SE833020202

SKBF TERNISK 83-17 KBS RAPPORT

Analysis of groundwater from deep boreholes in Gideå

Sif Laurent

Swedish Environmental Research Institute Stockholm, Sweden 1983-03-09

SVENSK KÄRNSRÄNSLEFÖRSÖRJNING AB / AVDELNING KBS

POSTADRESS; Box 5864, 10248 Stockholm, Telefon 08-67 95 40

ANALYSIS OF GROUNDWATER FROM DEEP BOREHOLES IN GIDEÅ

Sif Laurent IVL, Swedish Environmental Research Institute

Stockholm, 1983-03-09

This report concerns a study which was conducted for SKBF/KBS. The conslusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

A list of other reports published in this series during 1983 is attached at the end of this report. Information on KBS technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17) and 1982 (TR 82-28) is available through SKBF/KBS.

SUMMARY

Groundwater from two boreholes in granitic rock at an investigation site in Gideå has been sampled and analysed. This is part of a larger program of geological, geophysical and hydrogeological investigations aimed at finding a suitable site for a high level radioactive waste repository.

Five water-bearing levels in each borehole down to the deepest at about 500 m in the first and to about 600 m in the second borehole were selected. Prior to sampling, the water-bearing level is isolated between packer sleeves. The water is then pumped to the surface where sensitive parameters such as redox potential, pH, sulphide and oxygen content are measured electrochemically on the flowing water in a system isolated from the air. Water, filter and gas samples are sent to several laboratories for further analysis.

The present report is a presentation of the results of the groundwater analyses. The reliability of the results is discussed but there is no evaluation in relation to geology and hydrogeology. This report presents the basic results from the groundwater analyses to be further evaluated by experts in different fields.

CONTENTS

~

••••

1	INTRODUCTION	1
2	SAMPLING	2
2.1	Drilling water	2
2.2	Sampling equipment	4
2.3	Procedure	5
2.4	Water flow	6
3	FIELD MEASUREMENTS	7
3.1	Calibration	8
3.2	Measurement results	8
3.3	Temperature	10
3.4	pH, Eh and pS	10
3.5	Oxygen measurement	10
3.6	Conductivity	11
4	MAIN COMPONENTS OF THE WATER	11
4.1	Sampling	13
4.1.1	Unpreserved samples	14
4.1.2	Preserved samples	14
4.2	Transport	14
4.3	Sampling levels	15
4.3.1	Leakage	15
4.3.2	G12	16
4.3.3	G14	16
4.4	pH and conductivity	17
4.5	Organic carbon	17
4.6	Negative ions	18
4.7	Positive ions	13
4.7.1	Rare-earth elements	18

.

- -

Page

٠

5	PARTICULATE MATTER	19
5.1	Chemical composition	19
5.2	Turbidity	20
5.3	Particle distribution	20
5.4.	Humic and fulvic acids	20
6	ISOTOPE ANALYSIS	22
6.1	Carbon isotopes	22
6.1.1	Sample preparation	22
6.1.2	Age	23
6.2	Deuterium and oxygen	23
6.3	Tritium	24
6.4	U, Th, Ra and Rn	25
7	GAS ANALYSIS	26

. -

ANALYSIS OF GROUNDWATER FROM DEEP BOREHOLES IN GIDEA

INTRODUCTION

1

Groundwater from two boreholes in Gideå has been sampled and analyzed. GI2 is from an outflow area and GI4 from an inflow area. The sampling levels were chosen on the basis of hydrological measurements in the boreholes. Sampling was carried out by Sveriges Geologiska AB. Personnel from IPK and VIAK performed the field measurements and sampling. Several laboratories participated in the water analysis (see below).

The boreholes were pumped out with an airlift (using nitrogen gas) prior to the hydrological investigation and immediately before the equipment for water sampling was lowered to the first sampling level. On the latter occasion, three such airlift pumpings - also called mammoth pumpings were performed in a row. Iodide (NaI, 0.01 mmol/1) was added to the drilling water during drilling to enable any residual drilling water to be traced in the groundwater. The selected fracture zones were sealed off by packers spaced at a distance of 2.7 m.

Sampling took place from the middle of May to the middle of September, 1983. Five levels were sampled in each borehole. The depth is given both as vertical depth (depth) and borehole length (length). It is always vertical depth that is given, unless otherwise specified in the table heading. The work was carried out in periods of 14 days. When the supply of water is adequate, a maximum of 4.5 cubic metres of water can be pumped up during one period.

The present report consists primarily of a presentation of the results of the groundwater analyses. The reliability of the results is subjected to some scrutiny. There is, however, no evaluation in relation to geology or hydrology. The material in this report will be further analyzed by experts in different fields.

The geology and hydrology of the test area will be described in KBS TR 83-53.

A general description of the chemistry of groundwater from great depths in granite and gneiss has previously been published by G Jacks (KBS TR 88). The same author has also described the chemistry of groundwater in Blekinge (KBS TR 79-07), where Sternö is situated. The results of analyses of the groundwater composition in Finnsjön are compiled in KBS TR 82-23 and a chemical evaluation of fracture minerals and the relation between fracture minerals and groundwater composition in Finnsjön has been published by E-L Tullborg and coworkers (KBS TR 82-20). The expected groundwater composition and its importance for the final storage of radioactive waste have been discussed in KBS TR 90 and the final report KBS-2 Volume 2 (Handling and Final Storage of Unreprocessed Spent Fuel, Technical Volume). Hydrology and groundwater age are also taken up in the latter report.

The sampling equipment will be described in KBS TR 83-44.

2 SAMPLING

2

2.1 Drilling water

Some of the drilling water that is used in the core drilling of the sampling holes can penetrate into rock fractures and contaminate the groundwater there. In order to get rid of the groundwater that has been contaminated with drilling water so that the original, undisturbed groundwater can be sampled, three mammoth pumpings (using nitrogen gas) have been carried out immediately prior to sampling in a borehole. The sampling pump is then allowed to work for 3-4 days at the chosen level before sampling begins. Periodic sampling during a pumping period makes it possible to follow changes in the composition of the water that might derive from flushing water or some other source of contamination.

Water from percussion-drilled boreholes has been used as drilling water. The drilling water was filtered through mechanical filters of cellulose (18 CMC 3-2), which are supposed to retain particles with a diameter larger than 5 μ m.

The filtered drilling water was then analyzed. The results for the boreholes in question are presented at the bottom of the respective tables (tables 10, 11 and 13).

Before the drilling water was used, it was "marked" by the addition of sodium iodide (0.01 mmol/l in the drilling water). This is done in order to make sure that it will be possible to trace any drilling water that may have contamihated the sampled water. In the light of the analyses performed, the value of this tracer addition must unfortunately be deemed limited, for the following reason:

Unexpectedly high background concentrations of iodide were found in the analysis of three percussion-drilled boreholes within the area.

Percussion borehole	Le vel, m	I, mg/l	
G1 12	9 0	0.005	
GI 13	159	0.030	
НВН 24	300	0.017	

The above concentrations correspond to a drilling water contamination of 0.04-2.4%. Owing to the degree of uncertainty in the background concentration, iodide concentrations high enough to be of relevance in an analysis of drilling water contamination are found only on levels GI4, 384 and 596 m.

Just these two levels, however, exhibit relatively high chloride concentrations, 100-300 mg/l Cl. The chloride is always accompanied by small quantities of bromide and iodide. If we assume 3×10^{-4} mg I per mg Cl, which is a value that has been observed in connection with water sampling at Stripa, chloride concentrations of 100-300 mg/l correspond to iodide concentrations of 0.03-0.09 mg/l, which in turn would be erroneously interpreted as a drilling water contamination of 2-7%.

The conclusion is therefore that the water samples from levels GI4, 385 and 596 m have drilling water contents of 5-10%. For other levels, drilling water contamination is at least lower than the values calculated from the iodide analyses (see table 13).

2.2 Sampling equipment

A schematic illustration of the equipment is shown in Fig. 1.

ŀ

The boreholes are core-drilled with a diameter of 56 mm. The 2.7 m long sampling zone is sealed off by rubber packers that are expanded to a pressure that is 0.8-1 MPa above the groundwater pressure. The sampling pump is positioned immediately above the sealed-off zone. The intake is from the upper part of the zone. The pump, which is made of steel and provided with teflon seals, has a maximum capacity of 0.12 l/stroke, equivalent to 330 l/d. The water flow available for sampling decreases if the flow of water in the measured rock is lower than the capacity of the pump.

The water is pumped up through teflon-lined iron pipes to a test chamber of stainless steel on the ground surface. The test chamber is equipped with electrodes and measuring cells for recording pH, Eh (glassy carbon), Eh (platinum), pS, and the oxygen content and conductivity of the water. The test chamber is also equipped with valves for the extraction of different types of water samples.

2.3 <u>Procedure</u>

Work at the boreholes is conducted in periods of 14 days. On the last day of a period, the sampling equipment is set up at the level that is to be sampled during the following period, and the sampling pump is started. The personnel then go home for 4 days off, after which sampling proceeds for 10 consecutive days. There were some disruptions in the programme - usually due to problems with the generators as is evident from the notes to the table in 2.4.

2.4 Water flow during sampling

The water flow at different levels is shown in the table below. "Prior water volume" refers to the approximate volume of water pumped up from the level before sampling began.

ВН	Depthm	Mean flow 1/d	Prior water volume cubic meters	Total water vulume cubic meters	Notes
GI2	157	275	1.3	7.7	1
	255	327	0.72	2.0 7 7	4." 1.1
	478	285	0.3	2.5	3
	528	252	1.3	3.5	•
GI4	91	209	1.1	2.7	
	212	161	0.5	1.3	4
	385	158	1.0	2.2	
	498	225	1.6	3. 2	
	596	1.6	0.013	0.07	ţ,

- Note 1 Sampling was conducted during 2 periods, since some equipment was not available at the beginning of the first period.
- Note 2 Due to a malfunctioning generator, only an insignificant volume of water was pumped up during the break period before the sampling period.
- Note 3 Due to the fact that sampling was delayed by a long-lasting generator malfunction prior to sampling on the 353 m level, sampling was started here on the day after the equipment was lowered.

- Note 4 Volume calculated up to day 24-7, when a pressure drop in the packers caused water to leak into the sampling section.
- Note 5 Since the flow was very low, sampling continued here for a total of 45 days. The flow was about 2.2 l/d at the beginning of the period and about 1.2 l/d at the end of the period.

FIELD MEASUREMENTS

The field measurements are recorded in tables 1-8, the E° values obtained from the field calibrations in table 9 and the field values obtained during water sampling in table 10.

The photograph below shows the field equipment with test chamber, measuring equipment and values for water sampling.

3.1 <u>Calibration</u>

Each calibration has been assigned a calibration number. Measurements made after the calibration have the same number.

During calibration, the different calibration solutions are circulated through the test chamber. All calibration solutions are freshly prepared from concentrate and deaerated distilled water, except the one used for calibration of the conductivity cell.

Three buffer solutions with pH 4, 7 and 10 are used for calibration of the pH electrode. Quinhydrone is added to the buffer solutions with pH 4 and 7 for simultaneous calibration of the Eh electrodes. Concentrate diluted to solutions that are 0.01 and 0.05 molar with respect to sulphide ion is used for calibration of the sulphide electrode. The E° values obtained are presented in table 9.

The oxygen probe is calibrated against air-saturated distilled wate: and the conductivity cell against 0.01 and 0.1 mol/l KCl.

3.2 <u>Measurement results</u>

Each measuring occasion is identified with a calibration number, borehole designation, length of borehole (core length) as well as day and time. The vertical depths corresponding to the borehole lengths are shown in the table below.

Borehole	Lenyth m	Depth m	Borehole	Length M	Depth a
612	178	157	(:14	96	41
	328	288		2211	212
	400	353		404	3(4)
	544	47()		512	470
	602	528		616	596

Owing to the fact that it takes some time after each calibration before the water in the test chamber is representative of the borehole water and before the Eh and pS values have stabilized, no measurement results have been included from the calibration days. Nor are values included that have been obtained from obviously unsuccessful measurements owing to operational disturbances in the field.

A pressure drop was obtained in the packers in borehole GI4 on two occasions - days 22-5 and 24-7. Water may then have leaked into the section.

Owing to the extremely low water flow rate in GI4, 596 m, only measurement values from week 33 on have been included. Conductivity measurements from that time show that relatively stable conditions had been achieved. Recalibration was then carried out on day 33-5. Power failures occurred on days 34-5 and 34-7. For more than a week, measurement values were heavily influenced by the calibration and then by the power failures. Measurement results are therefore not reported again until from day 35-2. Owing to a new power failure on day 35-5, days 35-5 and 35-6 have not been included either.

3.3 <u>Temperature measurement</u>

The temperature is measured in the test chamber to permit calibration and calculation of the electrode potentials.

Owing to the relatively slow rate of water turnover in the test chamber, the temperature measured is affected by the air temperature and is therefore not representative of the groundwater.

3.4 <u>Measurement of pH, Eh and pS</u>

The system often seems to need to remain undisturbed for about a week before the Eh and pS values are more or less stable. The pH value stabilizes much faster.

The calibrations show that adjustments must be made fairly frequently, probably because a deposit builds up on electrodes and probes. The optimum time between two calibrations would therefore appear to be between 5 and 10 days. The electrodes were usually cleaned when they were lowered to a new level as well as before calibrations 112, 113, 117 and 154.

3.5 Oxygen measurement with probe

When the oxygen probe was recalibrated, it was found that the measuring error was 5-10% - in the negative direction, as a rule. In some cases, much larger errors (>90%) were found, and the probe had to be cleaned and the membrane changed. Values from such occasions are not reported.

It appears as if the oxygen probe has to be recalibrated more frequently than is possible according to 3.4 in order for meaningful results to be obtained.

3.6 Measurement of conductivity

There are no conductivity values for the beginning of GI2, 157 m owing to the fact that delivery of the measuring equipment was delayed.

Calibration was only done at the beginning of each level. The conductivity measurements were consistently stable.

4 MAIN COMPONENTS OF THE WATER

Each sampling occasion has been assigned a unique sampling number, which is the same for all samples taken on the same occasion ("Nr." in the tables).

The main components were analyzed by SGAB's water laboratory in Uppsala and by Hydroconsult in Stockholm. Some control analyses were performed by IVL (the Swedish Institute for Water and Air Pollution Research) in Stockholm. The analysis results are reported in tables 10-13. The table below shows which laboratory carried out the analyses and which method was used. Where there are two analyses of the same parameter, the mean value is reported.

Drilling water was analyzed by SGAB. The analyses are presented at the bottom of tables 10, 11 and 13.

	SGAB	H-con.		SCAB	H-con.
pН	*	¥.	1003	Q	1.
Cond.	*	₩.	(:)	j	h
Turb.		*	F)	k
CA	8	b	504	1	
Ma	a	b	114		f
Na	a	C	NOG		r
ĸ	а	C	NU2		r
Mn	a	d	NH4		ſ
Fe(JI)	e		5502	fii	fi)
Fe-tot	a		ទ	ħ	
A1		f	1	f.	
Cu	а		100	Þ	ų
Sr	а			•	•

* Conventional according to Swedish Standard (SS)

a Optical emission with ICP (own design)

b Titrimetric with EDTA according to SS

- c Emission with flame
- d Atomic absorption
- e Colorimetric with o-phenanthroline according to Standard Methods

f Colorimetric according to SS

- g specially designed titrator
- h Titration according to Mohr (SS), high concentrations only
- i Ion chromatograph, for chloride, low concentrations only

k Potentiometrically according to SS

- m Colorimetrically with methylene blue according to Standard Methods
- n Potentiometrically
- o Colorimetrically
- p Carbon analyzer from Carlo-Erba
- **g** Carbon analyzer from Oceanographic

The field values obtained simultaneously with the water sampling (field) and the laboratory analyses (lab) of the field parameters i re presented in table 10. Note that the field values, which are measured during water sampling, are often not representative of the borehole. Sampling may, for example, have been done immediately after a calibration.

"Date sampling" refers to the sampling day and "Date lab" to the day the samples were received at the laboratories. In both cases, the date is given with the number of the week followed by the number of the day of the week. (Day 1 is Monday.)

"Drilling water residue" (table 13) is the fraction of the added iodine concentration in the drilling water (2.1) that has turned up in the groundwater. No correction is made for the water's natural iodide content (2.1).

All determinations of metal ions are presented in table 11, while table 13 shows TOC, turbidity, and the negative ions that do not contain nitrogen. Finally, the parameters that contain nitrogen are compiled in table 12. The analysis results are given both as the concentration of the ion and the concentration of nitrogen.

4.1 Sampling

The water samples were taken through a valve in immediate connection with the test chamber. On each sampling occasion, a new tube, kept well protected from dust, was attached to the valve. The free and untouched end of the tube was inserted down to the bottom of the sample bottle. At least

two bottle volumes of sample water were allowed to run over before the bottle was sealed, without any air having been trapped inside. The samples were kept in a refrigerator awaiting transport (4.2).

On level GI4, 596 m, where the water flow was only about 1.5 l/d, one composite sample was taken during the day. It was divided into different samples as specified below. This level is not taken into account in the run-through of individual analysis parameters below (4.4-4.7).

4.1.1 Unpreserved samples for analysis of negative ions etc were taken in bottles of borosilicate glass (1 litre) with a ground, filled stopper held in place with a steel clip.

> In order to keep the ground surface moist so that no air can leak through, the bottles were stored and transported upside-down.

4.1.2 Preserved samples for analysis of metal ions were taken in acid-washed polyethylene bottles (250 ml).

> The samples were preserved with 2.5 ml of concentrated hydrochloric acid (super-pure). The acid was added through a dispenser below the sample surface immediately before the sample bottle was sealed. Hydrochloric acid was chosen as a preservative because iron(II) was to be determined.

4.2 Transport of samples

The samples were packed in specially-made insulated boxes with frozen blocks. The boxes were mailed "express" on the afternoon of the sampling day and delivered to the laboratory the following morning. No water sampling took place

on Fridays and Saturdays, since the samples could then not be received by the laboratory until Monday or Tuesday. The Sunday samples were sent together with the Monday samples.

4.3 Sampling levels

Field analyses representative of the bcrehole are presented in tables 1-8, while the field analyses in table 10 are only representative of the sampling occasion.

Except for the redox-affected parameters, the analysis results arc strikingly consistent within the levels.

4.3.1 Leakage of water into the section due to pressure drop in the packers may have occurred on two occasions: in GI4,
91 m before sampling No. 183 and in GI4, 212 m before sampling No. 189. No appreciable change in the analysis results is noticeable in either case.

No. 183 exhibits the level's lowest pH, conductivity, calcium, magnesium, bicarbonate, chloride, phosphate and ammonia concentrations and the highest concentrations of iron, sulphate and silicic acid, which shows that neither drilling water nor water from the next sampled level can have leaked in. The iodide determination also confirms this.

In the case of sampling No. 189, the changes are even less noticeable. The concentrations of calcium, chloride and sulphate are, however, slightly lower starting with No. 189 and the sodium concentration slightly higher.

At GI4, 596 m, the packers had to be opened on one occasion due to a pump fault. Here we see a very pronounced change of the drilling water concentration according to the iodide analysis starting with sampling No. 206. The natural conclusion is therefore that a heavy inflow of drilling water has occurred from a fracture zone. However, this interpretation is not supported by other analyses.

- 4.3.2 In GI2, the water from all levels is very similar dissimilarities between the levels are often of the same magnitude as the precision of the analysis. Significant differences are, however, found in several parameters: potassium is lowest at 353 m, iron lowest at 157 m, sulphate highest at 157 m and lowest at 478 and 528 m and phosphate highest at 528 m.
- 4.3.3 GI4 has two levels 212 m and 596 m with considerably higher salt content (conductivity) than other levels. Other dissimilarities between the levels are also strikingly large here: Levels 91 and 498 m have the highest magnesium concentrations and the lowest concentrations of chloride and fluoride, level 498 m has the lowest sodium and the highest iron concentration measured within the area, and on the salt-containing level 385 m, bicarbonate and sulphate reach their absolutely lowest concentrations, as does silicon on the salt-containing level 596 m. The latter can probably be related to the fact that the pH is also lowest there. The level 498 m is further commented on in section 6.3.

4.4 pH and conductivity

These parameters were determined directly in the field and by both laboratories (table 10). The field values are systematically around 5% higher than the laboratory values. A similar difference has been noted in many groundwaters. There is also a small systematic difference between the laboratories, which may be attributable to the fact that Hydroconsult, which notes the lower value, thermostated its samples at 25° C before measurement.

The differences within the levels are small, as a rule. The pH variation (field) within all of GI2 is only 8.6-8.8, while it is 7.0-9.4 in GI4.

The highest pH values were measured in GI4, 385 m, where the bicarbonate concentration is lowest.

4.5 Organic carbon (TOC)

No parameter exhibits as large differences between the laboratories as TOC - SGAB's results are often more than twice as much as Hydroconsult's. Control analysis at two Swedish laboratories comes closer to verifying SGAE's high results, while analysis at a laboratory in the United States, which specializes in the determination of humic and fulvic acids, confirmed Hydroconsult's low values. The mean value is reported with only one figure (table 13).

The concentrations vary in the two boreholes between 2 and 5 mg/l, which is the same variation as was noted in G12, 528 m. At level GI4, 385 m, the variation is 2-4 mg/l.

4.6 <u>Negative ions</u>

The negative ions are compiled in tables 12 and 13. The results generally show good consistency within the sampling zones.

The largest difference within the levels is found in the nitrogen-containing parameters (table 12). In some cases, the differences are due to a shift in the redox equilibrium, which is evident from the column "Sum-N".

The ratios between the different anions vary widely in GI4. The differences are often drastic, for example the ratio of Cl/SO_4 in GI4, 91 m is about 1/3, while it is about 1700 in GI4, 385 m.

4.7 <u>Positive ions</u>

The positive ions are compiled in table 11. In G12, the concentrations differ very little between water samples from the same level as well as between samples from different levels.

In GI4, on the other hand, the differences between the levels are remarkedly large. Most remarkable is the very low sodium concentration in the water from GI4, 498 m compared with other levels.

4.7.1 Lanthanum, neodymium and ytterbium were determined in the same samples as strontium. In all cases, the concentrations were below the detection limit (<0.005 mg/l).

PARTICULATE MATTER

5

The particulate matter was subjected to several different types of analyses (5.1-5.5).

5.1 Chemical composition

The water was filtered through a membrane filter (Millipore, pordiameters 0.45 μ m) installed directly after the test chamber. The filtered volume was between 475 and 2300 ml. The larger volume was reached in water with a turbidity of about 1 or lower, whereas only 850 ml was obtained in sample 193 with a turbidity of 0.6.

The total concentration on the membrane was determined by X-ray fluorescence at SGU's (the Geological Survey of Sweden) laboratory in Luleå. The concentrations are presented in table 14 as mg/l of filtered sample. The quantity of copper, strontium, lanthanum, neodymium and ytterbium was always below the detection limit (1, 1, 3, 2 and 2 μ g, respectively) on the membrane.

Sulphur could not be determined for samplings Nos. 184 and 188 due to the fact that a membrane without a known background concentration had been used.

The large concentration variations, as well as the variation in the ratios Fe/S and Fe/Al (10-100 and 0.1-5, respectively) are undoubtedly large due to the fact that the particle quantity varied widely between the samplings.

5.2 <u>Turbidity</u>

Turbidity (table 13) was determined for all samples except those from GI4, 596 m. Not unexpectedly, the highest metal concentrations obtained in the chemical analysis (5.1) were measured in samples with high turbidity.

5.3 <u>Particle distribution</u>

The particle distribution within the range 2-80 µm was determined on water from the three lowermost levels in the two boreholes (Fig. 2). The determination was performed by VIAK's water pollution research laboratory in Stockholm.

NOTE! It is the length of the borehole and not its vertical depth that is indicated on the curves.

5.4 <u>Humic and fulvic acids</u>

The determination was performed at Batelle, USA, through combined dialysis and gel film chromatography (GFC). The method, which fractions the sample into humic acids and four molecular weight fractions of fulvic acids, is described by Means et al 1977 (Limnol. Oceanogr. 22, 957-965), but sodium tetraborate (pH 9.1) was used on recommendation by Swift Posner 1971 (J. Soil Science, 22, 237-249).

Owing to the samples' low content of organic material, they were first concentrated 10 times before analysis. No loss of volatile organic matter was found in connection with the concentration process.

No humic acids were present in the samples. The samples' contents of different molecular weight fractions of fulvicacid-like substances are shown in the table below. The eluate's UV absorbance, recorded continuously at 254 nm, is shown in the figure.

l.eve1	Nr	>1000	700-1000	300700	<::()()
G12:478m	173	43	47	10	0
G12:528m	208	55	34	6	5
GI4,385m	194	21	6日	11	0
GI4,498m	199	29	40	17	177

According to Means, the results strongly indicate that the most important organic constituents are hydrophilic polymer substances with low to medium molecular weights - probably fulvic acids or similar substances, which are the predominant substances in natural waters.

6 ISOTOPE ANALYSIS

Isotope analysis of low atomic weight substances in the water is done mainly to permit calculations of the age and origin of the water. The high atomic weight radioactive substances are determined primarily because the natural background concentrations are of great interest for the KBS project.

The analyses were carried out at the following laboratories: Laboratory for Isotope Geology, Stockholm (6.1, 6.3) Institute for Radiohydrometry, Neuherberg, West Germany (6.2, 6.4) Mass Spectrometry Laboratory, Uppsala University (6.4) Studsvik Energiteknik, Nyköping, Sweden (6.5)

6.1 <u>Carbon isotopes</u>

Prior to the determination, which is used for dating by means of the carbon-14 method, the water's contents of carbon dioxide and carbonate have to be concentrated. It is thereby of the utmost importance that the concentrate not be contaminated by air or chemicals.

6.1.1 Sample preparation is done in the field. A polyethylene barrel holding 130 1 and filled from the beginning with nitrogen is filled with water. Hydrochloric acid is added to disintegrate carbonates present in the water. A nitrogen gas stream is then used to drive the carbon dioxide over to a wash bottle containing sodium hydroxide.

Bore- hole	Depth m	Ντ	Age BP	Age)07 cotra	0-13 0/00
G12	288	164	6355	6415	19.6
G12	353	167	6460	6570	-38-1
GI2	47년	175	6620	6720	-19 7
G12	528	208	6360	6485	-; ()_ A
GJ4	212	189	11810	11895	J9,6
GI4	498	199	3780	3850	-(PO) 7

6.1.2 The age is presented in the table below as "Age BP" and the age after correction for C-13 content as "Age BP, corr".

> Ages are lacking from the uppermost levels owing to a mishap in connection with sample preparation, from GI4, 385 m due to the very low content of bicarbonate in the water and from GI4, 596 m due to an insufficient supply of water.

6.2 Deuterium and oxygen

The analyses have been used in calculations aimed at obtaining a better knowledge of the origin of the water and of the chemical processes that have occurred between the rock and the water. The deuterium concentration also provides information on previous climatic conditions.

The concentrations in the table refer to deviations in per mill from SMOW (Standard Mean Oceanic Water). The analyses were performed in West Germany (D) and in Sweden (S).

Bore- hole	Depth m	NT	H-2 ()))	0-1{ (D)	(1-18 (5)
012	157 157 288 353 478 528	153 159 164 167 175 208	-9(), 9 -90, 4 -90, 1 -91, 4 -89, 5 -92, 7	-12 55 -12 67 -12 57 -12 69 -12 44 -12 73	-12 62 -12 71 -12 73
G I 4	91 212 385 498 596	184 187 194 197 206	-93.4 -89.7 -99.4 -94.1 -100.8	+12,93 -12,05 -13,63 -12,94 -13,81	13,67 -33,09 13,88

6.3 Tritium

Owing to its short half-life (about 12 years), tritium is an important isotope in hydrologic studies. The amount of tritium in the atmosphere has increased drastically due to the tests with nuclear weapons. The tritium content of rainwater has increased by more than 10 times, which makes it possible to determine whether "young" water is present in a groundwater sample.

Bore- hole	Depth Mi	Νr	Tr TU
G12	157	155	<3
GIZ	157	159	<3
GIZ	288	164	<3
G12	353	167	<3
G12	478	175	<3
G12	528	208	<3
GI4	91	184	36
GI4	212	189	5
GI4	385	194	8
GI4	49 8	199	4 9
GI4	596	206	10

The tritium concentration is given in the tables in the unit TU, which is the number of tritium atoms per 10^{18} hydrogen atoms.

No tritium determination has been carried out on the drilling water used here. Two other drilling waters (GI12, 90 m and GI13, 159 m) have given results of 13 and 37 TU tritium, respectively.

In GI4, 498m, the unusually high tritium content (49TU), the general water composition and the unexpectedly large water flow (225 1/d) in relation to the low hydraulic conductivity (10^{-11} m/s) indicate a large portion of near-surface water present, probably entering through the borehole.

6.4 Uranium, thorium, radium and radon

The natural concentration of these elements in the groundwater is of great importance for the project. Moreover, the ratio between different uranium isotopes, as well as the uranium/ thorium ratio, are also used in dating.

The analyses are reported in table 15. The concentrations for U, Ra and Rn are given in Bq/l. The following relation-ships apply:

39.4 μ g U per Bq 2.74 x 10⁻⁵ μ g Ra-226 per Bq 1.76 x 10⁻¹⁰ μ g Rn-222 per Bq

GAS ANALYSIS

Helium was determined in the gas that spontaneously leaves the water on its passage through a Horst bottle. The analysis was carried out by AGA SpecialGas, Lidingö.

In the table below, besides the percentage content of helium in the gas phase, the amount of water that has passed through the Horst bottle and the obtained gas volume are also given. This enables the reader to form his own rough idea of the quantity of dissolved gases in the water. The helium content of the water has not been calculated, since degassing is dependent on a number of uncontrolled parameters. We know, for example, that temperature variations of >20°C occur in the tent where the borehole opens out and the sampling equipment is located.

ВН	Depth m	Nr	Helium %	Water volume l	Gas volume ml	Notes
						<u> </u>
CI2	157	159		257	c:a 4	3
	288	164	c:a.025	237	" 5	1
	353	167	0.032	420	135	
	478	173	0.046	248	60	
	528	210	0 015	391	45	
G14	91	184	<. 005	289	125	
	212	189	0.16	139	45	
	285	104	0.81	5.8	163	
	400	100	0.004	A14		2
	470	177	0.008	710		
	376	205	0.067	0.23	/ =	

Note 1 – Insufficient gas volume for analysis. Note 2 – Data on gas volume lacking.

26

Figure 1. Schematic illustration of sampling equipment

Figure 2. Particle size distribution analysis in the region 2-80 μ m. An HIAC PA 500 instrument is used. P represents the percent of the total number of particles with a certain particle size. V represents the percent of the total particle volume less than a certain particle size.

Table	1
-------	---

1

GIDEA - Field measurements

Cali- bration nr	Bore- hole	Hole- length	Date ww-d	lime	lemp °C	pН	Eh,C ∎V	Eh, Pt mV	pS	Oxy- gen mg/l	Conduc- tivity m5/a
102	615	176	20-3 20-3 20-3 20-3 20-4 20-4 20-4 20-4 20-5 20-5 20-5	730 835 1200 1250 1530 715 905 1325 720 820 930	7.07.58.0 8.07.06.0 6.67.1 5.57.60	8. 74 8. 72 9. 71 8. 77 8. 75 8. 75 8. 74 8. 74 8. 77 8. 77 8. 77 8. 76	- 21 - 25 - 35 - 36 - 37 - 41 - 59 - 59 - 44 - 45 - 47	- (44 - 37 - 47 - 50 - 53 - 69 - 53 - 69 - 108 - 109 - 109	15 97 15 52 13 62 13 62 13 73 10 98 10 98 10 83 10 85 10 84 10 83	10 10 07 05 01 04 05 01 02 04	
103	615	178	20-6 20-6	715 815	5. 8 6. 1	8.79 8.78	- 21 - 21	- 41 - 43	12 72 12 16	05 05	
104	¢12	178	20-7 20-7 20-7 20-7 20-7 21-1 21-1 21-1 21-1 21-2 21-2 21-2 21	725 940 1140 1310 1555 720 950 1245 1400 1615 715 830 1130	6. 1 6. 8999956660780 6. 6. 999956660780 6. 6. 6. 5. 5. 6.	8. 77 8. 75 8. 75 8. 75 8. 75 8. 75 8. 75 8. 75 8. 75 8. 75 8. 79 8. 79 8. 79 8. 79	- 24 - 32 - 32 - 37 - 37 - 40 - 42 - 44 - 44 - 44 - 44 - 44 - 41 - 41	- 48 - 52 - 57 - 61 - 66 - 41 - 44 - 44 - 44 - 44 - 48 - 107 -108 - 107	11 98 11 24 11 05 10 94 10 98 10 91 10 69 10 63 10 59 10 60 10 58 10 59 10 59	04 05 06 04 04 00 02 02 02 02 02 02 02 02 00 00 00	
105	615	178	22-2 22-2	1105 1315	6. 9 7. 1	g. 80 8. 81	55 55	30 29	22 64 22 62		27 5 27 5
106	012	178	22-3 22-3 22-3 22-3 22-3 22-3 22-4 22-4	735 820 915 1110 1230 1430 1545 730 920 1100 1300 1430 1530 725 950 1155 1300 1430 1430 1600 655 815	6.67777.67777.67777.689	8, 83 8, 81 8, 82 8, 80 8, 75 8, 75 8, 75 8, 75 8, 75 8, 75 8, 75 8, 75 8, 77 8, 75 8, 77 8, 77 8, 77 8, 77 8, 77 8, 77 8, 77 8, 72 8, 72 8, 72 8, 72 8, 72 8, 75 8, 77 8, 75 8, 75	$ \begin{array}{r} 15\\ 16\\ 12\\ 10\\ 13\\ 11\\ 10\\ -4\\ -4\\ -1\\ -6\\ -3\\ -16\\ -17\\ +18\\ -19\\ -19\\ -19\\ -27\\ -26\\ \end{array} $	9 12 4 2 2 2 - 11 - 13 - 10 - 14 - 16 - 17 - 16 - 16 - 17 - 16 - 17 - 16 - 16 - 17 - 16 - 17 - 16 - 16 - 16 - 16 - 16 - 17 - 16 - 1	22 13 22 25 21 96 21 80 21 79 21 69 21 61 21 17 21 08 21 16 20 98 20 93 20 94 20 94 20 94 20 94 20 94 20 94 20 24 20 24 20 24 20 24 20 24 19 91 19 87		27 5 27 5 27 5 27 5 27 5 27 5 27 5 27 3 27 3 27 3 27 3 27 3 27 3 27 3 27 3
107	612	178	22-7 22-7	700 900	5.8 6.0	8.78 8.77	14 12	· 1 - 2	19 01 18 88	20 20	27 0 27 0
108	015	179	23-1 23-1 23-1 23-1 23-1 23-1 23-2 23-2	700 800 900 1130 1350 1445 1535 700 915 1040 1140 1400 1535 730	5.6.122235800012 6.6.6.5.5.6.0012	6,70 8,70 8,69 9,72 8,72 8,72 6,73 6,73 8,73	24 14 14 31 31 24 16 13 13 12 7 6	2 - 2 - 3 - 4 - 19 - 19 - 19 - 19 - 19 - 19 - 10 - 10	18 76 18 60 18 55 18 84 19 23 19 26 18 63 18 23 18 31 18 13 18 13 18 01 17 31		27 0 27 0 27 0 27 0 27 0 27 0 27 0 27 0

Table 2

1

ł

GIDEA - Field measurements

_

Cali- bration nr	Bore- hole	Hole- length m	Date ww-d	Time	lemp "C	рН	Eh.C øsV	Eh,Pt mV	pS	Oxy- gen mg∕l	Conduc~ tivity mS/m
111	612	328									
11,	• 12	320	24-3	710	5.0	0 74		2	17 89		26.7
			24-3	800	5.0	B 71		19	19 18		27 0
			24-3	1000	ÅÖ	B 77	- 114	- 5	18 02		26.9
			24-3	1155	6.2	8.75	- 20	- 11	18 01		26 9
			24-3	1305	6 1	8 77	- 20	14	18 01		26 9
			24-3	1400	6.2	8 71	- 17	- 10	18 29		26.9
			24-3	1500	62	8 75	- 11	- 9	18.26		27 0
			24-4	655	58	D BO	- 31	- :'8	17 85		27 0
			24-4	900	5.8	8 80	- 33	- :19	17 92		27 0
			24-4	1100	6 1	8 79	- 34	- 31	17 80		26 9
			24-4	1130	6.1	8.79	- 37	- (4	17 61		26 9
			24-4	1235	6 1	8 79	- 34	- :16	17 65		26 9
			24-4	1330	6.2	8.75	- 36	- 33	17.82		26.9
			24-4	1455	6.2	8 77	- 33	- 17	17.79		26 9
			24-4	1600	6.2	8.77	~ 37	- 33	17 68		26 9
			24-5	500	5.8	8 82	- 44	- 44	17 20		26 9
			24-5	700	5.8	8.82	- 46	- 46	17.09		26 9
			24-5	830	5.9	8. 81	- 4EI	- 47	16. 94		27 0
112	612	328									
	•••		24-6	700	58	08.0	- 52	- 47	17 31		26 9
			24-6	830	6.0	8.79	~ 56	- 53	16 90	•	26 9
113	612	328									
			24-7	700	6.0	B 81	- 41	- 39	17 73		26 9
			24-7	800	6.0	8 81	- 47	- 42	17 48		26.9
			24-7	910	6.0	8 81	~ 50	- 44	17 30		26 9
			24-7	1005	6 1	8 81	- 5	- 49	16 86		26.9
			24-7	1200	6.2	8.77	- 55	- 53	16.49		26 9
			24-7	1410	63	8 80	- 60	- :9	15 87		26 9
			24-7	1500	6.4	0.00	- 6)	- 61	15 68		26 9
			24-7	17	6.3	0.80	- 64	- 65	15 40		26 9
			25-1	700	5.9	8.90	- 74	- 80	13 73		26 9
			25-1	900	6.0	8 88	- 76	- HC	13 61		26 9
			25-1	1105	6.3	8.86	- 74	- 64	13 49		26.9
			25-1	1315	6.2	8. 82	- 74	~ 85	13 42		26 9
			25-1	1500	6.3	8.84	- 80	- 117	13 35		26 9
			25-1	1600	6.3	8.84	- 81	- 87	13 31		26 9
			25.2	655	5.9	6 96	- 81	- 47	13 00		26 9

Tab	le	3
-----	----	---

GIDEA - Field measurements

-- - -

Cali- bration nr	Bore- hole	Hole- length m	Date ww-d	Time	lemp °C	рн	Eh,C #n∨	Elis Pit MV	25	Oxy∘ gen mg⊱l	Conduc- tivity aC-
115	612	400	26-7 26-7 26-7 26-7 26-7	645 850 1005 1230	6.1 6.2 6.2	0 63 0 63 0 63 0 62 0 64	1 - A - 77 - 10 - 177	29 22 15 8	20 11 20 00 19 85 19 44	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
			26-7 27-1 27-1 27-1 27-1 27-1 27-1	1640 655 905 1100 1200 1445 1540	6.2 6.2 6.8 7.0 7.0 7.0 7.0	8 61 8 64 0 62 8 60 0 60 9 62 4 62	- 17 - 36 - 36 - 36 - 37 - 43 - 43 - 47 - 47	- 2 - 20 - 20 - 20 - 20 - 20 - 20 - 20	17 59 19 59 19 87 19 87 19 49 19 49 19 10	22 10 10 09 07	
			27-2 27-2 27-2 27-2 27-2 27-3 27-3 27-3	650 950 1120 1215 1520 800 1000 1110	6.3 6.8 7.1 7.3 6.3 6.8 7.0	3: 64 8: 61 8: 60 5: 59 8: 66 8: 66 8: 64	- 7) - 74 - 74 - 74 - 80 - 80 - 87 - 84 - 84	- 73 - 73 - 76 - 80 - 81 - 65 - 94 - 94 - 95	17 62 15 23 15 00 14 89 14 66 13 74 14 01 13 71	01 01 03 04 04 01 01 00	27 1 27 1 27 1 27 1 27 1 27 1 27 1 27 1
116	6 15	400	28-1 29-2 28-2 28-2	1200 810 1150 1225	8.2 6.8 7.1 7.2	0.53 8.57 8.58 8.58	- 73 - 76 - 76 - 76 - 76	- 72 - 76 - 79 - 77	15 87 15 19 15 03 - 15 06	03 00 00 00	26 5 26 7 27 2 27 2
117	615	400	28-3 28-3 28-3	800 900 1 <i>0</i> 40	6.9 7.0 7.5	8.80 3.80 8.75	- 7 - 46 - 54	- 53 - 60 - 63	19.18 18.89 18.68	05 05 06	27 0 27 0 27 0
Cali- bration nr	Bore- hole	Hole- length m	Date ww-d	Time	lemp C	рн	Eh;C mV	Ek,Pt m∀	p≲	Oxy− gen mg/l	Cundus− tivity mS/m
117	6 15	544	28-4 28-4 28-4 28-4 28-4 28-4 28-5 28-5	1015 1115 1245 1325 1425 1420 750 850	9.3 8.0 7.9 7.6 8.0 8.1 7.5 7.8	6.64 6.55 6.53 6.51 6.45 6.57 6.55	117 117 63 33 14 - 14 - 73 - 76) - 12 - 146 - 40 - 44 - 44 - 67 - 70	21 59 20 61 20 05 19 88 19 61 19 85 15 59 15 43	07 05 05 05 05 03 01	2777777 2777777 2005 305
118	0.2	544	28-6 28-6 28-6	755 900 1000	7.2 7.3 7.5	890 989 887	- 51 - 32 - 20	- 57 - 35 - 33	19.27 20.67 20.65		27 5 27 5 27 5
J19	6 15	544	28-7 28-7 28-7 28-7 28-7 29-1 29-1 29-1 29-2 29-2 29-2 29-2	820 920 1120 1450 1455 1230 1405 1400 1400 850 950 1110	7.3 7.5 7.8 7.8 7.9 7.9 7.2 7.3 7.3 7.1 7.1	8.63 8.57 8.63 8.58 8.58 8.51 6.90 6.73 8.79 8.79 8.79 9.81	- 18 - 17 - 13 - 16 - 27 - 27 - 37 - 90 - 60 - 77 - 77 - 81	- 1/2 - 16 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	20 70 20 90 20 92 20 77 20 60 29 77 20 60 29 77 19 58 17 93 15 57 15 57	11 11 07 05 01 00 00 00 01	

Table 4

•••

ţ

•

•

.

GIDEA - Field measurements

Cali- bration nr	Bore- hole	Hole- length m	Date ww-d	Time	"L t mp "C	pН	Eh.C mV	EL.Pt m∀	ρS	Døyn gen mg/l	Cundos - tivity mbom
•	010	402									
120	615	OUZ	29-4	1050	7.0	3 35	15	124	21 55	op	30 5
			30-1	750	2.0	8 81	- 61	· 61	16 55	01	21 4 0 17
			30-1	1000	7.3	8.81	- 6:'	- 63	16 39	02	£0 -
			30-1	1100	7.4	3 80	- 61	- 63	16 31	01	26.9
			30-1	1235	77	0 91	- 61	- 61	16 19	00	20 7
121	612	602									
			30-2	705	6.5	Ú. 65	- 15	JJ	20 54	70	26.6
			30~2	945	2.4	9.60	- 12	- 4	20 51	40	నిరి త
			30-2	1145	7.7	8.60	- 16	- 13	20 39	37	20 0
			30-2	1305	7.9	8. 61	- 14	- 11	20.51	. 37	26 6
			30~2	1505	8.3	8.60	- 19	- 15	20.23	35	200 74 5
			30-2	1630	0.2	0.62	- 21	- 16	12 54	25	20.0
			30-3	900	7.0	0 70	- 44	- 55	18 84	05	26 6
			30-3	1000	7.5	B 69	- 52	- 57	18 60	05	26.6
			30-3	1000	7.5	8.69	- 54	- 57	18.60	05	26 6
			30-3	1200	8.0	8.68	- 50	- 59	18 39	05	26 5
			30-3	1430	7.9	Ð. 70	- 55/	- 59	18 36	. 03	26 6
			30-3	1600	7.9	8.70	- 56	- 61	18 29	. 00	26 7
			30-4	700	7.0	9.74	- 63	- 69	17 81	00	26 5
			30-4	900	7.7	8.72	~ 66	- 72	17 62	0.0	20 /
			30-4	1100	7.0	8.63	- 44	- 12	10 40	00	26.0
			30-4	1510	9.5	0.00	- 49	- 75	17 54	01	26.6
			30-4	1620	8 5	8.68	- 70	- 77	17 39	. 01	26 1
			30-5	700	7.2	8.77	- 7:	- 83	16 43	01	26 5
			30-5	90 0	8.0	8.71	- 76	- 64	16 28	01	26 5
			30-5	1000	8. 2	D. 69	- 75	- 64	16.19	co	26 5
122	C12	602							47 01		D , (
			30-6	850	7.3	8.8/	- 64	- 04	17 29	00	200
			30~6	1100	0.0	0.00	- 87	- 76	16 90	00	26.7
			30-6	1215	9.0	6.62	- 77	- 79	16.61	01	26 7
	- 10										
123	e12	802	20-7	700	7 0	6 40	- 40		17 07	61	24 5
			30-7	900	7.0 B.7	9 45	- 61	- 20	17 45	01	26 7
			30-7	1100	9.3	8 64	- 74	- 76	16 99	63	26.5
			30-7	1400	10.0	8.63	- 93	- 66	16 05	02	26 5
			30-7	1600	9.9	8. 66	- 86	~ 67	15.71	. 01	26 7
			31-1	600	7.2	8.77	- 90	- 46	14 20	00	26 6
			31-1	800	8.5	8.73	- 93	- 47	13 99	. 00	26 7
			31-1	1015	9.0	Ð. 72	- 94	-101	13 75	00	26 6
			31-1	1200	9.0	0.72	- 9!/	-103	13.54	. 01	25 6
			31~1	1330	9.0	8.72	- 95	-103	13 50	01	26 6
			31-2	940	7. U P. O	0.01	~ 7.1	-105	12 40	02	26 0
			31-2	950	8.2	0.70	- 7.7	-109	12 22	02	26 7
			31-2	1245	8.8	0.76	- 96	-109	11 98	. 04	26 7
			31-2	1500	8.5	8.77	- 96	-104	11 88	00	26 7

Table 5

۱ –

GIDEA ~ Field measurements

Celi- bration nr	Bore- hole	Hole- Length	Date ww-d	Time	leap °C	рн	Eh.C mV	Eh.Pt #V	βS	Oxy- gen mg/l	Conduc- tivity mS/m
150	614	96	22-4 22-4 22-4 22-4 22-4 22-5 22-5 22-6 22-6	745 840 1040 1335 1520 1330 1520 735 830	6.9 7.1 7.9 9.6 8.5 9.8 10.5 7.8 7.8	7.85 7.98 7.82 7.81 7.81 7.81 7.81 7.81 7.81 7.81 7.89 7.89	94 93 81 81 74 82 76 76 45 45	68 86 80 74 75 59 51 20 19	16 02 16 04 16 68 16 83 15 90 15 53 13 00 13 01 12 70 12 70	05 05 05 05 02 02 05 01 01	23 7 23 9 23 9 23 9 23 9 23 9 23 9 23 9 23 5 23 5
152	CI4	96	22-7 23-1 23-1 23-1 23-1 23-2 23-2 23-2 23-2	1405 1530 755 845 1145 1330 1610 740 945 1050 2145 1355 1530 720	9.0 8.0 7.6 8.7 7.0 7.0 7.0 7.0 6.2 7.0 6.2 7.0 6.1	7. 75 7. 80 7. 92 7. 94 7. 95 7. 95 7. 98 97 7. 98 97 7. 98 97 7. 99 8. 01	90 86 64 61 61 59 46 45 45 45 41 37	67 82 22 21 13 6 1 - 36 - 48 - 31 - 29 - 32 - 32 - 53	22 18 21 58 13 21 13 02 12 64 12 56 12 48 12 23 12 25 12 23 12 23 12 16 12 13 12 09	1. 40 65 05 04 04 03 00 00 00 00 00 00 00 00	24 0 23 9 23 9 23 9 23 9 23 9 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0
Cali- bration nr	Bore- hole	Hole- length m	Date ww-d	Time	Temp C	рH	Eh,C mV	Eh,Pt mV	pS	Oxy∼ gen mg⁄l	Conduc- tivity mS/m
153	014	222	23-4 23-4 24-1 24-2 24-2 24-2 24-2 24-2 24-2	730 845 1050 735 830 925 1055 1240	8.2 8.8 7.8 7.9 7.9 7.9 7.1 7.0 7.0	8. 29 8. 29 8. 90 8. 90 8. 90 8. 90 9, 08 8. 96	10 - 65 - 5 - 4 - 7 - 3 - 7	10 15 - 75 - 12 - 12 - 13 - 15 - 9 - 17	21.07 20.88 11.37 19.69 19.55 19.42 19.79 19.28		24 4 24 4 24 4 24 4 24 4 24 4 24 4 24 4
154	614	222	24-3 24-3 24-3 24-3 24-3 24-3 24-4 24-4	755 950 1150 1400 1500 750 1000 1200 1255 1400 1445 730 830	7.8 7.0 7.12 7.3 7.3 8.0 7.7 7.7 7.7 8.0 8.0 7.6 8.0 7.6	8.90 8.92 8.92 8.91 8.91 8.90 9.91 8.92 8.92 8.92 8.92 8.92 8.91 8.91 8.91 8.95	12 12 7 6 5 6 - 13 - 14 - 14 - 14 - 14 - 11 - 36	20 16 13 9 11 - 13 - 15 - 17 - 19 - 10 - 13 - 40 - 41	18 40 18 28 18 31 18 24 18 15 18 29 17 53 17 53 17 51 17 37 17 19 18 14 17 39 15 33 15 07	50 45 45 40 40 20 20 20 20 20 20 08 07	24 5 5 5 5 5 4 4 5 5 6 7 7 244 4 2 4 4 4 5 5 6 7 7
155	614	222	24-6 24-6	730 845	8.0 7.3	8. 94 8. 97	16 15	20 19	18 32 18 33	45 . 45	24 5 24 5
156	CI4	222	24-7 24-7 24-7 24-7 24-7 24-7 25-1 25-1 25-1 25-1 25-1 25-1 25-2	730 830 935 1045 1235 1400 1520 1630 735 925 1415 1545 705	5.9 6.1 6.677.1 7.1 7.5 6.1 7.9 7.0 7.0 7.0 7.0 5.0	8, 99 8, 99 9, 00 8, 97 9, 01 9, 01 8, 99 9, 04 9, 02 8, 99 7, 08 8, 99 7, 08	20 15 21 - 21 - 34 - 54 - 54 - 91 - 91 - 104 - 107 - 124	6 - 5 - 10 - 19 - 19 - 62 - 68 - 10 - 105 - 105 - 110 - 111 - 114	22 14 17 58 14 70 12 35 11 37 11 22 11 15 11 15 11 18 11 15 11 05 11 01 11 05	27 20 15 05 05 05 05 05 05 05 05 05 05 05 05 05	24 8 8 7 7 7 7 7 7 7 9 9 9 24 4 4 4 4 4 4 4 4 4 9 24 4 2 2 4 4 4 4 4 9 9 24 9 24

Table 6

-

1

`

GIDEA - Field measurements

....

Cali- bration nr	Bore- hole	Hole- length m	Date ww~d	Time	°C ℃	рн	Eh,C mV	Eh, Pt mV	pS	Oxy∼ gen mg/l	Conduc- tivity mS/m
157	C14	404									
			25~3	0130	4.9	8.98	- 32	- 26	18. 67	. 05	36 5
			25~3	700	4.3	9.01	- 56	- 55	16.49	05	37 5
			25-3	810	6.0	8.97	- 61	- 61	16.07	. 05	38 0
			26-1	1000	8.5	9.30	-180	-203	10. 49	02	60 5
158	CI4	404									
			26-2	740	7.8	7.36	7:	6	18.94	. 25	61 5
			26-2	945	8.8	9.33	78	2	18.34	. 26	61 5
			26-2	1045	9.2	9.32	76		18 10	. 25	61 5
			26-2	1245	10.4	9. 28	68	- 13	17 24	. 21	62 0
			26-2	1515	11.9	9.21	55	- 27	15.84	. 17	62 5
			26-3	750	8.1	9.39	-139	-172	10.18	. 00	64.0
			26-3	955	9.6	9.36	-145	-176	10.05	. 01	64 5
			26-3	1055	9.7	9.34	-145	-176	10.08	. 01	64 5
			26-3	1255	9.9	9.38	-141	-181	10.01	. 03	64.5
			26-3	1355	9.7	9.34	-148	-178	10.16	. 02	64 5
			26-3	1530	9.4	9.38	-151	-181	10 10	. 01	64.5
			26-4	800	8.6	9.39	-164	-193	10.16	00	65.5
			26-4	955	9.7	9.34	-165	~193	10.12	. 01	65.5
			26-4	1155	10.2	9.36	-168	-195	10.03	. 04	64.5
			2/-4	1400	11.5	7. 31	-165	-192	10.06	. 15	65.5
			26-4	1600	11.5	9. 28	-166	-193	10.06	. 04	65. 5
			26-4	1700	11.5	9.30	-166	-143	9.99	. 04	65. 5
			26-5	800	9.3	9.37	-176	-202	10.13	. 00	66 0
			26-5	915	9. B	9.35	-177	-203	10. 05	. 00	66.0
159	014	404									
			26-6	805	8.7	9.32	- 89	-137	9 98	. 02	67 0
			26-6	905	9.0	9. 31	- 94	-139	9.97	01	67.5
140		404									
180	A14	404	74-7	850	8 3	0 31	125	25	19 37	70	67 0
			26-7	1055	8.9	9 28	98	17	18 95	27	68 0
			20-7	1300	8.0	9 27		12	18 58	25	67 0
			20-7	1250	0.7	0 20	77		19 44	45	67.5
			20-/	750	8 2	0 33	<i>'</i> 'a	- 65	10.46	04	67.5
			27-1	905	91	9 30		- 76	10 14	25	68.0
			27-1	1005	94	9 29	- 13	- 64	10 13	50	67.5
			27-1	1055	97	9 30	- 19	- 68	10 08	30	68 0
			27-1	1600	10.2	9 28	- 41	-112	9 89	. 09	68 5
			27-2	910	9 2	9 32	-112	-143	9.75	05	68 0
			27-2	1100	9 4	9 33	-117	-147	9.66	02	68 5
			27-2	1255	10 6	9 29	-120	-151	9.59	OB	68.5
			27-2	1530	11 5	9.24	-128	-157	9.49	05	68 5
				1000		0.04	105	140	0 37		49 5

Table 7

GIDEA - Field measurements

Cali- bration nr	Bore- hole	Hole- length	Date ww-d	Time	Teap °C	рH	Eh,C mV	Eh, Pt NV	ρS	Oxy- gen mg/l	Conduc- tivity mS/m
161	614	512									
			27-3	8 50	7.1	8.47	- 14	5	19 85	. 32	27 5
			27-3	1515	8.2	0.60	- 77	- 86	17. 52	25	18 4
			28-1	1215	10.6	8.44	-166	-177	11.59	. 06	22 0
			20 -1	1315	10.4	B. 46	-165	-177	11. 55	. 03	22. 0
162	614	512									
			28-2	750	7.4	7.80	13	32	22, 28	00	22 1
			28-2	950	8.2	7.77	11	26	22.14	. 00	22 0
			29-2	1150	8.5	7.73	18	31	22.30	. 00	22 0
			28-2	1350	10.2	7.77	1	11	21.49	01	22 4
			28-2	1550	11.1	7.93	- 30	- 27	. 19 43	. 02	22.4
			28-3	800	7.9	8.48	-104	-111	15.71	00	22 7
			28-3	1000	8.9	8. 45	-107	-114	15 51	. 00	22 7
			28-3	1200	9.6	8. 43	-109	-117	15.33	. 00	22 8
			28-3	1300	7.9	8.44	-112	-178	15.21		22 9
			28-3	800	7 0	8.43	-115	-170	15.01		26 9
			28-4	1005	คว	0.34	-113	-125	14.70		22 7
			28-4	1205	8 6	6 49	-113	-125	14 63		22.9
			28-4	1400	9.5	8.45	-114	-126	14 51		22.9
			28-4	1615	9.1	8.46	-114	-177	14.50		22 9
			28-5	755	7.6	8. 47	-107	-123	14 58		22.9
			28-5	900	8, 3	8. 45	-104	123	14. 54		22. 9
164	C14	512									
			28-7	825	6. 5	7.97	- 12	2	20 04	. co	22.5
			28-7	1030	7.1	8.07	- 39	- 28	18.74	00	22.5
			28-7	1230	7. B	8.14	- 55	- 46	18.01	. 01	22 6
			28-7	1630	9.2	8.18	- 72	- 64	17.14	03	22.7
			28-7	1815	88	8. 22	- 77	- 70	16, 95	. 02	22.8
			29-1	815	10.0	8.26	- 85	- 81	16 09	. 00	22.9
			29-1	1050	11.4	8 22	- 90	- 86	15.87	. 00	23 0
			29-1	1215	11.8	8.22	- 9%	- 69	15.78	. 00	23.0
			29-1	1415	13.4	8.16	- 90	- 93	15.51		23.0
			29-1	1620	14.1	B. 14	-101	- 47	15.26		23.0
			27-1	1/13	10.0	8.18	-100		13.24		23 0
			29-2	1150	9 B	0 2/ D 74	-102	- 49	15 00		23 0
						- J-	104				

Tabl	e 8
------	-----

GIDEA - Field measurements

Cali- bration nr	Bore- hole	Hole- length m	Date ww-d	Time	Temp °C	рН	Eh,C mV	Eb/Pt #V	pS	Dxy- gen mg/l	Conduc- tivity mS/m
167	614	616									
			33-1	740	13.0	8. 23	-278	-265	11.17	00	106 4
			33-1	1130	15.9	7.83	-269	-266	11 12		
			33-1	1640	20.8	7.66	-274	-271	10 87		105 Б
			33-2	735	13. B	8.17	-280	-241	10 82		110.2
			33-2	1130	16.4	Ð. 01	-276	-292	10.65		
			33-2	1635	21.9	7.84	-284	-245	10. 42		109 8
			33-3	745	16.2	8.26	-290	-308	10 35		113.0
			33-3	1135	16.9	8. 27	-290	-307	10.22		
			33-3	1545	20.2	8.19	-295	-314	10.00		111 6
			33-4	740	16.3	8.46	-298	-319	9 68		115.0
			33-4	1200	16.8	8.46	-244	-320	9.80		
			33-4	1610	18.3	8.44	-277	-322	9.68		
			3-5	740	15.0	8.01	-27.3	-320	7.07		11/2
16B	G14	616									
			35-2	800	14.7	8.58	-28:	-315	10.05	. 00	
			35-2	1210	16.0	B. 52	-282	-310	9 90	00	108 4
			35-2	1615	19.0	8.48	-296	-315	9 76	. 00	60. O
			35-3	800	15.5	6. 63	-30%	-319	9 64	. 00	
			35-3	1300	17.2	8. 57	-306	-322	9.48	. 00	109 6
			35-3	1720	19.6	8.52	-309	-326	9.37	. 00	110.4
			33-4	/50	11.8	8.83	-307	-322	9.55	00	114 4
			37-4	1200	13.1	B. BU	-303	-361	9.47	. 00	110.0
			37-4	1620	17.5	0.03	-311	-367	7. ZZ	00	40.0
			35-7	1245	0./	0.73	-23/	-307	7.70	. 00	115.0
			35-7	1700	17.0	0.77	-222	-303	9 44	00	
			36-1	800	58	8 85	-201	-305	9 94	00	116.0
			36-1	1100	78	8 81	-230	-304	9 79	00	112 8
			36-1	1600	15.9	B. 54	-249	-317	9 35	00	114 8
			36-2	740	6.3	9.00	-270	-321	9.77	00	117 8
			36-2	1200	9.3	8.92	-28-	-326	9 52	00	115 8
			36-2	1600	15.8	8.72	-297	-334	9 21	. 00	
			36-3	810	11. 2	B. 84	-292	~329	9 50	. 00	119 6
			36-3	1130	12.1	8.82	~300	-329	9 40	00	119 4
			36-3	1600	13.5	8.79	-304	-336	9.32	. 00	120.0
			36-4	745	9.3	8.91	-300	-328	9.60	. 00	122 4
			36-4	1200	10.3	8.73	-298	-322	9.53	. 00	
			36-4	1630	14. B	Ø. 58	-300	-326	9.38	00	121 6
			36-5	800	4.2	9.12	-307	-333	978	00	123.6
			36-5	1130	8.4	8.95	-307	-336	9.49	00	116 8
			36-5	1640	15.0	8.71	-312	-3:/3	9.23	. 00	124 0
			36-6	815	11.3	0.73	-300	-349	9 43	co	
			36-6	1200	12.8	8.78	-314	-356	9 34	00	124.6
			36-6	1600	15.0	8.71	-317	-362	9 20	00	125 6
			36-7	820	8.2	8.96	-309	-362	9 53	. 00	127.6
			36-7	1200	12.3	8.84	-317	-3/2	9.21		124 2
			30-/	1030	15.4	5.05	-316	-3/6	7. U3	. 00	

Table 9

ļ

GIDEA	-	E°-	-va	ı	ue	F.
-------	---	-----	-----	---	----	----

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lore-	Length (hole)	Cali- bration	Date	Class pH4	Glass pH7	Glass pH10	C p114	C p117	Pt pił4	Pt pH7	Ag. 5 0 0111	Ag, S 0 05M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<u>n</u>	nr	WW-0	mv	M IV	mv .	mv .	mv.	mv.	mv.	mv .	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	612	178											
$ \begin{array}{c} 103 & 20-5 & 397.9 & 246.1 & 246.1 & 247.4 & -427.3 & -427.9$			102	20-2	410.5	398.7	406 2	242.0	242.7	240.0	239.1	-849.9	-832 8
$ \begin{array}{c} 104 & 20-6 & 399 & 0 & 398 & 1 & 400 & 3 & 244 & 4 & 245 & 6 & 243 & 4 & 244 & 4 & -626 & 3 & -620 & 6 \\ 105 & 22-4 & 397 & 7 & 394 & 400 & 2 & 246 & 1 & 244 & 4 & -626 & -620 & 1 & -673 & 1 \\ 107 & 22-4 & 397 & 7 & 394 & 400 & 2 & 230 & 2 & 246 & 1 & 244 & 4 & -626 & 1 & -673 & 1 \\ 108 & 22-7 & 387 & 6 & 398 & 3 & 391 & 9 & 256 & 2 & 252 & 5 & 234 & 2 & 249 & 2 & -930 & 1 & -681 & 5 \\ 119 & 22-3 & 397 & 5 & 398 & 6 & 392 & 1 & 233 & 3 & 251 & 7 & 249 & 3 & 246 & 3 & -624 & 4 \\ 111 & 24-3 & 398 & 7 & 402 & 1 & 400 & 3 & 247 & 1 & 245 & 1 & 246 & 3 & -624 & 4 \\ 112 & 24-3 & 398 & 7 & 402 & 1 & 400 & 3 & 247 & 1 & 245 & 1 & 246 & 3 & -640 & 2 & -637 & 7 \\ 113 & 24-6 & 397 & 402 & 1 & 400 & 3 & 247 & 1 & 245 & 1 & 246 & 3 & -640 & 2 & -637 & 7 \\ 113 & 24-6 & 398 & 7 & 402 & 7 & 404 & 5 & 265 & 1 & 235 & 5 & 246 & 1 & 246 & 8 & -680 & 8 & -837 & 8 \\ 114 & 25-2 & 393 & 1 & 384 & 3 & 322 & 389 & 0 & 252 & 0 & 231 & 8 & 230 & 0 & 251 & 4 & -640 & 2 & -637 & 7 \\ 115 & 24-6 & 386 & 304 & 7 & 400 & 249 & 250 & 6 & 231 & 220 & 0 & 251 & 4 & -640 & 2 & -687 & 7 \\ 115 & 24-6 & 386 & 304 & 7 & 400 & 249 & 250 & 4 & 243 & 8 & 244 & 4 & -645 & 6 & -682 & 8 \\ 117 & 28-2 & 392 & 0 & 401 & 2 & 410 & 0 & 249 & 8 & 250 & 4 & 243 & 8 & 244 & 4 & -645 & 6 & -682 & 8 \\ 118 & 28-5 & 300 & 0 & 402 & 1 & 402 & 7 & 246 & 7 & 246 & 4 & -644 & -644 & 6 & -642 & 6 & -626 & 7 & -622 & 4 \\ 120 & 29-3 & 361 & 1 & 399 & 0 & 397 & 7 & 422 & 301 & 5 & 233 & 7 & 200 & 5 & 281 & 7 & -817 & 5 & -812 & 1 \\ 119 & 28-5 & 396 & 7 & 398 & 7 & 403 & 7 & 250 & 3 & 256 & 0 & 2526 & 3 & 256 & 0 & -687 & 6 & -682 & 6 & -687 & -682 & 6 & -687 & -682 & 6 & -687 & 6 & -682 & 6 & -687 & 6 & -682 & 7 & -822 & 4 & -684 & 7 & -824 & -784 & 4 & -844 &$			103	20-5	397. 9	399.2	401.0	249.6	245.2	244.6	243.8	-831.6	-822 2
$ \begin{array}{c} 105 & 21-2 & 397 & 1 & 396 & 7 & 400 & 2 & 249 & 3 & 246 & 1 & 244 & 3 & 244 & 4 & -826 & 3 & -820 & 6 \\ 107 & 22-6 & 393 & 7 & 394 & 6 & 396 & 2 & 247 & 2 & 245 & 7 & 246 & 2 & 243 & 2 & -831 & 6 & -822 & 1 \\ 108 & 22-7 & 397 & 5 & 398 & 6 & 392 & 1 & 245 & 7 & 246 & 2 & 243 & 2 & -831 & 6 & -822 & 1 \\ 111 & 24-2 & 393 & 1 & 995 & 6 & 392 & 1 & 225 & 2 & 247 & 2 & 245 & 1 & 246 & 2 & -837 & 6 \\ 111 & 24-2 & 398 & 7 & 402 & 1 & 400 & 3 & 247 & 1 & 246 & 1 & 244 & 7 & -836 & 6 & -837 & 8 \\ 111 & 24-2 & 397 & 5 & 403 & 4 & 400 & 3 & 221 & 6 & 201 & 7 & 249 & 3 & 246 & 3 & -902 & 1 & -916 & 0 \\ 112 & 24-6 & 397 & 402 & 1 & 400 & 3 & 244 & 1 & 245 & 1 & -846 & 2 & -837 & 9 \\ 113 & 24-6 & 397 & 5 & 409 & 5 & 389 & 6 & 252 & 0 & 231 & 8 & 200 & 3 & 246 & 5 & -843 & 2 & -837 & 9 \\ 114 & 25-2 & 400 & & & & & & & & & & & & & & & & \\ 114 & 25-2 & 392 & 0 & 401 & 2 & 400 & 3 & 246 & 3 & 246 & 3 & -843 & 2 & -837 & 9 \\ 116 & 27-3 & 381 & 1 & 384 & 2 & 392 & 8 & 286 & 1 & 255 & 8 & 286 & 1 & 245 & 8 & -836 & 8 & -837 & 3 & -864 \\ 116 & 27-3 & 381 & 1 & 389 & 0 & 402 & 1 & 402 & 7 & 246 & 4 & 234 & 9 & -837 & 3 & -864 & 1 \\ 116 & 27-3 & 381 & 1 & 389 & 0 & 422 & 300 & 5 & 283 & 7 & 290 & 281 & 7 & -835 & 6 & -842 & 8 \\ 116 & 27-3 & 381 & 1 & 399 & 0 & 422 & 300 & 5 & 283 & 7 & 290 & 281 & 7 & -817 & 3 & -812 & 1 \\ 118 & 28-5 & 386 & 0 & 394 & 7 & 326 & 3 & 256 & 236 & 7 & 236 & 4 & 233 & 2 & -837 & 6 & -822 & 6 \\ 120 & 29-3 & 30-1 & 399 & 399 & 7 & 423 & 3 & 250 & 6 & 274 & 253 & 2 & -897 & 6 & -827 & 6 \\ 121 & 30-1 & 384 & 6 & 399 & 7 & 423 & 3 & 250 & 6 & 274 & 2 & 238 & 2 & -837 & 1 & -848 & 7 \\ 122 & 602 & 12 & 12 & -803 & 3 & 367 & 1 & 399 & 1 & 246 & 5 & 236 & 7 & 226 & 5 & 226 & -827 & 6 & -827 & 6 & -827 & 6 & -827 & 6 & -827 & 6 & -827 & 6 & -827 & 6 & -827 & 6 & -827 & 6 & -827 & 6 & -827 & 6 & -837 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & 1 & -826 & $			104	20-6	399.0	398 1	400.3	246.4	245.8	243.4	244 5	-831 6	-831 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			105	21-2	397.1	396. 7	400.2	249.3	246.1	244.3	244 4	-826.3	-820 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			106	22-1	391 7	393.4	403.3	250.1	248.0	249 1	247 0	-502.1	-679 9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			107	22-6	393.7	394.6	396.2	247.2	245.7	246.2	243.2	-931 6	-823.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			108	42-1	387.6	388.3	341 H	256.2	252. 5	254. 2	249.2	-830 1	-821 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	612	328											
$ \begin{array}{c} 111 & 24-2 & 399 & 1 & 399 & 6 & 392 & 5 & 252 & 3 & 248 & 3 & 247 & 3 & 246 & 3 & -902 & 1 & -916 & 0 \\ 112 & 24-5 & 399 & 5 & 403 & 8 & 409 & 5 & 244 & 3 & 2251 & 6 & 250 & 3 & 246 & 3 & -902 & 1 & -916 & 0 \\ 113 & 24-5 & 399 & 5 & 403 & 8 & 409 & 5 & 2261 & 251 & 6 & 250 & 3 & 246 & 1 & -837 & 6 \\ 114 & 25-2 & 392 & 402 & 5 & 396 & 6 & 252 & 0 & 211 & 8 & 251 & 8 & 251 & -833 & 2 & -837 & 8 \\ 116 & 27-3 & 381 & 1 & 384 & 2 & 392 & 8 & 266 & 1 & 255 & 8 & 280 & 1 & 254 & 8 & -837 & 8 \\ 116 & 27-3 & 381 & 1 & 384 & 2 & 392 & 8 & 266 & 1 & 255 & 8 & 280 & 1 & 254 & 8 & -836 & 8 & -837 & 8 \\ 116 & 27-3 & 381 & 1 & 384 & 7 & 403 & 7 & 402 & 7 & 246 & 7 & 246 & 1 & 244 & 7 & 246 & 4 & -885 & 6 & -842 & 8 \\ 118 & 28-5 & 400 & 0 & 402 & 1 & 402 & 7 & 246 & 7 & 246 & 1 & 244 & 7 & 246 & 4 & -885 & 6 & -842 & 8 \\ 120 & 29-3 & 361 & 1 & 399 & 0 & 422 & 6 & 304 & 5 & 233 & 7 & 290 & 5 & 281 & 7 & -817 & 5 & -812 & 1 \\ 120 & 29-3 & 361 & 1 & 397 & 1 & 412 & 5 & 260 & 3 & 256 & 6 & 274 & 3 & 286 & 6 & -824 & 7 & -822 & 6 \\ 122 & 30-5 & 405 & 1 & 397 & 1 & 412 & 5 & 260 & 3 & 256 & 6 & 274 & 3 & 286 & 6 & -824 & 7 & -822 & 6 \\ 122 & 30-5 & 405 & 1 & 397 & 1 & 412 & 5 & 260 & 3 & 256 & 6 & 274 & 3 & 286 & 6 & -824 & 7 & -822 & 6 \\ 122 & 30-5 & 405 & 1 & 397 & 1 & 412 & 5 & 246 & 5 & 236 & 7 & -817 & 5 & -812 & 1 \\ \end{array}$			109	23-3	390.5	389.6	392.1	253. 3	251.7	249.3	246.3	-834.6	-826 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			111	24-2	393.1	395.6	392.5	252.3	248.3	247.3	246 3	-902.1	-916 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			112	24-5	398. 7	402.1	400. 3	247.1	245.1	245.1	245 1	-840.2	-837.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			113	24-6	399.5	403. B	409. 5	264.3	251.6	250. 3	248.6	938.6	~837 8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GIZ	400											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			114	25.2	402.7	404. 5	409.6	285.1	255. 5	246.1	245 5	-843 2	-850 9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			115	26-6	383.4	382. 5	389. 0	252.8	231.8	250. B	251.4	-837. 3	-836.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			116	27-3	381.1	384. 2	392.8	286.1	255.8	282.1	254 8	-836 8	-837 3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			117	28-2	392. 0	401.2	410.0	245.8	250.4	243.8	249.4	-859. 3	-861 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	612	544											
$ \begin{array}{c} 119 \\ 120 \\ 229-3 \\ 361.1 \\ 399.0 \\ 422.6 \\ 399.7 \\ 422.6 \\ 304.5 \\ 283.7 \\ 290.5 \\ 283.7 \\ 290.5 \\ 281.7 \\ 290.5 \\ 281.7 \\ 290.5 \\ 281.7 \\ 281.7 \\ -817.5 \\ -812 \\ 121 \\ 122 \\ 30-3 \\ 405.1 \\ 397.1 \\$		2.44	118	28-5	400.0	402 1	402 9	246 7	246 4	244 7	246 4	-845.6	-842 8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			119	28-6	388.6	394.7	403.7	261.4	253.2	256. 4	253.2	~838.0	-828 9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			120	29-3	361.1	399. 0	422.6	304.5	283.7	290. 5	281.7	-817.5	-812.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	617	407											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	412	004	121	30-1	384.6	389.6	397 4	253 3	252 B	252.3	252.8	-827.6	-822 6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			122	30-5	405.1	397.1	412.5	280 3	256 6	274.3	260 6	-824.7	-823 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			123	30-6	387.1	388. 8	391.7	259.3	368.0	258.3	366 0	-934.6	-828.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GI4	96											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			151	22-6	399.7	401.4	401.1	240.5	238.9	240. 5	238.9	-876.1	-859.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			152	22-7	393 5	379.9	400.5	248. 5	240. 2	246. 5	235 2	-859. 8	-847 5
614 153 23-3 394.0 398.2 398.1 244.8 242.3 242.8 240.3 -867.1 -846.9 154 24-2 395.7 398.2 399.0 243.5 241.8 242.5 239.8 -867.1 -846.9 155 24-5 394.1 398.9 399.1 246.5 242.6 243.3 240.2 240.2 -842.8 -840.0 -846.9 156 24-6 393.7 397.9 397.9 246.5 242.6 243.3 240.2 241.2 -849.2 -847.9 -847.9 -847.9 155 24-6 397.7 397.9 250.0 243.2 243.3 240.2 241.2 -849.2 -837.9 -867.1 -847.9 -837.9 -867.1 -847.9 -837.9 -867.1 -847.9 -837.9 -867.1 -847.9 -837.9 -847.1 -847.9 -847.1 -847.9 -847.1 -847.1 -847.1 -847.1 -847.1 -847.1 -847.1 -847.1 -847.1 -847.1 -847.1 -847.1 -847.1 -847.1 -847.1 <td< td=""><td>014</td><td>222</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	014	222											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	614	~~~	153	23-3	394 0	398.2	398 1	744 R	242 3	242 8	240 3	-867 1	-846 9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			154	24-2	395 7	398 2	399 0	243 5	241 8	242 5	239 8	-840 2	-842 8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			155	24-5	394.1	378. 9	399 1	246 5	242 6	243 5	238 6	-853.0	-840 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			156	24-6	393.7	397.9	378.3	248.3	243.2	243.3	240 2	-856.4	-849 5
Q14 404 158 26-1 378 2 403.4 401 7 244 A 240.6 237 8 -851 8 -851 8 -824 8 159 26-5 376 9 372 3 375 1 243 5 244 8 242 5 243 8 -834 4 -824 3 160 26-6 372 5 379.7 374.6 242 5 242 5 241 2 241 5 -834 4 -824 3 161 27-2 394.3 375.7 374.6 242 2 242 5 241 2 241 5 -834 2 -831 5 Q14 512 162 28-5 387 7 374 5 393.7 250.1 247.7 248 1 246 7 -837 8 -816 3 163 28-5 387 7 392.9 370.4 259.7 253.4 265.7 259 4 -820.3 -806 0 164 28-6 387 5 387.2 390.4 259 7 253.4 265.7 259 4 -820.3 -806 0 165 29-2 385.0 390.0 391.1 286.8 254.0 510.8			157	25-2	392.3	396.3	396.9	250.0	243. 2	244.0	241 2	-849. 2	-837 9
114 404 158 26-1 398 2 403 401 7 244 A 240 B 240 6 237 B -851 B -842 B 159 26-5 396 9 396 0 395 B 243 6 241 0 242 6 -834 4 -824 3 160 26-6 392 5 392 395 1 243 5 244 8 242 5 243 8 -838 3 -822 4 161 27-2 394 3 395 7 394 242 2 242 5 241 2 -834 2 -831 5 162 28-1 372 394 5 393 7 250 1 247 7 248 1 246 7 -837 8 -816 3 163 28-5 387 387 392 9 274 250 2	61A	404											
100 20-1 376 1 375 1 244 7 100 242 6 -834 4 -824 3 160 26-6 392 395 1 243 5 244 8 242 5 243 8 -838 3 -822 4 161 27-2 394 3 395 7 394 6 242 2 242 5 241 0 242 7 -837 8 -838 3 -822 4 161 27-2 394 3 395 7 394 6 242 2 242 5 241 0 242 7 -837 8 -838 3 -822 4 3 395 7 394 6 242 2 242 2 242 2 241 2 41 5 -834 -834 -834 -834 -834 -834 -837 5 393 7 250 1 247 7 248 1 <	W1	404	150	26-1	308 3	407 4	401 7	744 4	340 8	740 4	227 8	-951 9	-947 9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			159	26-5	396 0	396 0	395 4	279 0	240.6	240.0	237.6	-834 4	-872 8
161 27-2 394.3 395.7 394.6 242.2 242.5 241.2 241.5 -834.2 -834.2 -831.5 G14 512 162 28-1 392.4 394.5 393.7 250.1 247.7 248.1 246.7 -834.2 -834.2 -834.2 -834.3 163 28-5 387.7 392.9 392.9 274.4 250.2 283.4 260.2 -811.2 -778.5 164 28-6 387.5 387.2 390.4 259.7 253.4 265.7 259.4 -820.3 -806.0 165 29-2 385.0 390.0 391.1 286.8 254.0 510.8 280.0 -823.7 -802.1 G14 616			160	26-6	392 5	392.3	395 1	244.5	243.0	242 5	243 8	-838 3	-822 4
G14 512 162 28-1 392 4 394 5 393 7 250 1 247 7 248 1 246 7 -837 8 -816 3 163 28-5 387 7 392 9 392 9 274 4 250 2 283 4 260 2 -811 2 -798 5 164 28-6 387 5 387 2 390 4 259 7 253 4 265 7 259 4 -820 3 -806 0 165 29-2 385 0 390 0 391 1 286 8 254 0 510 8 280 0 -823 7 -802 1 G14 616 166 30-3 383 6 386 7 388 5 253 6 252 6 252 6 250 6 -843 9 -835 9 167 31-2 381 6 384 3 365 2 254 7 254 5 253 7 253 5 -879 1 -862 4 168 33-5 370 5 374 8 377 9 261 5 260 5 260 5 260 5 -850 7 -822 9			161	27-2	394.3	395.7	394.6	242.2	242.5	241.2	241 5	-834 2	-831 5
G14 512 162 28-1 392.4 394.5 393.7 250.1 247.7 248.1 246.7 -837.8 -816.3 3 163 28-5 387.7 392.9 392.9 274.4 250.2 283.4 260.2 -811.2 -778.5 3 164 28-6 387.5 387.2 390.4 259.7 253.4 265.7 259.4 -820.3 -806.0 0 165 29-2 385.0 390.0 391.1 286.8 254.0 510.8 280.0 -823.7 -806.2 1 G14 616													
162 20-1 372.4 373.7 200.1 247.7 248.1 246.7 -837.8 -616.3 163 28-5 387.7 372.9 372.9 274.4 250.2 283.4 265.7 259.4 265.7 259.4 -820.3 -806.0 164 28-6 387.5 387.2 390.4 259.7 253.4 265.7 259.4 -820.3 -806.0 165 29-2 385.0 390.0 391.1 286.8 254.0 510.8 280.0 -823.7 -802.1 G14 616	GI4	512	140	28-1	282.4	204 8					244 7		
G14 G15 G16 G16 G17 G			143	20-1	372.4	374.3	J7J./	200.1	24/./	248.1	246 /	-03/.8	-700 S
Q14 616 30-3 383.6 386.7 386.5 253.6 257.6 257.6 257.7 257.7 257.7 257.7 257.7 257.7 257.7 257.7 257.7 257.7 257.7 257.7 257.7 257.7 7 7 250.7 7 7 250.7 7 -802.1 7 180.1 180.1 10.			164	28-4	387 5	397 7	372 7	274.9 550.7	200.2 059 A	203.9	250 4	-820 3	-806 0
Q14 616 166 30-3 383.6 386.7 388.5 253.6 252.6 250.6 -843.9 -835.9 167 31-2 381.6 384.3 365.2 254.7 254.5 253.7 253.5 -879.1 -862.4 168 33-5 370.5 374.8 377.9 261.5 260.5 260.5 -80.5 7 -822.6 169 37-1 369.7 373.1 374.9 262.2 261.1 261.2 261.1 -842.3 -823.9			165	29-2	385.0	390.0	391.1	286.8	254.0	200. / 210. B	280 0	-823.7	-802 1
G14 616 166 30-3 383.6 386.7 388.5 253.6 252.6 250.6 -843.9 -835.9 167 31-2 381.6 384.3 365.2 254.7 254.5 253.7 253.5 -879.1 -862.4 168 33-5 370.5 374.8 377.9 261.5 260.5 260.5 260.5 -850.7 -822.6 169 37-1 369.7 373.1 374.9 262.2 261.1 261.2 261.1 -842.3 -823.9	• • •				-	-							
167 31-2 381.6 384 3 365 2 254.7 254.5 252.6 252.6 258.7 1 -843 7 -835 7 167 31-2 381.6 384 3 365 2 254.7 254.5 253.7 253 5 -879.1 -862 4 168 33-5 370.5 374.8 377.9 261.5 260.5 260 5 260 5 -850 7 -822 6 169 37-1 369 7 373.1 374 9 262.2 261.1 261.2 261 1 -842 3 -823 9	GI4	616	144	20-2	202 4	284 7	200 r	050	01 0	95 3 /	38 0 f	-012 0	
168 33-5 370 5 374 8 377 9 261 5 260 5 260 5 260 5 -850 7 -822 6 169 37-1 369 7 373 1 374 9 262 2 261 1 261 2 261 1 -842 3 -823 9			167	31-2	361 4	300 /	385 7	203. B 354 7	202 0	252 0	250 0	-879 1	-862 4
169 37-1 369 7 373 1 374 9 262 2 261 1 261 2 261 1 -842 3 -823 9			168	33-5	370 5	374 A	377 9	261 5	260 5	260 5	260 5	-850 7	-822 6
			169	37-1	369.7	373 1	374 9	262.2	261.1	261.2	261 1	-842 3	-823 9

Table 10a

ł

GI2 157 GI2 266 GI2 350 GI2 476	7 178	154 155 156 157 158 159 160	82-20-7 82-21-1 82-22-3 82-22-4 82-22-5 82-23-1	21-2 21-2 22-4 22-5	8. 8 8. 8 8. 9	8. 4 8. 4	- 37	- 61	10. 9	02		
GI2 286 GI2 350 GI2 478	8 328	154 155 156 157 158 159 160	82-20-7 82-21-1 82-22-3 82-22-4 82-22-5 82-22-5 82-23-1	21-2 21-2 22-4 22-5	8.8 8.8 8.9	8.4 8.4	- 37	- 61	10.9	. 02		
GI2 286 GI2 353 GI2 478	8 328	155 156 157 158 159 160	82-21-1 82-22-3 82-22-4 82-22-5 82-22-5 82-23-1	21-2 22-4 22-5	8.8	8.4						26
GI2 288 GI2 35: GI2 478	8 328	156 157 158 159 160	82-22-3 82-22-4 82-22-5 82-23-1	22-4 22-5	8.9		- 44	- 94	10.6	02		26
GI2 286 GI2 355 GI2 476	8 328	157 158 159 160	82-22-4 82-22-5 82-23-1	22-5		8.4	12	4	21.9	. 03	28	26
GI2 200 GI2 350 GI2 476	8 328	158 159 160	82-22-5 82-23-1		8.8	8.4	- 4	- 13	21.0	02	27	26
GI2 286 GI2 350 GI2 476	8 328	159 160	82-23-1	23-1	8.7	6.5	- 19	- 29	20.3	< 01	27	26
GI2 286 GI2 350 GI2 476	8 328	160		23-2	-	8.5	18	- 3	17.6	2.01	27	26
G12 266 G12 353 G12 476	8 328		82-23-2	23-3	8.7	8.4	13	- 1	18.2	< 01	27	26
GI2 353 GI2 478												
GI2 353 GI2 478		161	82-24-2	24-3	8.9	8.4	84	97	24.5	. 03	27	26
GI2 350 GI2 478		162	82-24-3	24-4	8. 9	8.3	- 19	- 10		01	27	26
GI2 350 GI2 476		163	82~24-4	24-5	8.8	8.4	- 36	- 33	17.8	. 02	27	26
GI2 35: GI2 476		164	82-24-7	25-2	8.8	8.3	- 60	- 59	15.9	. 03	27	26
GI2 353		165	82-25-1	25-2	9. 9	8.4	- 79	- A5	13.4	. 03	27	27
GI2 478	3 400						·					
GI2 478		166	82-26-7	27-2	8.6	8.4	- 13	8	19.7	. 04	27	27
GI2 478		167	82-27-1	27-3	8.6	8.4	- 43	- 35	18.5	. 04	27	27
GI2 478		168	82-27-2	27-3	8.6	6.3	- 78	- 61	14.9	. 05	27	27
GI2 478		169	82-27-3	27-4	8.6	8.4	- 84	- 95	13.7	04	27	27
GI2 478		170	82-28-2	28-3	8.6	8.4	- 76	- 77	15.1	< 01	27	26
GI2 478		171	82-28-3	28-4	8.8	8.4	- 54	- 63	18.7	. 01	27	26
	8 544											
		172	82-28-4	28-5		8.4				. 01	27	26
		173	82-28-7	29-2	8.6	8.2	- 13	- 14	20.9	<.01	27	27
		174	82-29-1	29-2	8.6	6.2	- 63	- 69	17.9	< 01	27	27
		175	82-29-2	29-3	6.8	6.3	- 61	- 92	15.4	. 02	27	26
		176	82-29-3	29-5	8.9	8. 3	- 82	- 94	14.5	. 03	27	27
GI2 528	8 602											
		177	82-30-1	30-2	6.6	8. 1	- 63	- 64	16.9	. 03	27	26
		178	82-30-2	30-3	6.6	8. 2	- 18	- 13	20. 5	. 01	27	26
		179	82-30-3	30-4	8.7	8. 2	- 55	- 59	18.4	03	27	26
		160	82-30-4	30-5	8.7	8.2	- 60	~ 66	18.0	03	27	26
		208	82-30-7	31-2	6.7	8.3	- 86	- 89	15.7	. 03	27	26
		209	82-31-1	31-2	8.7	8.3	- 95	-103	13.5	. 01	27	26
		210	82-31-2	31-3	8.8	8. 2	- 96	-108	12.2	02	27	26
612												

GIDEA - Field measurements and corresponding laboratory values

Table 10b

Bare- hole	Depth an	Hole- length m	NT	Date sampling yy∼ww−d	Date lab ww-d	pH ¢ield	pH lat	Eh,C field mV	5H,₽t fjeld mV	p5 field	S2− lab mg⁄l	Cond field mS/m	Cond lab mS/m
G14	91	56											
			181	82~22-3	22-4	7.7	7.4				02	24	23
			182	82-22-4	22-5	79	7.5	92	87	16.3	03	24	23
			183	82~22-5	23-1	7.6	7.3				. 04	23	22
			184	82-23-1	23-2	7.9	7.7	6;,	11	12.6	<. 01	24	23
			185	82~23-2	23-3	8.0	7. 6	45	· 30	12.2	< 01	24	24
G14	212	222											
-			186	82-24-2	24-3	9.0	8.34	- 5	- 14	19.5	01	24	24
			187	82-24-3	24-4	8.9	8.4				01	25	25
			188	82~24-4	24-5	8.9	8.5	- 16	- 17	17.4	. 02	25	25
			189	82-24-7	25-2	9.0	8.4	- 47	- 62	11.2	04	25	25
			190	82-25-1	25-2	9.0	8 . 9	- 90	~111	11.1	. 13	25	25
G 1 4	385	404											
			191	82-26-2	26-3	9.3	8.0	76	1	18.1	02	62	έŪ
			192	82-26-3	26-4	9.4	8 8	-145	-176	10.1	18	65	62
			193	82-26-4	26-5	9.4	B. H	-165	-193	10.1	23	66	6.
			194	82-26-7	27-2	93	8.7	81	12	18.6	< 01	68	66
			195	82-27-1	27-2	9.3	8.6	- 10	- 84	10.1	. 06	68	66
G 1 4	498	512											
			196	82-28-2	28-3	7.8	7.3	11	26	22 1	<. 01	22	21
			197	82-28-3	28-4	8.4	7 3	-109	-117	15.3	. 01	23	21
			198	82-28-4	28-5	8.5	7.1	-113	-125	14.6	. 01	23	21
			199	82-28-7	29-2	8.1	7.3	- 55	- 46	18 0	<. 01	23	22
			200	82-29-1	29-2	8.2	7. 3	-101	- 97	15.3	< 01	23	22
G14	596	616											
			201	82-31-4	31-4	7.3	7.3	249	260	28.2		50	48
			202	82-31-5	32-3	7.2	7.6	200	150	26.5		56	47
			203	82-32-2	32-3	во	7.0	-283	-283	11.5		84	78
			204	82-32-3	32-5	6.8	7.0	- 2	2	16.0			90
			205	82-32-4	32-5	6.8	7.0	4()	40	23.0			91
			206	82-33-2	33-4	8.0	6.7	-280	-292	10.6		110	104
			207	82-33-4	33-5	8.5	6.8	-294	-321	9.7		115	107
			241	82-34-1		7.0	7.1			28.0		113	107
			242	82-34-4	34-5	7.0	7.1	001	20	27.5		107	100
			243	82-35-2	35-3	8. 5	7. 1	-285	-313	4.9		108	103
			244	82-35-4	35-5	88	7.1	-307	-323	9.4		111	105
			245	82-36-2	36-3	8.9	7.1	-280	-325	9.5		116	100
			246	82-36-7	37-2	89	7. J	-317	-374	9.1		128	116
G 1 4													
			902				7.9						24

GIDEA - Field measurements and corresponding laboratory values

Table 11a

GIDEA - Metal ions

Bore- bole	Depth	Nr	Ca	Mg Ma ()	Na en/l	K Ra()	Hn ma ()	Fe2+	Fe-tot	A1	Cu	ST
				mg/1		mg/1	mg/1	mg/1	mg/1	mg/1	mg / 1	mg / 1
612	157											
		154	10	2.7	50	2.3	. 02	. 12	. 17	< 02	<. 005	. 079
		155	10	2.6	50	2.3	. 02	. 13	. 18	< 02	< 005	081
		156	10	2.3	49	2.3	. 01	. 10	. 16	<. 02		
		157	10	2.2	49	2.3	. 01	. 16	. 17	< 02	<. 005	085
		158	10	2.3	50	2.2	. 01	. 11	. 18	<. 02		
		159	10	2.7	48	2. 2	. 01	. 18	. 18	<. 02	<. 005	. 088
		160	10	3. 3	50	2.1	. 01	. 14	. 15	<. 02		
C12	288											
		161	10	3.1	48	2.3	. 02	. 56	. 57	<. 02		
		162	10	3.3	48	2.3	. 02	. 29	. 48	. 04		
		163	10	2.6	48	2.3	. 02	. 37	. 49	<. 02	<. 005	084
		164	10	2.4	49	2.2	. 02	. 59	. 59	<. 02		
		165	10	2.4	50	2. 2	. 02	. 64	. 60	<. 02	< 005	080
¢12	353											
		166	10	2.3	53	2.0	. 02	. 32	. 66	< 02		
		167	10	2.4	53	2.0	02	. 41		< 02	<. 005	079
		168	10	2.3	54	2.0	02	45	. 64	< 02		
		169	1ú	2.4	53	1.7	. 03	54	67	< 02		
		170	9	2.2	52	1.9	02	52	57	< 02		
		171	9	2.2	51	1.9	02	47	. 59	< 02		
G12	478											
		172	10	2.2	49	23	02	A 1	57	< 02	< 005	080
		173	10	2.1	50	23	02	28	66	< 02		
		174	10	2.4	50	2.2	02	56	. 70	< 02	< 005	079
		175	10	2.3	51	22	02	78	82	< 02		
		176	9	2.2	50	2.2	. 02	24	. 77	< 02		
612	528											
•	VEU	177	10	2 7	51	~ ~ ~	02	25	e 2	< 02		
		178	10	2 3	50	2.3	03		. 02	< 02		
		179	10	2 1	51	2.3	. 02		. 73	< 02		
		180	10	20	51	£.3	. 03	. 30	. 67	< 02	< 005	043
		208	11	1.9	50	2.3 7.7	. 03	. 42	. 75	< 02	< 005	. 063
		200	11	1.7	50	<u> </u>	. 03	. 60	- 67	~ 02	< 005	. 091
		210	11	20	50	2.2	. 03	. 63	. 70	< 02		
612												
- 1 E		901	19	3.1	12	32	. 03		. 24			

I.

Table 11b

QIDEA -	Hetal	ions
---------	-------	------

Bore- hole	Depth m	Nr	Ca mg/l	Mg mg/l	Na mg/l	Ж mg/1	Mn mg/l	Fe2+ mg/l	Fe-tot mg/l	A1 mg/1	Cu mg∕l	Sr mg/l
GI4	91											
		181	31	4.5	9	3.0	. 21	1.0	1.6	. 04		
		182	32	4. 3	10	2.9	. 22	1.1	1.3	. 94	<. 005	. 115
		163	31	4.2	10	2.6	. 23	1.7	1.8	. 04		
		184	33	4.4	11	2.5	. 21	. 76	1.0	. 02	< 005	. 115
		185	32	4.6	13	2.5	. 19	. 75	1.0	. 02		
G14	212											
		186	10	1.4	45	1.2	. 02	. 18	. 26	<. 02		
		187	10	1.0	45	1.0	. 02	. 14	. 21	<. 02		
		188	10	. 9	45	. 9	. 02	. 33	. 35	<. 02	<. 005	. 070
		189	9	1.0	49	. 9	. O1	. 13	. 24	< 02		
		190	9	. 9	50	. 8	. 02	. 25	. 28	< 02	< 005	070
G14	385											
		191	20	. 9	96	1.9	. 01	. 09	. 12	< 02		
		192	20	1.0	100	2.0	. 01	. 08	. 09	<. 02		
		193	21	1.1	100	2.1	. 01	. 06	. 11	<. 02	< 005	. 153
		194	21	1.1	105	1.9	. O I	. 05	. 07	< 02		
		195	21	1.0	105	2.1	. 01	. 05	. 10	< 02	<. 005	. 163
G14	498											
		196	30	4.2	5	2.7	. 28	6.3	8 .0	. 04		
		197	30	4.0	5	2.6	. 29	7.2	8.4	. 06		
		198	31	4.1	5	2.5	. 30	7.4	B. 6	. 02	<. 005	. 113
		199	30	4.3	5	2.7	. 20	7.3	8.5	. 04		
		200	29	4.4	5	2.7	. 28	6.6	8.7	. 04	<. 005	. 130
G14	596								_			
		201	32	2.7	48	7	. 12		. 9	. 02	. 02	
		202	33	2.9	48	5	. 12		1.1	< 02	. 01	
		203	43	2.0	100	Э	. 21		3.2	<. 02	. 01	
		204	50	1.7	120	2	. 19		1.0	<. 02	<. 01	
		205	51	2.0	120	2	. 20		1.7	<. 02		
		206	58	1.5	145	Э	. 19		5.4			
		207	59	1.2	150	з	. 13		3.9			
		241	58	1.0			. 10		. 3			
		242	56	1.1	145		. 10		. 5			
		243	55	1.4	150		. 05		. 9			_
		244	56	1.3			. 06		. 8	. 02	. 005	. 295
		245	59	. 8	150		. 05		. 8			
		246	65	. 9	156		. 01		. 9	. 02		
G14												
		902	43	5.6	16	4.9	. 25		. 43			

Table 12a

•

Bore-	Desth	Nr	N02	MOG	NUA	MOD-N	M03-M	NH4-N	Sues
hole	m		mg/1	mg/1	mg/1	mg/1	mg/1	mg/1	mg / 1
612	157		· · ·						
WIE .	13/	154	< 002	030	085	< 001	007	066	073
		155	< 002	030	065	< 001	007	066	073
		156	< 002	020	085	< 001	005	066	071
		157	. 004	020	090	001	005	070	076
		158	< 002	045	095	< 001	010	074	085
		159	004	020	105	001	005	082	087
		160	<. 002	. 040	. 085	<. 001	009	066	076
Q12	288								
		161	<. 002	020	080	< 001	005	062	067
		162	005	015	050	002	003	039	044
		163	005	025	080	002	006	062	069
		164	. 005	020	080	002	005	062	068
		165	. 004	020	. 080	. 001	005	062	068
612	353								
		166	<. 002	040	080	< 001	009	062	072
		167	< 002	030	075	< 001	007	058	066
		168	005	020	085	002	005	066	072
		169	<.002	030	085	< 001	007	066	073
		170	. 004	040	075	001	009	058	068
		171	005	065	080	002	015	062	078
612	478								
		172	. 016	. 020	. 050	. 005	. 005	. 039	048
		173	. 004	035	025	001	008	019	029
		174	. 005	025	075	002	006	058	065
		175	. 004	025	065	001	006	050	057
		176	. 005	065	055	. 002	. 015	043	059
612	528								
		177	<. 002	. 045	030	<. 001	010	023	034
		178	045	100	015	.014	023	012	048
		179	< 002	025	. 055	< 001	006	043	049
		180	<. 002	020	050	< 001	005	039	044
		208	<. 002	. 035	070	<. 001	008	054	063
		209	< 002	. 085	055	< 001	019	. 043	063
		210	. 004	. 035	025	001	008	019	029

GIDEA - Nitrogen containing ions

Table 12b

Bore- hole	Depth m	NT	NO2 me/1	N03 mg/1	NH4 80/1	NO2-N mg/1	ND3-N	NH4-N ma/l	Sum-N ma/1
GI4	91								
		181	. 005	. 015	. 075	. 002	. 003	. 058	. 063
		182	005	. 020	. 065	. 002	. 005	. 050	. 057
		183	005	. 040	. 035	. 002	. 009	. 027	. 038
		184	. 004	. 040	. 06C	. 001	. 009	. 047	. 057
		185	<. 004	. 045	. 065	<. 001	. 010	. 050	. 062
G14	212								
		186	<. 002	. 020	. 015	<. 001	. 005	. 012	. 017
		187	. 005	. 065	. 010	. 002	. 015	. 008	. 024
		188	. 005	. 025	. 010	. 002	. 006	. 008	. 015
		189	. 004	. 035	. 010	. 001	. 008	008	. 017
		190	. 004	. 055	. 005	. 001	. 012	. 004	.018
G14	385								
		191	. 004	. 045	. 025	. 001	. 010	. 019	031
		192	<. 002	. 035	. 015	<. 001	. 008	. 012	. 020
		193	<. 002	. 025	. 015	<. 001	. 006	. 012	018
		194	<. 002	. 040	. 015	<. 001	. 009	. 012	021
		195	<. 002	. 040	020	<. 001	. 009	. 016	. 025
GI4	478								
		196	. 010	. 060	. 035	. 003	. 014	. 027	. 044
		197	. 023	. 015	. 050	. 007	. 003	. 039	. 049
		198	. 007	. 055	. 020	. 002	. 012	. 016	. 030
		199	. 015	. 010	. 015	. 005	. 002	. 012	018
		200	. 010	. 030	. 015	. 003	. 007	. 012	. 021

GIDEA - Nitrogen containing ions

Table 13a

Bore- hole	Depth m	NT	HCD3 mg/l	C1 mg/1	F mg/l	504 mg/1	PO4 mg/l	5i02 mg/1	TDC mg/1	TUPB. NTU	Drilling water residue, 1%
¢12	157										
		154	161	4.6	2.7	. 8	. 015	23	3	. 8	. 3%
		155	161	4.8	2.7	1.0	. 015	23	4	. 7	. 4%
		156	162	4, 8	2.5	. 9	. 020	21	4	. 8	. 2%
		157	162	4.8	2.5	1.0	. 025	21	4	. 7	. 2%
		158	161	4.0	2.5	. 6	. 015	21	4	1.1	2%
		159	161	4, 1	2.5	. 6	030	21	4	1.1	. 2%
		160	161	4.0	2. 5	. 6	. 020	21	4	. 5	. 2%
612	288										
		161	164	4.9	2.9	. 3	. 035	19	4	1.5	%د.
		162	164	4.9	2.9	. 3	030	21	5	1.0	. 2%
		163	163	4.9	2.9	. 3	015	20.5	5	. 7	. 2%
		164	163	4.7	2.8	. 5	010	20.5	5	. 5	. 2%
		165	163	4.6	2.8	. 3	020	20	5	6	2%
612	353										
		166	162	5.3	2.6	. 6	025	21	Э	1.0	. 3%
		167	160	5.4	2.6		025	21	3	1.2	4%
		168	163	5.0	2.6	3	030	21	3	. 9	4%
		169	163	5.2	2.6	4	020	21	3	2.5	3%
		170	159	5 5	2.6	. 4	010	21	3	1.0	3%
		171	161	4.9	2.5	2	010	21	4	1.0	3%
612	47B										
	. –	172	161	5.4	2.4	. 2	030	21		6.9	. 4%
		173	161	5.3	2.4	. 1	025	21	2	1.5	. 2%
		174	160	5.1	2.4	. 1	030	20	2	1.5	. 2%
		175	160	5.0	2.6	. 1	. 025	20	3	2.2	. 4%
		176	159	5. 2	2, 6	. 1	030	20	3	11.0	. 4%
612	528										
		177	159	5.1	2.4	. 1	. 090	20	5	1.2	. 2%
		178	160	5.4	2.5	. 1	075	20	4	1.1	2%
		179	161	5.0	2.4	. 1	. 070	20	3	1.1	. 2%
		180	161	5.1	2.5	. 1	060	20	2	1.2	. 2%
		208	158	4.6	2.4	. 1	065	20	2	2.0	2%
		209	158	4.7	2.4	. 1	070	20	2	1.6	. 2%
		210	159	4.6	2.4	< 1	065	20.5	2		2%
G12											

901 89 1.5 .8 9.9 14

GIDEA - Remaining anions and other parameters

Table	13b
-------	-----

Bore- hole	Depth	NT	HCO3 mg/1	C1 mg/1	F mg/l	504 mg/1	P04 mg/l	5i02 mg/1	TOC mg/1	Turb. NTU	Drilling water residue, I%
614	91										
W 1-	· 1	181	135	2 1	1 1	71	065	14.5	3	57	27
		182	137	20	1.1	6.3	065	14	3	4 7	72
		183	124	14	1 0	95	035	15.5	3	79	27
		184	141	1.5	1.0	39	085	14	3	4.8	5%
		185	145	1.4	1.1	3.3	040	14	3	4.5	6%
GI4	212										
	_	186	133	8.2	6.0	. 8	. 040	14.5	5	1.3	2.0%
		187	133	8.5	6.0	. 9	035	14.5	5	1.2	1.9%
		199	132	8.4	6.0	. 8	. 030	14.5	5	3.0	1. 9%
		187	133	7.9	6.0	. 3	035	14.5	5	1.8	1. 5%
		190	133	7.7	6.0	2	. 025	14. 5	6	1.2	1.7%
G14	385										
		191	25	165	3. 2	. 1	. 030	10	4	1.8	13. 4%
		192	23	169	3. 2	. 1	. 030	10	4	. 8	12. 6%
		193	20	174	3. 2	. 1	. 025	10	3	. 6	11.8%
		194	10	178	3.2	. 1	. 025	10	2	1.1	11.0%
		195	18	182	3. 5	. 1	. 015	10	2	. 5	10. 2%
G14	498										
		196	119	2.4	. 9	10	. 045	12	3	95	. 2%
		197	119	2.2	. 9	9	. 045	12	3	48	2%
		198	121	2.2	. 9	7	. 045	12	2	92	. 3%
		199	121	2.2	. 9	8	. 025	13	2	101	. 3%
		200	121	2.2	. 9	8	. 015	13	Э	116	. 3%
G14	596										
		201	80	100	. 9	. 6		4.0			4. 4%
		202	80	100	. 9	, . 4		4.0			3. 9%
		203	60	190	1. 3	. 2		3.0			11.8%
		204	60	220	1.3	. 1		1.5			11.8%
		205	60	220	1.4	. 2		1. 5			11.4%
		206	50	260	1.4	. 1		1, 5			29.9%
		207	60	270	1.6	. 1		2.0			24.4%
		241	60	270	1.5	≤. 1		1.5			10. 2%
		242	70	260	1.5	<. 1		1.5			9. 5%
		243	70	250	1.4	. 1		1.0			15.0%
		244	70	240		. 1		1.0			17.3%
		245	70	270	1.9	. 1		1.0			14.2%
		246	70	310	1. 9	. 7		6.0			16. 5%
G14											
		902	161	2.0	1.1	3.2		22			

I.

CIDEA - Remaining anions and other parameters

•

Bore- hole	Depth m	Νr	Sample ml	S, prt ma/l	Fe,prt ma/l	Al, prt
G12	157	154	2284	. 0004	. 025	. 011
G12	157	155	2290	. 0004	. 014	. 008
GI2	157	157	2300	. 0004	. 011	. 014
G12	157	159	2300	. 0004	. 004	. 014
612	200	147	2200	0004	041	015
GIZ	200	163	2300	. 0004	. 041	. 015
612	200	102	2300	. 0004	. 006	. 008
GI2	353	167	2300	. 0013	. 032	. 021
GI2	478	172	550	. 0127	. 291	1, 291
G12	478	174	1750	. 0034	. 035	0:30
GI2	528	180	1700	. 0012	. 118	028
GI2	528	208	2250	. 0009	. 012	. 013
CI4	91	182	475	0021	021	183
G14	91	194	925		011	042
914	/1	104	120			. 076
GI4	212	188	1445		. 064	. 318
GI4	212	190	1905	. 0016	. 034	. 241
GI4	385	193	850	. 0012	. 001	. 001
GI4	385	195	2100	. 0005	. 001	. 001
GI4	498	- 198	900	. 0022	. 092	. 244
GI4	498	200	850	. 0024	. 087	. 188

GIDEA - Particulate matter

.....

Nr	Bore- hole	Depth m	Th ug/l	U Bq/1	46-226 By/1	Kn -222 Bq/1
155	612	157	(1 2+0 6)E-2	(5 4+3 1)5-3	(7 4+1 0)E-3	(5 41+0 29)F2
159	612	157	C A 1 F-2	(4 6+3 1) -3	(9 411 7) -3	(0. 47 (0. E7/LE
164	612	288	< 3 0 E-2	(3 4+0 4)E-2	(5 2+0 3)E-3	(3 30+0 07)E2
167	G12	353	(1 6+1 3)E-1	(6.9+2.9) -0	(5.0+1.7)E-3	(4. 23+0. 07)E2
175	GI2	478	< 1.4 E-1	(7,9+2,9)=-3	(5.9+1.1)E-3	(3. 16+0. 05)E2
208	GI2	528	(2.5+1.9)E-2	(3.9+2.8)E-3	(2.1+0.9)E-3	(2. 46+0. 05)E2
184	GI4	91	(1.5+0.5)E+2	(2.6+0.4)E-2	(1.6+0.1)E-2	(3. 35+0. 05)E3
189	GI4	212	< 3.8 E-2	(2.5+0.4)=-2	(1, 7+0, 1)E-2	(1.26+0.05)E3
194	GI4	385	< 2.8 E-2	< 4.4 E-3	(1.0+0.6) =-3	(8. 81+0. 37)E1
199	CI4	498	(3.4+2.5)E-2	< 3.6 E-3	(5.7+2.3)E-3	(2.91+0.05)E2
202	GI4	596	< 9.1 E-2	< 3.2 E-3	(1. 710.2)1-2	4.7+1.5
206	GI4	596	< 2.0 E-1	< 2.5 E-3	(2.3+0.3)E-2	< 5.1

GIDEA - Thorium, uranium, radium and radon

1977-78

TR 121	KBS Technica	al Reports	1 - 1	.20.
	Summaries.	Stockholm,	May	1979.

<u>1979</u>

TR	79-28	The	KBS	Annua	l Re	eport	1979.	
		KBS	Tech	nical	Rej	ports	79-01	-79-27.
		Sum	narie	es. 9	toc	kholm,	March	1980.

1980

TR	80-26	The I	KBS	Annua	a 1	Report	. 19	80.		
		KBS 1	rech	nica)	11	Reports	80	-01-	-80-	-25.
		Summa	arie	s. I	Sto	ockholm	, M	larch	198	81.

1981

TR 81-17 The KBS Annual Report 1981. KBS Technical Reports 81-01--81-16 Summaries. Stockholm, April 1982.

- TR 83-01 Radionuclide transport in a single fissure A laboratory study Trygve E Eriksen Department of Nuclear Chemistry The Royal Institute of Technology Stockholm, Sweden 1983-01-19
- TR 83-02 The possible effects of alfa and beta radiolysis on the matrix dissolution of spent nuclear fuel I Grenthe I Puigdomènech J Bruno Department of Inorganic Chemistry Royal Institute of Technology Stockholm, Sweden January 1983

TR 83-03 Smectite alteration Proceedings of a colloquium at State University of New York at Buffalo, May 26-27, 1982 Compiled by Duwayne M Anderson State University of New York at Buffalo February 15, 1983 TR 83-04 Stability of bentonite gels in crystalline rock -Physical aspects Roland Pusch Division Soil Mechanics, University of Luleå Luleå, Sweden, 1983-02-20 TR 83-05 Studies in pitting corrosion on archeological bronzes - Copper Åke Bresle Jozef Saers Birgit Arrhenius Archaeological Research Laboratory University of Stockholm Stockholm, Sweden 1983-01-02 TR 83-06 Investigation of the stress corrosion cracking of pure copper L A Benjamin D Hardie **R** N Parkins University of Newcastle upon Tyne Department of Metallurgy and Engineering Materials Newcastle upon Tyne, Great Britain, April 1983 TR 83-07 Sorption of radionuclides on geologic media -A literature survey. I: Fission Products K Andersson B Allard Department of Nuclear Chemistry Chalmers University of Technology Göteborg, Sweden 1983-01-31 TR 83-08 Formation and properties of actinide colloids U Olofsson **B** Allard M Bengtsson B Torstenfelt K Andersson Department of Nuclear Chemistry Chalmers University of Technology Göteborg, Sweden 1983-01-30 TR 83-09 Complexes of actinides with naturally occurring organic substances - Literature survey U Olofsson **B** Allard Department of Nucluear Chemistry Chalmers University of Technology Göteborg, Sweden 1983-02-15 Radiolysis in nature: TR 83-10 Evidence from the Oklo natural reactors David B Curtis Alexander J Gancarz New Mexico, USA February 1983

TR 83-11 Description of recipient areas related to final storage of unreprocessed spent nuclear fuel Björn Sundblad Ulla Bergström Studsvik Energiteknik AB Nyköping, Sweden 1983-02-07 TR 83-12 Calculation of activity content and related properties in PWR and BWR fuel using ORIGEN 2 Ove Edlund Studsvik Energiteknik AB Nyköping, Sweden 1983-03-07 TR 83-13 Sorption and diffusion studies of Cs and I in concrete K Andersson B Torstenfelt B Allard Department of Nuclear Chemistry Chalmers University of Technology Göteborg, Sweden 1983-01-15 TR 83-14 The complexation of Eu(III) by fulvic acid J A Marinsky State University of New York at Buffalo, Buffalo, NY 1983-03-31 TR 83-15 Diffusion measurements in crystalline rocks Kristina Skagius Ivars Neretnieks Royal Institute of Technology Stockholm, Sweden 1983-03-11 TR 83-16 Stability of deep-sited smectite minerals in crystalline rock - chemical aspects Roland Pusch Division of Soil Mechanics, University of Luleå 1983-03-30 TR 83-17 Analysis of groundwater from deep boreholes in Gideå Sif Laurent Swedish Environmental Research Institute Stockholm, Sweden 1983-03-09 TR 83-18 Migration experiments in Studsvik 0 Landström Studsvik Energiteknik AB C-E Klockars O Persson E-L Tullborg S Å Larson Swedish Geological K Andersson B Allard B Torstenfelt Chalmers University of Technology 1983-01-31

الي الم الم المراجع الم المراجع المالة المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع