components of an arbitrarily chosen anti-
symmetric tensor. As it is well-known, under the local Lorentz-rotation of
tetrad basis the components of contorsion change in accordance with (2.7)
(see Appendix B).

We arrived at the result that in our special case, when the restrictions
a.,b. and c, are fulfilled, Cartan’s contorsion contains two massless spin 2
fields,

3. INTERACTION AND SELF~INTERACTION OF U- AND V-FIELD

Consider now a more general case. Suppose that the restrictions a. and b.
of Chapter 2. are fulfilled, but fxijk are arbitrary. In this case the
Lagrangian (2.1) takes the form

L= ] 1 (3.1)

n=Q (n)’
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where L., is given by (2.2). It is obvicus that L(p) (n21) descride the inter-
action of U- and V~field. Interaction between the U- and V-field is given by
the terms containing the products of potentials l)"j and Vij: the self-inter-
action of U-field (V-field) is given by the terms containing the product of
potentials Uij(vlj).

Note now that the interaction and self-.nteraction here are highly simi-
lar to the case of Einstein’s gravity (4].

Consider now that the restrictions b. and c. of Chapter 2. are not fnl-
filled; i.e. 91j t "1j' In this case the Lagrangian (2.1) takes the form
(3.1) again. Nevertheless, here we have three massless interacting and self-
-interacting spin 2 fields: Einstein’s gravitational field ("graviton field"),
U- and V-field.

Consider now the most aeneral case, when the restrictions a., b. and c.
of Chapter 2. are not fulfilled. In this case the contorsion contains the
pair of the massless spin 2 fields again, because in (1.2) the componentg
Uij and vij may be decomposed into the symmetrical and antisymmetrical parts,
and the symmetrical parts give U- and V-field again. Nevertheless:, here are
other fields, too. These are determined by

ofd - ulid), i _ i3] (3.2)

The decomposition of these components is straightforward. One has:

15 _ (i3] , 1 ijpm | S
Q =M + _2 4] Nlp:.]' M :i N i o .,
(3.3)
15 _ pl153] , L ijpm 1oL
R P + '/i ) s[PSI‘I]' | 4 :1 S :1 0.

Thus in general case the contorsion contains the second derivatives of Hi,
Ni, Pl ana s‘, and therefore the relevant field equations for these components
of vector fields are fourth order differential equations. In other words,

these vector fields are extraordinary, because these can hardly be interpreted

as standard spin 1 fields.

CONCLUSIONS

Today it is not clear yet that the gravitation in classical limit is or
is not described by the Einstein-Cartan’s theory. This question was not stu-
died here. We ad hoc assumed that the contorsion was non-vanishing, and we
examined the field character of contorsion. What we have shown is that,:
contorsion always contains a pair of massless spin 2 fields, the gauge fields
of Lorentz group. Nevertheless, as is the general case, there are other extra-
ordinary vector fields, tco.
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APPENDIX A, DECOMPOSITION OF AN ANTISYMMETRIC TENSOR

In the flat space-time an antisymmetric tensor - in general case- is
defined by two vectors [5]. Here we show that the restriction of flat space-
~time is not essential.

Let rij = -Fji be the ccmponents of a tensor in the U
has:

4 manifold. Then one

pii o ylisi} L 1 ijkm

3 v '[k:ll'
{h.1l)
15 _ 1 1ijkm ouldi3] .1 ijkm
H = 2 [0 Pkla w + 7 M v(k;ll'
Froof: If (A.l) hold, then tlLe following relations are fulfilled:
i3 - ylizdl 1 ijxm
F 5] v j * /3 v (kzmlj *
{(A.2)
i3 (1:;3) 1 £ 3km
=W + =~ . .
My ) , iksmlj

This is a system of eight second order linear hyperbolic equations. To solve
this for V1 and Hi one has to have the relevant initial data on a Cauchy sur-
face ¢=0. Two equations in (A.2)-namely Foj,j=... and Hoj,.=... - represent
constraints on the initial data, because thése contain no'second derivatives
of time.Let V¥ (o = 1,2,3), W*| , virin | ara w'd n | be given,where n'
are the components of normal vector of ¢=0 (without lose of generality these

initial data can be vanishing). To have unambiguous solutions for Vi and Wi

we still need two other restrictions (for example vi -Wi =20). In fact we

;1 s
have a system highly similar to Einstein equations. This completes the proof.

In the choice of Vi and Wi we have the following gauge freedom:

ol i

= vl 4 atd g, gt it =wl s il 4 pt, sl . =pt =0 (a3




where
ot = nt s+ ol ot = ut ¢ nl,
A;(ij] - u[i:jl + _l;_i lejk. '[k:-]' n1=1 = '1:1 =0,
pilidl . glisdl, %; yikm Qy.m} n‘: = o]':1 = 0. (A.4)

APPENDIX B. LOCAL LORENTZ-ROTATIONS

Let ct.) be the components of a-th tetrad vector. (Tetrad indices are in
brackett.) Components of connection with respect to this tetrad basis are

given by
; . - + Ix (B.1)
(a)(b)(c) = "Y(a)(b)(e) " Z T{a)(b)(c), :
where
= 1(\ - A -2
Y(a) (b) ()™ Z'" (a) (b) (c) (b) (a) () ~ Yc) (a) (b)),
(B.2)

- i 3
Y(a) (b) (c)™ (@) {1’31%(b) €(o)

are well-known quantities. Now we introduce a new tetrad basis by local
Lorentz rotation

b (b) i

= ‘c) (d)
@) "M (2%’ "(a) (b) (B.3)

=A@ e @

In this basis the connection is given by
- f-
Farme =~ Tame * 7 Mmoo =

_ £ () (@) ,(h)
Y@@ m * I ¥a@m?t @t Tt (e

- (d) (g)
May@) (@b m* (o) (B.4)

If specially the restrictions a., b., c. of Chapter 2, are fulfilled,
i i
then x(a)(b)(c) are infinitesimal and ea) " §, may be chosen. After the
local infinitesimal Lorentz rotations
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(a) - 32 (a) (a) (b) _ __(b)(a)
A (b) Gb *+ . IS - . (B.5)
where u(')(b) are infinitesimally small, one obtains
r =£x + e (B.6)
(a) (b) (¢) Z T(a) () (e) (a) (b)*'(c) ~ .
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