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ABSTRACT
An everage method based on a vacuum flux coordinate system is
presented. This average method permits the study of helical axis
stellarators with toroidally dominated shifts. An ordering is
introduced, and to lowest order the toroidally averaged equilibrium
equations are reduced to a Grad-Shafranov equation. Also, to lowest
order, a Poisson-type equation is obtained for the toroidally varying
corrections to the equilibrium. By including these corrections,
systems that are toroidally dominated, but with significant helical
distortion to the equilibrium, may be studied. Numerical solutions of
the average method equriions are shown to agree well with

three-dimensional calculations.



1. INTRODUCTION

Studies of the magnetohydrodynamic  (MHD) properties of
stellarator-type configurations are complicated by the fully
three-dimensional (3-D) nature of the device. The study of stellarator
equilibria may be reduced, for certain classes of configurations, to a
two-dimensional (2-D) probiem by the method of averaging.! This method
was first applied to the calculation of stellarator equilibria by
Creene and Johnson.? The average method relies on the separation
between a toroidally slowly varying magnetic field, dominateg by »
toroidal component By and a rapidly varying heligfl component §v, due
to the external helical coils, where the ratio IEVI/BT ~ 8 is assumed
small. Greene and Johnson expanded the equilibrium equations in powers
of the inverse aspect ratio €, about the cylindrical limit, to obtain
an equilibrium solution. Several variations of this basic technique
have been developed. Kovrizhnykh and Shchepetov® average the MHD
equations directly without recourse to an inverse aspect ratio
expansion. Alternatively, Mikhailov® solves an inverse equilibrium
problem by considering the finite beta deformations to an analytically
obtained straight-field-line vacuum coordinate system. Pustovitov® has
extended this method to an Z = 2 system with a helical axis. All these
methods result in equivalent equations for the equilibrium magnetic

axis shift.



Recent computational solutions of the averaged equilibrium
equations have proven a powerful tool in analyzing stellarator
configurations, even for relatively small aspect ratio devices.®
Comparisons of these average method solutions with those of fully 3-D
equilibrium calculations show very good agreement, thus validating the
average method.® Another benefit of using the average method is that
the stebility of equilibria obtained can be analyzed by using
extensions of the numerical methods used for tokamak stability
studies.®:7,8

In this paper, an averaging method suitable for studying the
equilibrium properties of planar and helical axis systems will be
described. The me%hod, based on a straight-field-line vacuum
coordinate system, is similar to the averaged equilibrium method
described by Pustovitov. In the present paper, however, not only will
the averaged equilibria be calculated, but also to leading order the
helical corrections will be calculated. The equilibrium equations are
sveraged in the flux coordinate toroidal angle, and an ordering that is
spplicable to systems with toroidally dominated equilibrium shifts is
used. Certain systems which although the magnetic sxis of the vacuum
configuration make large helical excursions, still possess the property
of having a dominantly toroidal equilibrium shift. The helical-axis
variant of the Advanced Toroidal Facility (ATF)? device and small

aspect ratio heliacs'®

are examples of such configurations. The
ordering used is similar to that of Greene and Johnson and allows the
dominant terms of the averaged and toroidally varying components of the

equilibrium equations to be determined. To lowest order, the averaged
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equifibrium equations yield a Grad-Shafranov-type equation, while the
toroidally varying terms of the equilibrium equation may be reduced to
8 Poisson type equation for the toroidally varying toroide) magnetic
field. The Grad-Shafranov equation for the averaged equilibrium is
similar to that obtained by GCreene and Johnson.2 The Poisson type
equation for the toroidally varying toroidal magnetic field, permits
the study of higt:r order corrections to the equilibrium problem, which
have not been examined previously.

This combination of averaged equilibrium solutions and first order
helical corrections permits the study of toroidally dominated systems
that have appreciable helical distortions. In the other limit that the
helical shift dominates, the equilibrium properties may be studied by
averaging helically. Thus, only the equilibria of systems with
comparable helical and toroidal shifts remain inaccessible by 2-D
methods.

Several other approaches for studying the equilibrium properties
of helical axis configurations may be used. A variant of the Greene
and Johrson ordering, which permits the study of helical axis system
has been pr-oposed.11 Alternatively, Reiman and Boozer have used |inear
approximations to the toroidal and helical shifts!? to study the

fragility of magnetic surfaces'?

and various other properties of
helical axis configurations.u Another approach that has been used
extensively is that of ignoring toroidal effects and studying the MHD
properties in the helically symmetric limit.!® This technique, which is
applicable to large aspect ratio devices, has been applied to helisc

configurations to study their stability properbies.la



This paper is presented in the following order. The vacuum flux
coordinates and details of the averaging will be Jescribed in the next
section. 1In Sec. 3 the results of averaging in the real toroidal angle
and the averaging method used here will be compared and contrasted.
The equivalence of the two methods will be demonstrated by comparing
the expressions for magnetic well and plasma equilibrium shift given by
the two methods. Numerical results for the planar and helical axis ATF
device are given in Sec. 4. The average method results are shown to

agree well with 3-D computations. Conclusions are drawn in Sec. §5.



2  EQUILIBRIUM EQUATIONS FOR THE AVERAGED
AND RAPIDLY VARYING QUANTITIES
In this section, the reduction of the magnetohydrodynamic (MHD)

equilibrium equations

w=Jx8,

Ved=0, (1)
and

VxB=1J

to equations for the averaged and toroidally varying equilibrium
quantities will be described. To facilitate this, an ordering is
introduced and, to lowest order, a Grad-Shafranov-type equation is
derived from the toroidally averaged equilibrium equations. A Poisson
type equation for the toroidally varying components of the equilibrium
is also derived. First, however, the vacuum flux coordinates used in

the derivations will be described.

2.1 VACUUM FLUX COORDINATES
The vacuum flux coordinates used are those detailed by Boozer.!”

Any vacuum magnetic field may be represented either in contravariant

form as
> -+ >
By = Bovapv X V(ev - 5V¢V) (2)

or in covariant form as



8, = F,¥, , (3)

where Z (p,) is the vacuum rotational transform snd F, is a constant.
Here BOPV2/2 E Yy is the toroidal flux, and p, may be regarded ss o
radial-like coordinate. The potential ¢, takes the role of a toroidal
coordinate and for appropriate choice of the constant F,, changes by 2
in traversing the torus once toroidally. Finally, ©, is a generalized
poloidal angle and changes by 2x in going once around the torus
poloidally. These coordinates may be generated numerically in a manner
described in Ref. 18, using a modified version of 8 code developed at
Oak Ridge National Laboratory (ORNL). This code generates the Fourier
series representation of the standard cylindrical coordinates (R,Z,¢)
by following vacuum magnetic field lines. For example, the Fourier

representation of R is

R(oy.8y.9) = L Ry o(py) cos(me, + nd,) . (4)
m,n
Using these Fourier representations, the necessary metric elements may
be generated. In practice, the quasi-cylindrical~like set of
coordinates (py,(p,6,).4,), which have the usual near-axis behavior of

the field components is used. The Jzcobian is

- R B, |2
Dy = va xV(p,8,)] * Vo, = 'lg'gpl'v‘ : (6)



The ordering of the metric elements and various magnetic field

components wil | now be discussed.

2.2 DRDERING
We muy write any quantity in terms of its averaged and rapidly

varying parts in ¢,

A=CA> +h, (6)

where

i1
<A)=711TJ'§ A dd, . ©)

In general, A is e periodic function of M, , where M is the number of
field periods and is assumed to be M >> 1.

From Eqs. (2) and (3) the components of the vacuum magnetic field

are
Be =0, (8)
Be = BoszVDV ' (9)
and
B? = BODV . (10)

Examining these equations shows that the natural way of decomposing the

magnetic field is:
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~J
gl _ /B Bl
5= &) 6):

where i = p,,0,,d,.

The ordering of these components is taken to be

<§> ~e | <§> ~1 ,and <§? ~Bre ,  (11)

where it is assumed that B~e. The ordering of the 6, and b,
components is compatible with Eqs. (9) and (10), while the ordering of
the p, component arises because the BP component is induced by finite
beta and toroidal curvature effects. In applying this ordering to the
equilibrium equations, we will see that a consistent solution results.
In the vacuum flux coordinate system, the order of the rapidly
varying component of the magnetic field is introduced by ordering the
metric elements. This is equivalent in real space to assuming an order
for the vacuum helical field relative to the toroidal field. The

assumption is that
@)~ @ ~ @)~ @ ~s, (12)

where the relation « ~ & is assumed and the number of field periods
M~el.  These orderings, together with the assumption that the
equilibrium shift is toroidally dominated, permit the orderings of the

remaining quantities to be determined. For example we find,
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"~ N

(-3?) ~ (—S—?) ~ed . (13)

Physically, this ordering arises because the fluctuating terms are
generated, as finite-beta effects, by the beating of the toroidal shift
(order B) with fluctuating metric elements (order §). Some care must
be taken in interpreting the consequences of this ordering on the
magnetic axis shift. The helical iota bar that governs the shift
caused by the helical harmonics is z, =M - Z,. Thus, a configuration
with a low Z/M may have a toroidally dominated shift but may violate
the ordering by having (6-'.76:) larger than <Bi/Dv>.

The ordering given above is basically that of Greene and Johnson.?
However, by working in a vacuum flux coordinate system, certain
important differences arise. Some insight may be gained by examining
the equilibrium relation B«W =0 This relation may be split into

"ts averaged and rapidly varying parts:

-+ - '-\0‘ e
B VPO>+BVWP>=0 (14)
and

- SN .
BeWP> +<B>*W=0. (15)

From the ordering used, Eq. (15) shows that Pgb, Hence,

' (16)
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averaging in real toroidal angle 8= Ev ~6 and P~ 5%, and therefore
tbe ratio in Eq. (18) is of order unity. Thus, the quasi-linear term
K VS> must be explicitiy retained in the equilibrium equation when
everaging in real space. However, by averaging over ¢, at fixed p,, 6,
thece corrections are implicitly retained. Therefore, in the vacuum
Tlux coordinate system, the magnetic field associated with the averaged
pressure (or flux) surfaces is the averaged magnetic field. Averaging
In real toroidal angle, it is necessary to introduce an effective
megnetic field that takes into account the quasi~linear contributions
from rapidly varying terms. This will be discussed in greater detail
in Sec. 3,

Having established these orderings, it is now possible to derive a
Grad-Shafranov-type equation from the averaged equilibrium equations
and an equation for the toroidally varying components of the

equilibrium.
2.3 AVERAGED EQUILIBRIUM EQUATIONS

To leading order, the toroidally aversged radial component of the

equilibrium equation (GP =7 x E) is

N ay 1.8 _1® 2 (1N B

G oo W <5-3>[ov %, P <E) m“’o’] - &)
(17)

As nmentioned in the previous section, corrections to this equation
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arising from quesi-linear products of fluctuating terms need not be
retained because they sre of higher order.
The O, and ¢, components of the averaged equilibrium equation

yield to leading order

<]§£> pv Be>)-—3-é-<e>] @pv_gﬁ <15‘ 1%9_)_

(18)

< >pv.§eﬁ+ (g%)fgg;ﬁw. - (19)

From <V * B> = 0, an averaged poloidal flux function ¢y may be defined
by

<-g:—> =-F-’1-;a%v- and <%(:-> = -%‘v— . (20)

Note that in limit B = 0,

¥ = lg pyd0,Z, (p,) (21)
is the vacuum poloidal flux function (,). Equations (19) and (20)
show that <B¢> is a function p alone. Also, since B o WP = 0, <P
is a function of $ only. Thus, Eqs. (17) and (18) are equivalent to
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where F(y) = <By> and for B =0, F(y,) = F,. This equation may be cast
into a more familiar form by use of various properties of the metric
elements. The following relationships between the covaeriant and

contravariant components occur:

B
<By> = 7;%" ( % —-§§-+ > _ab_d/_ op" Z F<gpe>)

(23)

B> (—<QP°> oo il Sl °p" Zy F<9"">> :

and
<B‘:>= Fv:y [F _ vao gv(<9p|v> %_v + <GPP» g;v )] (24)

B33
where a, =1+ gpv <gP®>. Substituting Eqs. (23) and (24) into
Eq. (22) yields to leading order, a Grad-Shafranov type equation

Tol— (pv<§PP> %‘ + < %;) . _3-9- (<'P°> 59% %’-)

BoF [1 8 , 2 1 9
+ Tv_ [—p—v-m (pv ‘V<?>) +-pvm;‘pv‘v<#>)]
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Fy 1\ &P _ .oF
-.§_<D.v. & (25)

As will be discussed in Sec. 3, this equation is equivalent to that
obtained by Greene and Johnson. However, by averaging in flux
coordinates, the vacuum quantities enter in a simple and natural
manner.
2.4 TOROIDALLY VARYING CORRECTIONS

Equation (26) was obtained by retaining the leading-order terms of
the toroidally averaged equilibrium equation. By retaining the
leading~order terms of the toroidally varying parts of the equilibrium
equations, we obtain helical corrections to the equilibrium. As
mentioned above, the quasi-linear contributions from these ‘elical
terms to the averaged equations are of higher order and need not be
retained. However, for configurations with dominantly toroidal shift,
but with significant helical distortions, such corrections may still be
important.

To leading order, the toroidally varying radial and poloidal
projections of W =JxB are

BE _ BE 1 \ P -1
= pv -+ (-D—-) > (26)

v

¢

and
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~ ~ nNJ
9By 08 1)1 P> /BP\-
5 - pv,&m (57) ( (27)

and the fluctuating component of VeB=01s

1.9 BP 1 8 (8%}, 8 (8.
e ) A ) & ) o

These three equations determine, with proper boundary conditions, the
three rapidly varying components of the magnetic field. A fourth,
independent equation may be obtained from the leading-order terms of

Eq. (15) for P:

O i-pe-fie

Equations (268) through (28) may be combined into a single equation for
E¢ by using the relationships between the covariant and contravariant

components of tk: -age-” : field:

nJ
B @@
nS

B- @ @us.

)

v

2
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where only leading order terms are retained and
~/ ~
™ = 1 = &)
b —4 m —— - w ’
) (a%) Py 'b%v' t )B‘Lp
(31)

ge=(!;g)31;%’v-- (!E)%’--

When the averaged equilibrium equation [Eq. (26)] is solved, %‘p and ge
are fully determined. By substituting Egs. (26) and (27) into

. ’ by e~ . N N ~N
Eqs. (30), relations for (BP/D,) and (BY/D,) in terms of Bys bos and bg
may be obtained. These relations may then be substituted into Eq. (28)

Ll (@B @)

AL B AR LR COE
& (G %) % (&)%)



The right-hand side of Eq. (32) is fully determined when the sveraged
equilibrium equation [Eq. (25)] has been solved. Hence, E¢ may be
determined, and the other fluctuating quantities (Bp.Be) may in turn be
found. This procedure has been numerically implemented, and the
results will be described in Sec. 4. Therefore, the solution of the
3-D equilibrium problem has been reduced to sclving the 2-D equations,
Eqs. (25) and (32).
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3. COMPARISON WITH THE REAL SPACE AVERAGE METHOD

In this section we will establish the equivalence of averaging in
real toroidal angle and ave~aging in the vacuum flux coordinates of
this paper. To achieve this we will examine the Grad-Shafranov
equation [Eq. (26)] and identify its terms with those of the average
method Grad-Shafranov equation derived by Greene and Johnson. We will
slsc very briefly sketch the derivation of an equilibrium shift
equation from Eq. (26) and show that it too is equivalent to the shift
equation obtained in Ref. 19,

In the vacuum flux coordinates the derivative of the vacuum volume

(Vy) with respect to vacuum toroidal flux (Yr,) is
v, 1 <7/ 1
)= = de, ,

= ) &)
where the integral is to be evaluated at constant p,. Writing

L 4 >NV

B, = F, (Vo + 5Vp,) , , (34)
then to order 82, Eq. (33) becomes

v = - o do, (R? - 26Rh <V « V,> - 82RE<[V3I2>) . (35)

This equation appears to have the opposite sign for the helical
contributions to the well (third term in the integral), compared to the

Greene and Johnson expression. However, the averages over ¢, in
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Eq. (36) are at constant p, and ©,; taking this into account, the
second term in the integral is nonzero and is such that
< 3$> y -6<|V$|2>, cancelling the contribution from the third term
and resolving the apparent contradiction.

Defining

=06
tn s b R )k (00
and noting that the vacuum ¢ is given by

dy,
HE-V— = -BpZ,py »

we may rewrite to leading crder the Grad-Shafranov equation [Eq. (25)]

V(- 4) = (R - 26Rh<Te - T,> - 82RYCITI) d;‘;’ F% :

(36)

Therefore, Eq. (25) may be cast in a form similar to that given by

Greene and Johnsonz‘and by Strauss.2°
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The derivation of the equilibrium shift equation, from Eq. (26),
is in two distinct stages. First, Eq. (25) is transformed into

equilibrium flux coordinstes (p,6,4,) defined by

B =Boolp x V(6 -2 ,) . (37)

The metric elements in these coordinates are related o those of the

vacuum coordinates, for example:

Py

The second stage of the derivation is to approximate the flux
coordinates snalytically. Psrticularizing to an £ = 2 single helicity
system and making a near-axis expansion, the vacuum flux coordinates

are

p,2 = #(1 - 8; cos 2éh) ,

51

ev=é+—2— sin 2éh ’ (39)

and

. 8 ¥ . s
4’v=¢*"i[1r(%%) sin 28, ,

where 61 is the ratio of the helical to toroidal field, M is the number

of field periods, (r,8,§) are normal cylindrical coordinates, and
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éh =6 - Mé. From Eqs. (39) we may obtain expressions for the vacuum
metric elements. Then, relating the vacuum and equilibrium coordinates

by a shifted circle model,

Py cos O, = ag + p cos 6 + 3g cos 20
and
(40)

Py sin B, = p sin 6 + ag sin 20,

where the shift is Ap = @y + 389; and using relations between the
equilibrium and vacuum flux coordinates [e.g., Eq. (38)] yields
analytic forms for the equilibrium flux coordinate metric elements.
Substituting these into the equilibrium coordinate form of the

Grad-Shafranov equation yields:

1 d (3,2%) 2% d (2%} 1 Ro ,..\aP>
2z 9% (pzzdp)+p2 e \Pdp) 7 BO*APVV d ’ (41)

where for the particular analytic example of an £ = 2 single helicity

system, the well is

v 26%W?
v = .
R38h

This form of the equilibrium shift equation [Eq. (41)] is precisely

that given by Greene, Johnson, and Weimer.!®
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4, NUMERICAL RESULTS

In this section, the results from numerically solving the
Grad-Shafranov equation [Eq. (26)] and the equation for the helical
corrections [Eq. (32)] will be compared with those from 3-D
computations using the NEAR code.2! The NEAR code is a 3-D equilibrium
code that uses the (pv,ev,¢v) coordinates as its Eulerian frasme of
reference and relaxes the equations to an equilibrium by an
energy-minimization technique.

Before presenting the results, the numerical methods will be
described briefly. The Grad-Shafranov equation [Eq. (25)] is not
solved directly as a Poisson ‘type problem; instead, an
energy-minimization technique is used to solve the equivalent Egs. (17)

and (18). A fictitious force F is introduced:

—'<T> Bp, % " < >[Pv By PV )'—_5P—] < %%P}

(42)
and
(@) A B o)
o8

The poloidal and radial components of F are related to a velocity v,

using a conjugate gradient scheme:22
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vn-o-l - ﬁn-o-l +a m Vn . (44)
(F)"

The superscripts denote the iteration step, o is a constant just less
than unity, and the bar denotes a volume integral. Here, since we are
solving an axisymmetric problem in the vacuum flux surface coordinates
(8/8¢v H 0), F¢ = 0 may be assumed since Fp =Fg=0 implies F¢ = 0.
Using the velocity, the magnetic field is advanced in a flux-conserving

manner:

-5
3By _ - X
o=V x (Vx B) ; (45)

and, finally, the pressure is assumed to be a given function of ¢, in

particular

Py = af , (486)

where a and m are constants. At the wall, flux-conserving boundary
conditions are imposed.

The equation fcr the toroidally varying corrections [Eq. (32)] is
solved in a different manner. Since numerically the metric elements
(3P, etc.) are represented as Fourier series in the angle variables
(6y,4,), Eq. (82) may be reduced to a large set of ordinary
differential equations (one per helical mode). This set of ODE’s is

solved using a library boundary value routine — the wall boundary



condition being that gp = 0. In practice, only the dominant helicity
of the helical windings and two side bands are solved for.

The numerical results will now be presented. First, results will
be given for the planar axis ATF configuration. ATF is a 12-field
period £ = 2 torsatron with a plasma aspect ratio of 7. Figure 1 shows
g comparison between the equilibrium flux surfaces in configurabion
space (p,,8,,4,) and real space for the ATF device with a peak beta,
Bo = 5%. The equilibrium shown in Fig. 1 is calculated using the 3-D
NEAR code. The equilibrium appears almost axisymmetric in the flux
coordinate space. In Fig. 2, a comparison between the equilibrium flux
surfaces (B = 5%) computed using the average method and a 3-D
calculation is given for the planar axis ATF (the vacuum flux surfaces
are also shown for reference). The asverage method and 3-D calculations
agree well. Figure 3 makes this comparison more quantitative by
comparing the averaged magnetic axis shift (Ap) as a function of peak
beta between the average and 3-D calculations. Here the shift is
defined as the displacement of the magnetic axis in flux coordinate p,,
divided by the flux coordinate wall radius.

By imbalancing the currents in the helical windings it is possible
to form a helical axis plasma in the ATF device. The relat}vely | ow
aspect ratio and low iotabar per field period result in the helical
axis ATF variant still having a toroidally dominated shift. Figure 4
shows a comparison between the equilibrium flux surfaces (B = 2.6%)
computed using the average ﬁethod and those computed by NEAR. Again
the vacuum flux surfaces are shown for reference. The shifts (AP) as

computed with NEAR and the average method, for the helical axis ATF,
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are ghown in Fig. 6. The average method agrees reasonably well with
the 3-D computations — the agreement being best at low beta, where the
orderings are most valid, Comparing the shifts of the planar and
helical axis ATF configurations shows that the [atter has a farger
initial rate of shift. This is because the so called critical
Be = (2tze), which gives a measure of the maximum tolerable beta, is
smaller for the helical axis ATF, (Z for the helical axis ATF (~0.8)
is about half that of planar axis configuration) Figure 8 shows a
comparison between the V’ profile computed with the 3-D NEAR code and
with the average method, for the same equilibrium as shown in Fig. 4.
The 3-D and average method are in good agreement.

To quantify the accuracy of the corrections to the averaged
equilibrium given by Eq. (32), the dominant, toroidally varying, radial
magnetic field component computed by the 3-D code (NEAR) and by solving
Eq. (32) will be compared. The radial magnetic field is reconstructed

5 -

using the identity

nJ

1 B8P
B° = D, [E%v_ + (D_v)] , (47)

where the toroidally varying part is computed by solving Eq. (32).
Figure 7 shows a comparison of radial magnetic field structure computed
with NEAR (3-D) and from the average method (Eq. (47)) for the helical
axis ATF with By = 28. The dominant toroidal harmonic (m = 1,n = 0)
and helical harmonic (ﬁ =1,n = 8) are shown in Fig. 7. To distinguish

P~
the importance of the helical correction (BP/D,), the radial field for
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the (1,8) harmonic is shown with and without this correction (Fig. 7).
The effect of the helical correction on the (1,0) harmonic is small.
The average method with the toroidally varying correction agrees well
with the 3-D result. Tnis comparison was mede at By = 2%. At higher
beta (~10%), as the validity of the ordering assumptions is violated,

the accuracy of the helical corrections deteriorates.
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8. CONCLUSIONS

An averaging method based on a vacuum flux coordinate system has
been described. The toroidally averaged equilibrium equations permit
the study of planar and helical axis systems with toroidally dominated
shifts. An ordering similar to that of Greene and Johnson is
introduced to identify the dominant terms in the equilibrium equations.
To lowest order, the toroidally averaged equilibrium equations reduce
to a Grad-Shafranov equation. Also, to lowest order, the toroidally
varying part of the equilibrium equations may be reduced to 8
Poisson-type equation for the toroidally varying toroidal field §¢.
Equilibria that are toroidally dominated but which have significant
helical distortion may thus be studied with this average method.

Numerical results presented for the planar and helical axis ATF
show good agreement between the average method and 3-D calculations of
equilibria. For the helical axis ATF, the helical corrections
[Eq. (32)] to the average-method equilibria are also shown to be in
good agreement with 3-D NEAR results, in the low-beta regime where the

ordering assumptions are valid.
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