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ABSTRACT 

In U4 theory of gravitation Carter»'» contorsion is determined, among 
other extraordinary fields, by a pair of standard massless spin 2 self-inter­
acting fields. 

АННОТАЦИЯ 

В теории гравитации U4 конторэия Картана, наряду с несколькими другими 
полями с необычными свойствами, определена парой стандарных беэмассовых само-
воэдействугсщих полей со спином два. 

KIVONAT 

A gravitáció u4-es elméletében a Cartan-féle Kontorzió, több egyéb szokat­lan sajátosságú mez6 mellett, egy kettes spinű tömegnélküli önkölcsönható me-
zöpárral adott. 
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INTRODUCTION 

At present the old Einstein-Cartan's theory of gravitation is intensively 
studied again (for a review cf. [1], for some new aspects see [2]). The theory 
assumes that the real space-time is an U. manifold, and the connection is 
given by 

-i i f i 
r jk~ ' jk* 1 R jk ' f = /32IIG; (1) 

where Г í f c are the Christoffel symbols defined by the g.. metric tensor in the 
iik iik 3 

usual manner and К J = -KJ are the components of contorsion with respect 
to a coordinate basis. Here the gravitational constant G has the dimension of 
(length) , because we use the natural system fi=c=l. 

Cartan's contorsion is the gauge field of Lorentz group [1]. Nevertheless, 
the physical character of this field is still a fully open question. (The 
standard Yang-Mills gauge fields of internal symmetry groups are spin 1 fields; 
Einstein's gravity is a spin 2 field. But what about the contorsion?) 

The purpose of this paper is to show that contorsion is determined in 
general case by two self-interacting massless spin 2 fields. 

1. DECOMPOSITION OP THE CONTORSION TENSOR 
,ijk ?jik Let F'"J" = -FJ-*" be the components of an antisymmetric tensor in U 4 mani­

fold. Then one has (see Appendix A.): 

Fijk = „k[i»j; + „IJP"1 7* и** ж 7** 
+ " Zp;m' " ,i ж Z ,i 0, (1.1) 

where a semicolon denotes partial derivatives and [ ] denotes antisymmetriza-
tion without the factor •». у ̂ I"n are the components of the fully antisymmetric 
tensor (n 1 ; ) p m - (-det g ^ ) " 1 e l i p m , e 0 1 2 3 » -1). Thus for the contorsion tensor 

KiJk . «kliijj + Ijpm vk ki m vki 
K ü + M vp;m' ü ,i v ;i (1.2) 



- 2 

hold, which Is in fact an infinite series of the fori £ f n.(...). To show 

this it is enough to express n " 

«wo - uki'j - ( r V í ""kív - ( r V ! ""ii"!«' ( 1 - 3 ) 

2 
and substitute (1.2) into K... . Then the new terns f K... arise; substitut-

ing (1.2) into f K

i i J t the new terms f K̂ -ii. arise; etc. The ваше procedure 
is to be done for V**.^» too. 

2. CONTORSION AS THE PAIR OF MASSLESS SPIN 2 FIELDS 

In U. theory the Einstein's Lagrangian changes into [1] 

L - ^ 9 i k < ? V 3 » * - * r J i * f V ( 2 Л ) 

Consider now a special case, when the following restrictions hold: 
a. In (1.2) u i l j ' - О and v I i j ) - 0, i.e. 0 i J and V 1^ are symmetric. 
b. D. is a WeitzenbOck space Т., i.e. the Riemannian part of curvature 

tensor is zero. Then the metric tensor has the form g.. « r\., = diagd,-1,-1,-1), 
c. fK... are infinitesinally small, the therefore in (1.2) the covariant 

derivatives may be substituted by partial derivatives. 
The Lagrarijian (2.1) takes the form 

L(o) - - T í K Í j 4 k i + K i j j кЛ> - T < ü i j , k V k + 2 ü ' l ü í 'k" 2 и ^ ' Ч к ' 3 -

(2.2) 
• L(0) ( ü > + L ( o ) ( v ) ' 

where we introduced the term 

L ( 0 )(U) - 7(Ч 1 : ,' ки^, к + 2и'Ао![,к - 2U l j' kU l k, í - ü'b^l, 

(2.3) 
ü s üj , 

and omitted the four-divergencies. Note now that the formulas 
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U j i..ü^, k » ^''^jk'i + four-divergence, 
(2.4) 

ijkm j к m j к .m j к .m e e. ж o_or_ö_1 • e-'if 4 , • б-*«, б i iprs p [r sj r [s pj s [p rj 

were used. Lagrangian (2.3) is the standard Lagrangian of a free massless 
spin 2 field [3]. Therefore, L ( Q ) describes two free massless spin 2 fields, 
fields. Of course» in (2.2) - (2.4) «re can use the relations 

U i j
f j = V i j

f j = O, (2.5) 

however, the relations are convenient for the demonstration of massless spin 
2 character (compare with [3]). 

The massless spin 2 fields, described by potentials U 1^ and V 1^ ("U-field" 
and "V-field"), should change under the infinitesimal gauge transformations 
as (see [3]) 

G i j - U 1* • A ( i ' j ) , v i j - V i J • B C 1 ' * ) . (2.6) 

where A and В are infinitesimally small components of four-vectors, arid 
where ( ) denotes symmetrization without the factor -~ . Therefore, the contor-
sion should change under the infinitesimal gauge transformations as follows: 

Rijk _ gkii.jj + eijpm ^k = Kijk + A[i,j]k + eijpm в к я 

p m p m 
(2.7) _ „ijk A ij,k ij ji 

The infinitesimal ы •* are the components of an arbitrarily chosen anti­
symmetric tensor. As it is well-known, under the local Lorentz-rotation of 
tetrad basis the components of contorsion change in accordance with (2.7) 
(see Appendix B), 

We arrived at the result that in our special case, when the restrictions 
a.,b. and c. are fulfilled, Cartan's contorsion contains two massless spin 2 
fields. 

3. INTERACTION AND SELF-INTERACTION OF U- AND V-FIELD 
Consider now a more general case. Suppose that the restrictions a. and b. 
hapter 2. are fulfilled, but 

Lagrangian (2.1) takes the form 
of Chapter 2. are fulfilled, but fK * are arbitrary, in this case the 

L - I tn L,. , (3.1) 
n-0 ( n ) 
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where L ( 0 ) is given by (2.2). It is obvious that L.. (n>l) describe the inter­
action of U- and V-field. Interaction between the U- and V-field is given by 
the terms containing the products of potentials U * and V 3,- the self-inter­
action of U-field (V-field) is given by the terns containing the product of 
potentials U ^ V 1 ^ ) . 

Note now that the interaction and self-interaction here are highly simi­
lar to the case of Einstein's gravity [4]. 

Consider now that the restrictions b. and c. of Chapter 2. are not ful­
filled; i.e. g.. t n... In this case the Lagrangian (2.1) takes the for» 
(3.1) again. Nevertheless, here we have three massless interacting and self-
-interacting spin 2 fields: Einstein's gravitational field ("graviton field"), 
U- and V-field. 

Consider now the most eeneral case, when the restrictions a., b. and c. 
of Chapter 2. are not fulfilled. In this case the contorsion contains the 
pair of the massless spin 2 fields again, because in (1.2) the components 
U •* and V * may be decomposed into the symmetrical and antisymmetrical parts, 
and the symmetrical parts give U- and V-field again. Nevertheless, here are 
other fields, too. These are determined by 

QiJ = ulij] f „il . ,141. ( 3 . 2 ) 

The decomposition of these components is straightforward. One has: 

Q - H • v "[p,Bj» и
 ; i ' H

 ; i ° ' 
/2 

R i 5 - p l i U l + I . wiJP» , pi = S i e o. 
/2 lp;mj ; i ; i 

(3.3) 

Thus in general case the contorsion contains the second derivatives of M , 
N , P and S , and therefore the relevant field equations for these components 
of vector fields are fourth order differential equations. In other words, 
these vector fields are extraordinary, because these can hardly be interpreted 
as standard spin 1 fields. 

CONCLUSIONS 
Today it is not clear yet that the gravitation in classical limit is or 

is not described by the Einstein-Cartan'i theory. This question was not stu­
died here. We ad hoc assumed that the contorsion was non-vanishing, and we 
examined the field character of contorsion. What we have shown is that,t 
contorsion always contains a pair of massless spin 2 fields, the gauge fields 
of Lorentz group. Nevertheless, as is the general case, there are other extra­
ordinary vector fields, too. 
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APPENDIX A. DECOMPOSITION OF AN ANTISYMMETRIC TENSOR 

In the flat space-time an antisymmetric tensor - in general case- is 
defined by two vectors [5]. Here we show that the restriction of flat space-
-time is not essential. 

Let F Э =» -F 3 be the components of a tensor in the U. manifold. Then one 
has: 

/5 lk;ml' 
(A.l) 

Ä юи л lk;ml 

Froof: If (A.l) hold, then the following relat ions are fu l f i l l ed : 

p iJ = v [ i i j ] . +L.VW* - , 
;D D / J Ik;"»]] 

<A.2) 

Hij „ H[i;j] + 1 _ ijkm v , 
fj J /^ ik;m]j 

This is a system of eight second order linear hyperbolic equations. To solve 
this for V and W one has to have the relevant initial data on a Cauchy sur­
face ф=0. Two equations in (A.2)-namely F 3 +*••• and H ^ . = ... - represent 
constraints on the initial data, because these contain no second derivatives 
of time.Let Vej (a * 1,2,3), Wei , V 0' 1 n.I ard W*'1 n.i be qiven,where n 1 

are the components of normal vector of <p=0 (without lose of generality these 
initial data can be vanishing). To have unambiguous solutions for V and W 
we still need two other restrictions (for example V .-w *0). In fact we 

»* ji have a system highly similar to Einstein equations. This completes the proof. 
In the choice of V and И we have the following gauge freedom: 

V 1 = V 1 + A ; i • B 1, W 1 = W* + C''1 + D 1, B 1
 4 = D 1 - О (А.З) 
Я ;i 
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where 
- в 1 » M1 • О 1 . "О 1 - И 1 • R 1 , 

.•UJJ . . U l l i «. JL p ü t a „ „ * \ = О* - О. (Л.4) 
^ " w[k;»]' " I " и !l 

APPENDIX B. LOCAL LORENTZ-ROTATIONS 
Let «... b« the coaponents of a-th tetrad vector. (Tetrad indices are in 

bracfcett.) Components of connection with respect to this tetrad basis are 
given by 

Г(а) (b> (c) " ~ Y(a) (b) (c) * 2* K(a) (b) (с) , ( В Л ) 

where 

Y(a)(b)(c)* I ( x(a)(b)(c) " *(b)(a)(c) " \c> (a) (b) , 
(B.2) 

*(a)(b)(c)" e(a)[i'j]e(b) e(c) 

are well-known quantities. Now we introduce a new tetrad basis by local 
Lorentz rotation 

e 1 » A ( b ) •* n = A ( c ) A i d ) n fB 3) 
e(a) " A (a) e(b)' n ( a ) ( b ) " A ( a) A ib)n(c)(d)' ( B , 3 ) 

In this basis the connection is given by 

*(a)(b)(c) " " T(a){b>(c) + I *(a)(b)(О 

1 ^IdKgKh) +iNd){g)(h) , A (а)л (Ь)л (с) 

-*Cd)(.)'(g) A l d(b)* ( g )(e)- ( B- 4 ) 

If specially the restrictions a., b., c. of Chapter 2. are fulfilled/ 
then x( a)( D)/ C) •*• infinitesimal and e- . • 6fl may be chosen. After the 
local infinitesimal Lorentz rotations 



о 
«%,,-«;•«'*'<„,. • , * " ь , - - " " " ) - <•-*> 

where м are infinitesimally small, one obtains 

г(а)(Ь)Сс) * 1 K(a)(b)(c) * "(a)(b)'(c) • ( B 6 ) 
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