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ABSTRACT

The finite larwor radius modification of the Suydam criterfon involves a
competition between atabilizing finite Larmor radius effects and destabilizing
curvature. In the case of the toroldal calculation, corresponding to the
Mercier criterion, ballooning effects from reglons of unfavorable curvature
mst be taken into account. In the case of a model equilibrium, valid near
the magnetic axis, a complete solution is obtained. Results indicate that the
amount of finite Larmor radius atabilization needed to overcome the effects of
unfavorable average curvature increases aa a function of the toroidal

ballooning perameter.
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I. INTRODUCTION

The Suydam criterion [1] governs the ideal MHD atability of flutelike
modes which are highly localized in the vicinity of a rational surface. It
depends on a competition between the stabilizing influence of shear and the
destabllizing effect of unfavorable curvature. Kulsrud [2] and Stringer [3]
have shown that finite Larmor radius (FLR) effects play an important role
within an inner layer close to the rational surface and have a stabilizing
influence on the ideal MHD modes. Their procedure involves a matehing of an
"inner" solution inrvolving FLR radius terms to an “"outer” ideal marginally
stable solution with both solutions dependent on the parameter governing the
Suydam criterion.

There is an analog of the Suydam criteriom in an axisymmetric torus -
namely the Merclier criterion [4]. This again involves modes which are
localized about a rational surface but now are not exactly flutelike. 1In
fact, they have a weak ballooning .omponent which couples to the modulated
toroi&al curvature to produce an effective average curvature. The Mercier
criterion involves a competition between the stabllizing effect of shear and
thig destabllizing unfavorable average curvature.

In thls paper we investigate the effects of FLR on the Mercier
criterion. TFollowing the procedure of Refs. 2 and 3, we also conslder an
inner region where FLR effects are significant and an outer ideal regiom. By
asymprotically watehing the solutions from eath region, a stability criterion
is obtained. As before, the lnner reglon invelves only the average curvature
but, as we shall see, the puter ldeal region 1o additionally influenced by the
presence of stronger ballooning effects not contalned in the average
curvature. This becomes more transparent if we use the ballooning

transformation [5] which has the cousequence that, in ballooning space, We are
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required to match "inner” ideal solutions to "outer” FLR modified solutions.
In general, such a calculation will involve the numerical solution of the
marginally stable ideal MHD balleooning equatioun. The asymptotic behavior of
this solution can then be matched to that analytic solution of the onter FLR
modified equation which is well behaved at infinity, leading to the atability
criterion. Of course, we know [5] that the asymptotic form of the ideal
marginal equation 1s & combination of two powerlike solutions with the value
of each power dependent on the Mercier stability parameter. Indeed we can
deduce the Mercier stabllity criterion 1tself merely from the requirement that
neither of these solutlons oascillate [5]. In the present calculation,
however, we ueed to know the ratio of these two solutions in the asymptotic
behavior. This requires numerical solution of the ideal ballooning equation
with appropriate boundary conditions at the origin. Hence, ballooning effects
will now modify the stability criterion.

Although we c¢ould provide a general fot;ulation of this problem which
would cover an arbitrary axisymmetric toroldal geometry, it 1s more
interesting to consider an explicit example where the 1deal ballooning
equation possesses an analytic solutioun. Such & solution is possible for
model equilibria (6-8] corresponding to a toroldal plasma with large aspect
ratio, high poloidal beta, and low shear. In the followlng section we obtain

an analytic stability criterion for this case.

II. THE FINITE LARMOR RADIUS MODIFIED EIGENVALUE EQUATIbN AND ITS SOLUTION
In balloouing space the eigenvalue equation describing the effects of FLR
is obtained by the replacement m? + wlw — weg) in the ideal MHD ballooning
equation, where ¢ 18 the mode frequency and twy 18 the ion diamagnetic drift

frequency [9]. The J1ldeal MHD ballooning equation is a second order



differential equation defined on & poloidal anglelike coordinate 6§ where =o £
9 ¢ o rather than -x < 8 ¢ 5. The equation contains periodic coefficients
which reflect the 2x periodicity of the equilibrium, but also cantaina secular
terms arising from the presence of shear. Such an equatiaon, 1n general, would
require numerical solutien. However, if one agsumes low shear, it is then
possible to define two length scales, one assoclated with the period of the
equilibriunm and a longer one associated with the shear through the secular
terms. An averaging procedure over the shorter pericdlic scale can then be
applied to obtain an equation coutaining only the longer secular scale, the
properties of the periodic coefficients being aubsumed {ato numerical
coefficlents in this equation. This technique has been applied to a high—Bp
equilibrium (where Bo is the poloidal beta) in the vicinlty of the magnetic
axis [6-8].

We consider s model equation with the structure

22
a_(1+u2)§l+l_2.—5+g(g-n*i)[1+u)1}‘-0 1)

where we have introduced a stretched variable u = 8@ defined in terms of the
shear s = (rdy/qdr), ( and Qg are the mode and lon diamagnetic frequencies
normalized to the poloidal Alfven frequehcy, and xz is a parameter

repregenting ballooning effects. Specifically, Ref. 8 suggests:
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with R being the major radius, P the pressure, and By the toroidal magnetic
field. Unfavorable average curvature 18 represented by § where, for example
[7-10],

2
3 1 3 2
8= (-~ oy ) 3

contains a destabllizing term whenr q < 1 and a stabilizing term at finite
pressure. When a; w 0, Eq. (1) can be recognized aa the Fourler transform of
the eigenvalue equation in Refs. 2 and 3.

The Mercler criterion is associated with the solutions of this equation
as u » o when p = 0(5). The instability condition 18 that the asymptotic
solutions

Faul , oz m-pi (3482 _ (4)

osclllate; i.e.,
1+45¢<0 . (5)

When the plasma 18 stable according to the Mercier eriterion, i.e., & > -1/4,
there remains the posgsibility of ballooning instability. The marginal wvalue
of 3 for such instability corregponds to that solution of Eg. (1) with @ = 0,
which behaves as ut- as u » » {(1.e., the "émall' solution}. In this case Eq.

(1) has an exact solution of the form

Fol+ uz)-m )



with

AmE L+ o+ as)t?) )

i.e., r. = ~A. Thus, at the Mercler marginal polnt, ballooning instability
exigts when A > 1/2.

We cannot solve Eq. (1) exactly, but 1if we consider, as 1in earlier

studies [2,3], 6 5> Q{2 ~ Ray), then we can provide an eigenvalue condition by

apymptotic matching of the solutions of simpler equations which are valid when

u2 ~ 1 and when

2

8
4wy !

Thus, in the region u? ~ 1 we obtain the ideal equation

d 2. dFy 7‘2
@ [0+ ) )t - 80y = 0 (8)
1+u
and in the reglon
2 6

u o~ BTy >»>1 N

the FLR modified equation
9)

dF
d 2 %1 2
g (gt e ale- g Wk, -0 :

The solution of Eq. (8) can be expressed in terma of Associated Legendre

functions of imaginary argument. With the even boundary conditiom dFQ/du =0



at u =0,

7 T 1y1pA, X
Fo = i‘. exp(1m} {1 - cot i‘-(v + A= 2-]'|P (ilu) + exp(iqn) Q*(1u) (10)
v1/2 v1/2
where v = 1/2 (1 + 45)1/2,
With regard to Eq. (2) we note that Q(Q - i) = —(921/4) at marginal
gtabllity and remains negative definite even for a band of stable

situationa. We can therefore write
2
ala -y =y - (11)

The solution of Eq. (9) can be obtained in terms of Beggel functions of

imaginary argument [11]. ¥With the boundary condition F; + 0 as u + = we find

the soluticn .

AR TN (12)
It is interesting to note that when 7\2 = 0, the solutions given in Egs. (10)
and (12) correspend to an inversion of the ideal and FLR regimes of the
calculation in Refs. 2 and 3.

The elgenvalue condition follows from matching the solutions given in
Egs. (10) and (12) in their region of common validity, 1 << u? ¢< §/y2. Using

the small argument limit of the Bessel functioms, Kv’ we finod th.m:l‘l

P . clu_‘rl/z + czu"'-l/2 : (13)

where



< 2.2
(2P s (14)

55 w=

and the asymptotic forms for the Assoclated Legendre functions lead to the

behavior [Ll1]

Fo ~ c{u-\?"liz + céuv-llz )
where
i%— - —2(21)"2V TLQA/2IAAt] TI(L/2)=dtv] (. exp(-Lnh)
‘2 (W 1-cot( n/2) [Mv—(1/2)]
_ cos n(x+v)) . a6

Bin nv -

The matching condition ylelds the eigenvalue equation

€1 ©1
E'F{ . a7

Note that the marginal stabllity condition for ballconming modes glven by Eq.
(7) corresponds to the pole, A w (1/2) + vy, of the T function. Since we are
intereated in Mercier unstable situatioms, 1 + 4§ < 0, vwe wmay trite y = 1g/2

with g real. After some manipulations Eq. (17) can be written as
= 16 212 1+ 194 1 - a+29- 1=25+10g)
Y, exp{zl_ arg T -2-—) arg 1"( 1 v arg T( A g |

+;’- tan-l .B_i.:_‘% - ;- tan-l(ram:x ranh F) - agl} = Gn( oA .
(18)



The ambiguity in n may be remnved by considering the Mercier marginel point,
g= x = 0, where it car be shown [2] that v, + 0 (1.e., no FLR stabilization
i3 necessary). The most unstable choice consistent with A + 0 is n = 1.

Since y, = |Qwy/2| at marginal atability, the stability criterion is

5 - an - a9

Figure 1 shows plots of G (g,A) against g for a series of values of ). Note
here that 6 (0,0) reduces to Hy{(~48) of Ref. 3. The validity of the
asymptotic matching technique required 45/y2 » 1; 1., 1 + f > 72.
Although there is no small parameter to ensure this condition, inspection of
Fig. 1 indicates that it i8 reasonably well satiafied numerically.

We Bee from Fig. 1 that ballooning effects, which are proportional to },
increase the amount of FLR stabilization required for a given unfavorable
average curvature. The intercept at ) = 1/2\ when g = 0 corresponds to the
presence of 1deal ballooning instability even when there 18 no Mercier
instability. The stabilizing influence of FLR on these ballooning modes has

been reported in earlier work [12].

III. DISCUSSION AND CONCLUSIONS
We have considered the stabilization due to diamagnetic drift effecta of
a Mercler unstable toroidal equilibrium. To illustrate the salient features
we have concentrated on a simple model equilibrium vhich exhibits unfavorable
average curvature and, of course, reglons of local unfavorable curvature
leading to ballooning «ffects. The results generalize to a torus the
cylindrical calculations of Rulsrud [2] and Stringer [3] at the expense of

adding an additional parameter associated with ballooning. Clearly, Fig. 1
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implies a greater degree of FLR stabilization is necessary in the torus to
overcome the effects of unfavorable average curvature. In fact, even when the
equilibrium is marginelly Mercier unstable, FLR 18 necesaary to stabilize the
usual ballooning instability {12].

In terms of physical variables the stability criterion given by Eg. (19)

expressed as

rr
1> 2o 32 650
aqu A

(20)
where f 1s the toroidal _mode number, r, is the density scale length, a; =
(m;T)}/2/eB 1s the fon Larmor radius, and 8 = 2P/B2 is the usual plasma
pressure parameter.

Since a particular model gquililbriun was employed in deriving Eq. (20),
this analytic form for the FLR modi%ied Mercler criterion should only be used
to establish general qualitetive trends for realistic situations. However,
the techniques described in this paper can be applied in mnart to an arbitrary
equilibrium to obtain more precise results. Specifically, in the asymptotic
FLR region one can always obtain an averaged equation analogous to Eg. (9)
based on the two acales available: the sashort periodic scale of the
equilibrium and the long secular scale assoclated with shear in the asymptotic
region [5]. An eanalytic solution of this equation, analogoug to Eq. (12),
must then be matched onto a solution of the marginal ideal ballooning
equation. It should be noted that it will not usually be poasible to produce
an averaged equation corresponding to Eg. (8). This was feessible in the
present study because of the small shear 1in the model equilibrium
considered. For the more general cases it will be necessary to determine the

ratio, cj/cj, from mumerical solutions cto the ideal ballooning equation which
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are in turn matched to an analytic form correaponding to Eq. (14).

In conclusion, we have taken into account the atabilizing finite
gyroradius ceatribution. from the ion diamagnetic drifts together with
destabilizing ballooning effects in deriving a PLR modified Mercier
criterion. An analytic form of thisa result 1s preseated for a medel
equilibrium, and the numerical procedure necessary to generalize to wmore

realistic equilibria i3 described.
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FIGURE CAPTION
Influence of the ballooning parameter, 3, on the degree of FLR
stabilization, repregsented by vy, on the Mercler instability,
characterized by 5. The ), = 0 curve reduces to the previous result
of Ref. 3, and the general expression for y is specified by Eqa. (18)

and (19).
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