
ORNL/TM-9147 
Disb. Category UC-20 g 

ORHL/TfJ—9147 

Fusion Energy Div is ion D E 0 4 010636 

EQUILIBRIUM CALCULATIONS FOR HELICAL AXIS STELLARATORS 

T. C. Hender 
B. A. Carreras 

DISCLAIMER 

This report was prrpttrcd ns an account of work sponsored by an agency of the United States 
Government. Neither the United Slates Government nor any agency thereof, nor any of their 
employee*, makes any warranty, express or implied, or assumes any legal liability or responsi* 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer* 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

Date Published - Apr i l 1984 

Prepared by the 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37831 
operated by 

Mart in Marietta Energy Systems, Inc. 
f o r the 

U.S. DEPARTMENT OF ENERGY 
under Contract No. DE-AC05-840R21400 

l - b 

nsTOBunoi o* THIS DOOM IS IHWWTED 



CONTENTS 

Page 

ACKNOWLEDGMENT v 

ABSTRACT 1 

1. INTRODUCTION 3 

2. EQUILIBRIUM EQUATIONS FOR THE AVERAGED AND 

RAPIDLY VARYING QUANTITIES 7 

2.1 VACUUM FLUX COORDINATES 7 

2.2 ORDERING 9 

2.3 AVERAGED EQUILIBRIUM EQUATIONS 1? 

2.4 TOROIDALLY VARYING CORRECTIONS 15 

3. COMPARISON WITH THE REAL SPACE AVERAGE 

METHOD 19 

4. NUMERICAL RESULTS 23 

5. CONCLUSIONS 29 

REFERENCES 31 



ABSTRACT 

An average method based on a vacuum flux coordinate system is 

presented. This average method permits the study of hel ical axis 

s te l la ra to rs with to ro ida l l y dominated sh i f t s . An ordering is 

introduced, and to lowest order the toro ida l ly averaged equil ibrium 

equations are reduced to a Grad-Shafranov equation. Also, to lowest 

order, a Poisson-type equation is obtained for the toro ida l ly varying 

corrections to the equi l ibr ium. By including these corrections, 

systems that are to ro ida l l y dominated, but with s ign i f i can t hel ical 

d is to r t ion to the equi l ibr ium, may be studied. Numerical solut ions of 

the average method equptions are shown to agree well with 

three-dimensional calculat ions. 

1 



1. INTRODUCTION 

Studies of the magnetohydrodynamic (MHD) properties of 

s te l larator- type configurations are complicated by the fu l l y 

three-dimensional (3-D) nature of the device. The study of s te l la ra to r 

equ i l ib r ia may be reduced, for certain classes of configurations, to a 

two-dimensional (2-D) probl 

em by the method of averaging. This method 

was f i r s t applied to the calculat ion of s te l la ra tor equ i l ib r ia by 

Greene and Johnson.2 The average method re l i es on the separation 

between a toro ida l ly slowly varying magnetic f i e l d , dominated by a 

toroidal component Bt and a rapidly varying hel ical component 3V, due 
(V 

to the external hel ical co i l s , where the r a t i o |S y | /B j ~ 8 is assumed 

small. Greene and Johnson expanded the equi l ibr ium equations in powers 

of the inverse aspect r a t i o e, about the cy l indr ica l l im i t , to obtain 

an equilibrium solut ion. Several var iat ions of th i s basic technique 

have been developed. Kovrizhnykh and Shchepetov3 average the MHD 

equations d i rec t ly without recourse to an inverse aspect ra t i o 

expansion. A l ternat ive ly , Mikhailov4 solves an inverse equil ibrium 

problem by considering the f i n i t e beta deformations to an analy t ica l ly 

obtained straight—field-1ine vacuum coordinate system. Pustovitov6 has 

extended th i s method to an t = 2 system with a hel ical axis. A l l these 

methods resul t in equivalent equations for the equil ibrium magnetic 

axis s h i f t . 
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Recent computational solut ions of the averaged equil ibrium 

equations have proven a powerful tool in analyzing s te l la ra tor 

configurations, even for re la t i ve ly small aspect ra t i o devices.® 

Comparisons of these average method solut ions with those of f u l l y 3-0 

equil ibrium calculations show very good agreement, thus val idat ing the 

average method.8 Another benefit of using the average method is that 

the s t a b i l i t y of equ i l ib r ia obtained can be analyzed by using 

extensions of the numerical methods used for tokamak s t a b i l i t y 

s tud ies .® ' 7 ' 8 

In t h i s paper, an averaging method sui table for studying the 

equil ibrium properties of planar and hel ical axis systems w i l l be 

described. The method, based on a s t r a i g h t - f i e l d - l i n e vacuum 

coordinate system, is s imi lar to the averaged equil ibrium method 

described by Pustovitov. In the present paper, however, not only w i l l 

the averaged equi l ib r ia be calculated, but also t o leading order the 

hel ical corrections w i l l be calculated. The equil ibrium equations are 

averaged in the flux coordinate toroidal angle, and an ordering that is 

applicable t o systems with to ro ida l l y dominated equi l ibr ium s h i f t s is 

used. Certain systems which although the magnetic axis of the vacuum 

configuration make large helical excursions, s t i l l possess the property 

of having a dominantly toroidal equi l ibr ium s h i f t . The he l ica l -ax is 

variant of the Advanced Toroidal Fac i l i t y (ATF)9 device and small 

aspect r a t i o heliacs10 are examples of such configurations. The 

ordering used is s imi lar to that of Greene and Johnson and allows the 

dominant terms of the averaged and to ro ida l l y varying components of the 

equil ibrium equations to be determined. To lowest order, the averaged 
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equi l ibr ium equations y ie ld a Grad-Shafranov-type equation, wh'le the 

to ro ida l l y varying terms of the equil ibrium equation may be reduced to 

a Poisson type equation for the toro ida l ly varying toroidal magnetic 

f i e l d . The Grad-Shafranov equation for the averaged equi l ibr ium is 

s imi la r to that obtained by Greene and Johnson.2 The Poisson type 

equation for the toro ida l ly varying toroidal magnetic f i e l d , permits 

the study of hi gh sr order corrections to the equi l ibr ium problem, which 

have not been examined previously. 

This combination of averaged equi l ibr ium solut ions and f i r s t order 

hel ical corrections permits the study of to ro ida l ly dominated systems 

that have appreciable hel ical d is tor t ions. In the other l i m i t that the 

hel ical s h i f t dominates, the equil ibrium propert ies may be studied by 

averaging he l i ca l l y . Thus, only the equ i l ib r ia of systems with 

comparable hel ical and toroidal s h i f t s remain inaccessible by 2-0 

methods. 

Several other approaches for studying the equi l ibr ium properties 

of hel ical axis configurations may be used. A var iant of the Greene 

and Johnson ordering, which permits the study of hel ical axis system 

has been proposed.11 A l ternat ive ly , Reiman and Boozer have used l inear 

approximations to the toroidal and hel ical s h i f t s 1 2 to study the 

f r a g i l i t y of magnetic surfaces13 and various other propert ies of 

hel ical axis configurations.14 Another approach that has been used 

extensively is that of ignoring toroidal e f fects and studying the MHD 

propert ies in the he l ica l ly symmetric l i m i t . 1 5 This technique, which is 

applicable to large aspect r a t i o devices, has been applied to heliac 

configurat ions to study the i r s t a b i l i t y propert ies.1 8 
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This paper is presented in the fol lowing order. The vacuum f lux 

coordinates and de ta i l s of the averaging w i l l be described in the next 

section, In Sec. 3 the results of averaging in the real toroidal angle 

and the averaging method used here w i l l be compared and contrasted. 

The equivalence of the two methods w i l l be demonstrated by comparing 

the expressions fo r magnetic well and plasma equil ibrium s h i f t given by 

the two methods. Numerical results fo r the planar and hel ical axis ATF 

device are given in Sec. 4. The average method resul ts are shown to 

agree well with 3-0 computations. Conclusions are drawn in Sec. 5. 
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2 EQUILIBRIUM EQUATIONS FOR THE AVERAGED 

AND RAPIDLY VARYING QUANTITIES 

In th is section, the reduction of the magnetohydrodynamic (MHD) 

equiI ibr i urn equations 

VP = J x i , 

? • 8 * 0 , (1) 

and 

V x B = J 

to equations fo r the averaged and to ro ida l l y varying equi l ibr ium 

quant i t ies w i l l be described. To f a c i l i t a t e th i s , an ordering is 

introduced and, to lowest order, a Grad-Shafranov-type equation is 

derived from the to ro ida l l y averaged equil ibrium equations. A Poisson 

type equation f o r the toro ida l ly varying components of the equi l ibr ium 

i s also derived. F i r s t , however, the vacuum f lux coordinates used in 

the derivat ions w i l l be described. 

2.1 VACUUM FLUX COORDINATES 

The vacuum f lux coordinates used are those detai led by Boozer.17 

Any vacuum magnetic f i e l d may be represented ei ther in contravariant 

form as 

Bv = BQPvVpy x V(6v - i?y<t>v) (2) 

or in covariant form as 
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By = F y ^ l y , (3) 

where t y ( p y ) is the vacuum rotat ional transform and Fy is a constant. 

r ad ia l - l i ke coordinate. The potential <t>y takes the role of a toroidal 

coordinate and for appropriate choice of the constant Fy , changes by 2rc 

in traversing the torus once to ro ida l l y . F ina l ly , 9y is a generalized 

poloidal angle and changes by 2ir in going once around the torus 

polo ida l ly . These coordinates may be generated numerically in a manner 

described in Ref. 18, using a modified version of a code developed at 

Oak Ridge National Laboratory (ORNL). This code generates the Fourier 

ser ies representation of the standard cy l indr ica l coordinates (R,Z,£) 

by fol lowing vacuum magnetic f i e l d l ines. For example, the Fourier 

representation of R is 

Using these Fourier representations, the necessary metric elements may 

be generated. In pract ice, the quas i -cy l indr ica l - l i ke set of 

coordinates (py , (py9v) ,<1>V)» which have the usual near-axis behavior of 

the f i e l d components is used. The J?cobian is 

Here B Q P V
2 / 2 5 i|>Y i s the toroidal f l ux , and py may be regarded as a 

R(pv^v.4>w) = E R m , n W cos(m6y + n<J>y) . (4) 
m,n 

(5) 



The ordering of the metric elements and various magnetic f i e l d 

components w i l l now be discussed. 

2.2 ORDERING 

We mby wr i te any quantity in terms of i t s averaged and rapidly 

varying parts in 4>y: 

In general, A is a periodic function of M<j>y, where M is the number of 

f i e l d periods and is assumed to be M » 1. 

From Eqs. (2) and (3) the components of the vacuum magnetic f i e l d 

are 

A = <A> + A (6) 

where 

(7) 

B? = 0 , (8) 

B® = B0py^Dv , (9) 

and 

(10) 

Examining these equations shows that the natural way of decomposing the 

magnetic f i e l d is : 
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nu 

where i = py,0y,cj>y. 

The ordering of these components is taken to be 

(© ' (£},and (V • (ll) 

where i t is assumed that J3 ~ e. The ordering of the 9y and 4>y 

components is compatible with Eqs. (9) and (10), while the ordering of 

the py component arises because the BP component is induced by f i n i t e 

beta and toroidal curvature ef fects. In applying t h i s ordering to the 

equil ibrium equations, we w i l l see that a consistent solut ion resul ts . 

I n the vacuum f lux coordinate system, the order of the rapidly 

varying component of the magnetic f i e l d is introduced by ordering the 

metric elements. This is equivalent in real space t o assuming an order 

fo r the vacuum hel ical f i e l d re la t i ve to the toroidal f i e l d . The 

assumption is that 

( f p ) ~ ( g 6 8 ) ~ ft*) ~ ( § * * ) ~ 5 , (12) 

where the re lat ion £ ~ 52 is assumed and the number of f i e l d periods 

M ~ e - 1 . These orderings, together with the assumption that the 

equi l ibr ium s h i f t i s toroidal ly dominated, permit the orderings of the 

remaining quant i t ies to be determined. For example we f ind . 
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~ CS . ( 1 3 ) 

Physical ly, t h i s ordering arises because the f luc tua t ing terms are 

generated, as f in i te -beta effects, by the beating of the toroidal s h i f t 

(order 0) with f luctuat ing metric elements (order 5) . Some care must 

be taken in interpret ing the consequences of t h i s ordering on the 

magnetic axis s h i f t . The helical iota bar that governs the s h i f t 

caused by the helical harmonics is ^ = M - Thus, a configurat ion 

wi th a low tjM may have a toro ida l ly dominated s h i f t but may v io la te 

the ordering by having (B'/Dv) larger than <B'/Dy>. 

The ordering given above i s basically that of Greene and Johnson.2 

However, by working in a vacuum f lux coordinate system, certain 

important differences arise. Some insight may be gained by examining 

the equil ibr ium re la t ion I • VP = 0. This re la t ion may be s p l i t in to 

' t s averaged and rapidly varying parts: 

<B> • V<P> + <B • VP> = 0 ( 1 4 ) 

and 

B • V<P> + <B> • VP = 0 . ( 1 5 ) 

K 
From the ordering used, Eq. (15; shows that P ~ 8 . Hence 

<B> • V<P> 

<B ' VP> „ 8 4 ( (16) 
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~ tv ^ 

averaging in real toroidal angle 5 = 3y ~ 6 and P ~ 8 3 , and therefore 

the r a t i o in Eq. (18) is of order uni ty. Thus, the quasi- l inear term 

< 3 • must be exp l i c i t l y retained in the equil ibrium equation when 

averaging in real space. However, by averaging over <|>y at f ixed p y , 6y 

these correct ions are imp l ic i t l y retained. Therefore, in the vacuum 

f lux coordinate system, the magnetic f i e l d associated with the averaged 

pressure (or f l ux ) surfaces is the averaged magnetic f i e l d . Averaging 

in real toro idal angle, i t is necessary to introduce an e f fec t ive 

magnetic f i e l d that takes into account the quasi- l inear contr ibut ions 

from rapidly varying terms. This w i l l be discussed in greater deta i l 

in Sec. 3. 

Having established these orderings, i t is now possible to derive a 

Grad-Shafranov-type equation from the averaged equil ibr ium equations 

and an equation for the toroidal ly varying components of the 

equi l ibr ium. 

2.3 AVERAGED EQUILIBRIUM EQUATIONS 

To leading order, the toro ida l ly averaged radial component of the 

equil ibrium equation $P = J x B) is 

a<p> 
apv 

(17) 

As mentioned in the previous section, corrections to t h i s equation 
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ar is ing from quasi-l inear products of f luctuat ing terms need not be 

retained because they are of higher order. 

The 6y and <j>v component? j f the averaged equilibrium equation 

y ie ld to leading order 

9<Bcfr> / J _ \ ± 9<P> 
P v "557 

(18) 

and 

From • 8> = 0, an averaged poloidal f lux function ty may be defined 

by 

Note that in I im i t 0 = 0, 

t|> = fQ p v d p v * „ ( p v ) (21 ) 

i s the vacuum poloidal f lux function (i|>v). Equations (19) and (20) 

show that <13^ is a function ty alone. Also, since <3> • $<P> = 0, <P> 

i s a function of $ only. Thus, Eqs. (17) and (18) are equivalent t o 
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where F(t|i) = and for |3 = 0, F(\|iy) = Fv. This equation may be cast 

in to a more fami l iar form by use of various properties of the metric 

elements. The fol lowing re lat ionships between the covariant and 

contravariant components occur: 

(23) 

and 

B0 

F v a v 
F - PvB 0 (24) 

where Oy s 1 + <2pP>- Subst i tut ing Eqs. (23) and (24) into 
F y 

Eq. (22) y ie lds to leading order, a Grad-Shafranov type equation 
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"Fv / 1 \ dP pdF 
" T J " W ^ 

(25) 

As w i l l be discussed in Sec. 3, th i s equation is equivalent to that 

obtained by Greene and Johnson. However, by averaging in f lux 

coordinates, the vacuum quant i t ies enter in a simple and natural 

manner. 

Equation (25) was obtained by retaining the Ieading-order terms of 

the toro ida l ly averaged equil ibrium equation. By retaining the 

leading-order terms of the toro ida l ly varying parts of the equil ibrium 

equations, we obtain hel ical corrections to the equil ibrium. As 

mentioned above, the quasi- l inear contr ibut ions from these SeticaI 

terms to the averaged equations are of higher order and need not be 

retained. However, fo r configurations with dominantly toroidal s h i f t , 

but with s ign i f i cant helical d is tor t ions, such corrections may s t i l l be 

important. 

To leading order, the toroidal ly varying radial and poloida! 

projections of VP = J x B are 

fw / vy 

2.4 TOROIDALLY VARYING CORRECTIONS 

(26) 

and 
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t\J 
9 0 0 + ( 1 ^ X 9<p> / b 4 , v " l 

W " Pv ^ v Pv W V ^ 
(27) 

and the f luctuat ing component of ? • 3 = 0 is 

j _ a 

P v ^ 

+ _1_ 9 lBr\ + 9 , = 0 (28) 

These three equations determine, with proper boundary conditions, the 

three rapidly varying components of the magnetic f i e l d . A fourth, 

independent equation may be obtained from the Ieading-orrier terms of 

Eq. (15) f o r P : 

ru 

_ap_ M 
W " " \ D v / 

/ V 

a<p> 
apw 

_1_ 8<P> 
i o v J p v a e v 

(29) 

Equations (26) through (28) may be combined into a single equation for 
N 

B^ by using the relationships between the covariant and contravariant 

components of t > "*gp' : f i e l d : 

r u 

B P + < * - > s e + Sp . 

ro 

(30) 

rJ 
(b 
m 

®0 a 
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where only leading order terms are retained and 

(31) 

r v r v 

When the averaged equil ibrium equation [Eq. (25)] is solved, bp and b$ 

are f u l l y determined. By subst i tu t ing Eqs. (26) and (27) into 

Eqs. (30), re la t ions for (BP/Dy) and (B^/Dy) in terms of B^, bp , and be 

may be obtained. These re lat ions may then be subst i tuted into Eq. (28) 

to y i e l d : 

M <0 ff- i c4 ) ] 

+ Bp 

Fv ' Pv 9Pv D » / P e " 

8 
w 

where 

e 

(32) 
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p - ( 1 \9<P> 
p " \ 0 7 y T p 7 ' 

S / 1 \ 1 8<P> 
6 ~ W K W W / • 

The right-hand side of Eq. (32) is f u l l y determined when the averaged 

equi l ibr ium equation [Eq. (25)] has been solved. Hence, B^ may be 
A* rv 

determined, and the other f luc tuat ing quant i t ies (Bp,B0) may in turn be 

found. This procedure has been numerically implemented, and the 

resu l ts w i l l be described in Sec. 4. Therefore, the solut ion of the 

3-D equil ibrium problem has been reduced to solving the 2-D equations, 

Eqs. (25) and (32). 



341 

3. COMPARISON WITH THE REAL SPACE AVERAGE METHOD 

In t h i s section we w i l l establ ish the equivalence of averaging in 

real toroidal angle and averaging in the vacuum flux coordinates of 

t h i s paper. To achieve t h i s we w i l l examine the Grad-Shafranov 

equation [Eq. (25)] and ident i fy i t s terms with those of the average 

method Grad-Shafranov equation derived by Greene and Johnson. We w i l l 

also very b r ie f l y sketch the derivat ion of an equil ibrium s h i f t 

equation from Eq. (25) and show that i t too is equivalent to the s h i f t 

equation obtained in Ref. 19. 

In the vacuum f lux coordinates the derivative of the vacuum volume 

(Vy) with respect to vacuum toroidal f lux (i|>jy) is 

where the integral i s to be evaluated at constant p y . Writ ing 

By = Fy(fy> + 8vJy) , (34) 

then to order 8 2 , Eq. (33) becomes 

Vv = T 7 C - 2 8 R0 <®* • $v> - S2Ro<I$I2>) • (35) 

This equation appears to have the opposite sign for the helical 

contributions to the well (third term in the integral), compared to the 

Greene and Johnson expression. However, the averages over 4>y in 
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Eq. (35) are at constant pv and 0 y ; taking th i s into account, the 

second term in the integral i s nonzero and is such that 

cancell ing the contr ibut ion from the th i rd term 

and resolving the apparent contradict ion. 

Def i ning 

15 £ £ (»«» * • A)+** («* £+ 

and noting that the vacuum is given by 

di|iy 

= -B0^vPv • 

we may rewrite to leading order the Grad-Shafranov equation [Eq. (25)] 

as 

* { » - +,) = "(R2 - M ^ • - 82RJ<|5J|2>) - • 

(38) 

Therefore, Eq. (25) may be cast in a form s imi lar to that given by 

Greene and Johnson2 and by Strauss.20 
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The derivation of the equil ibrium s h i f t equation, from Eq. (25), 

is in two d i s t i nc t stages. F i r s t , Eq. (25) is transformed into 

equil ibrium f lux coordinates (p,0,4>v) defined by 

3 = Bgp̂ p x 5(6 - tf <i>v) . (37) 

The metric elements in these coordinates are related to those of the 

vacuum coordinates, for example: 

( a 8 ) 

The second stage of the derivat ion is to approximate the f lux 

coordinates ana ly t i ca l l y . Par t icu lar iz ing to an I = 2 single he l i c i t y 

system and making a near-axis expansion, the vacuum f lux coordinates 

are 

pv
2 = ^ ( 1 - 5 j cos 29h) . 

8V = e s in 26h , (39) 

and 

where 5} is the r a t i o of the hel ical to toro ida l f i e l d , M is the number 
A A A 

of f i e l d periods, (r ,6,$) are normal cy l indr ica l coordinates, and 
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a a a 

0^ = 0 - M<J>. From Eqs. (39) we may obtain expressions for the vacuum 

metric elements. Then, re la t ing the vacuum and equi l ibr ium coordinates 

by a sh i f ted c i rc le model, 

pv cos 0V = sq + p cos 0 + a2 cos 20 

and 

p v s in 0V = p s in 0 + a2 s in 20 , 

where the s h i f t i s Ap = ag + anc' using re la t ions between the 

equi l ibr ium and vacuum f lux coordinates [e .g. , Eq. (38)] y ie lds 

analyt ic forms for the equil ibrium f lux coordinate metric elements. 

Subst i tu t ing these into the equil ibr ium coordinate form of the 

Grad-Shafranov equation y ie lds : 

where fo r the par t icu lar analyt ic example of an i = 2 s ingle he l i c i t y 

system, the we11 is 

(40) 

1 d 
p2t d P 

, _ 25|M2 

^oBQ 

This form of the equil ibrium s h i f t equation [Eq. (41)] i s precisely 

tha t given by Greene, Johnson, and Weimer.19 
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4. NUMERICAL RESULTS 

In th i s section, the resul ts from numerically solv ing the 

Grad-Shafranov equation [Eq. (25)] and the equation for the hel ical 

corrections [Eq. (32)] w i l l be compared with those from 3-0 

code that uses the (pv,Sv,(J>v) coordinates as i t s Eulerian frame of 

reference and relaxes the equations to an equil ibrium by an 

energy-minimization technique. 

Before presenting the resul ts , the numerical methods w i l l be 

described b r i e f l y . The Grad-Shafranov equation [Eq. (25)] is not 

solved d i rec t l y as a Poisson type problem; instead, an 

energy-minimization technique is used to solve the equivalent Eqs. (17) 

and (18). A f i c t i t i o u s force F is introduced: 

computations using the NEAR code.21 The NEAR code is a 3-D equil ibrium 

F, P " 
a<p> 
apv 

(42) 

and 

(43) 

The poloidal and radial components of F are related to a veloci ty V, 

using a conjugate gradient scheme:22 



24 

= . (44) 

(F2)" 

The superscripts denote the i te ra t ion step, a is a constant jus t less 

than unity, and the bar denotes a volume integral . Here, since we are 

solving an axisymmetric problem in the vacuum f lux surface coordinates 

(d/9cj>v = 0), F^ = 0 may be assumed since Fp = FQ = 0 impl ies F^ = 0. 

Using the ve loc i ty , the magnetic f i e l d is advanced in a flux-conserving 

manner: 

? ^ S 7 X ( ? X < 8 > ) ; (45) 

and, f i n a l l y , the pressure is assumed to be a given function of i}), in 

par t icu lar 

<P> = a ^ , (46) 

where a and m are constants. At the wa l l , flux-conserving boundary 

conditions are imposed. 

The equation for the to ro ida l ly varying corrections [Eq. (32)] i s 

solved in a d i f f e ren t manner. Since numerically the metric elements 

(gPP, etc.) are represented as Fourier series in the angle variables 

Eq. (32) may be reduced to a large set of ordinary 

d i f f e ren t i a l equations (one per hel ical mode). This set of ODE's is 

solved using a l ib rary boundary value routine —the wall boundary 
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condition being that 6^ = 0. In pract ice, only the dominant he l i c i t y 

of the helical windings and two side bands are solved fo r . 

The numerical resul ts w i l l now be presented. F i r s t , resul ts w i l l 

be given for the planar axis ATF conf igurat ion. ATF is a 12—fieId 

period Si = 2 torsatron with a plasma aspect r a t i o of 7. Figure 1 shows 

a comparison between the equil ibrium f lux surfaces in configuration 

space (pv,6v,<t>v) and real space for the ATF device with a peak beta, 

|3q = The equil ibrium shown in Fig. 1 is calculated using the 5W) 

NEAR code. The equil ibrium appears almost axisymmetric in the f lux 

coordinate space. In Fig. 2, a comparison between the equil ibrium f lux 

surfaces (0Q = 555) computed using the average method and a 3-D 

calculat ion is given for the planar axis ATF (the vacuum f lux surfaces 

are also shown for reference). The average method and 3-D calculations 

agree wel l . Figure 3 makes th i s comparison more quant i tat ive by 

comparing the averaged magnetic axis s h i f t (Ap) as a function of peak 

beta between the average and 3-D calculat ions. Here the s h i f t is 

defined as the displacement of the magnetic axis in f lux coordinate p v , 

divided by the f lux coordinate wall radius. 

By imbalancing the currents in the hel ical windings i t is possible 

to form a hel ical axis plasma in the ATF device. The re la t ive ly low 

aspect ra t io and low iotabar per f i e l d period resul t in the hel ical 

axis ATF variant s t i l l having a to ro ida l l y dominated s h i f t . Figure 4 

shows a comparison between the equi l ibr ium f lux surfaces (|3Q = 2.658) 

computed using the average method and those computed by NEAR. Again 

the vacuum f lux surfaces are shown fo r reference. The s h i f t s (Ap) as 

computed with NEAR and the average method, fo r the hel ical axis ATF, 
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are shown in Fig. 5. The average method agrees reasonably well with 

the 3-0 computations — the agreement being best at low beta, where the 

orderings are most val id . Comparing the s h i f t s of the planar and 

hel ical axis ATF configurations shows that the la t te r has a larger 

i n i t i a l rate of s h i f t . This is because the so cal led c r i t i c a l 

|9C = (2t?e), which gives a measure of the maximum tolerable beta, is 

smaller for the helical axis ATF. ( t fo r the hel ical axis ATF (~0.6) 

is about half that of planar axis configuration) Figure 6 shows a 

comparison between the V' p ro f i le computed with the 3-D NEAR code and 

with the average method, fo r the same equi l ibr ium as shown in Fig. 4. 

The 3-D and average method are in good agreement. 

To quantify the accuracy of the corrections to the averaged 

equil ibrium given by Eq. (32), the dominant, to ro ida l ly varying, radial 

magnetic f i e l d component computed by the 3-D code (NEAR) and by solving 

Eq. (32) w i l l be compared. The radial magnetic f i e l d is reconstructed 

using the ident i ty 

where the toro ida l ly varying part i s computed by solv ing Eq. (32). 

Figure 7 shows a comparison of radial magnetic f i e l d structure computed 

wi th NEAR (3-D) and from the average method (Eq. (47)) f o r the hel ical 

axis ATF with 0g = 2%. The dominant toro idal harmonic (m = l . n = 0) 

and hel ical harmonic (m = l , n = 6) are shown in Fig. 7. To dist inguish 

the importance of the hel ical correction (B?/Dy), the radial f i e l d for 

(47) 
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the (1,6) harmonic is shown with and without th is correction (Fig, 7). 

The e f fec t of the helical correction on the (1,0) harmonic is small. 

The average method with the toroidal I) varying correction agrees well 

wi th the 3-0 resu l t . Tnis comparison was made at 0q = 2%. At higher 

beta (~10%), as the va l id i t y of the ordering assumptions is v io lated, 

the accuracy of the helical corrections deteriorates. 
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5. CONCLUSIONS 

An averaging method based on a vacuum f lux coordinate system has 

been described. The toro ida l ly averaged equil ibrium equations permit 

the study of planar and hel ical axis systems with to ro ida l ly dominated 

s h i f t s . An ordering s imi lar to that of Greene and Johnson is 

introduced to ident i fy the dominant terms in the equil ibrium equations. 

To lowest order, the to ro ida l ly averaged equil ibrium equations reduce 

to a Grad-Shafranov equation. Also, to lowest order, the to ro ida l ly 

varying part of the equil ibrium equations may be reduced to a 
rv 

Poisson-type equation for the toro ida l ly varying toroidal f i e l d B<j,. 

Equ i l ib r ia that are toro ida l ly dominated but which have s ign i f i can t 

hel ical d i s to r t ion may thus be studied with t h i s average method. 

Numerical resu l ts presented for the planar and hel ical axis ATF 

show good agreement between the average method and 3-D calculat ions of 

equ i l i b r i a . For the hel ical axis ATF, the hel ical corrections 

[Eq. (32)] to the average-method equ i l ib r ia are also shown to be in 

good agreement with 3-D NEAR resul ts, in the low-beta regime where the 

ordering assumptions are va l id . 
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Fig. 1. Comparison of equil ibrium f lux surfaces in (py#9y/<J>y) 

space and real space fo r planar axis ATF (0Q = 5%). 
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Fig. 6. Comparison of V p ro f i l e for hel ical axis ATF, between 

3-D and average method calculat ions. Parameters are the same as 

in Fig. 4. 
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