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ABSTRACT 

The finite Larmor radius modification of the Suydam criterion involves a 

competition between stabilizing finite Larmor radius effects and destabilizing 

curvature. In the case of the toroidal calculation, corresponding to the 

Mercler criterion, ballooning effects from regloas of unfavorable curvature 

must be taken into account. In the case of a model equilibrium, valid near 

the magnetic axis, a complete solution is obtained. Results indicate that the 

amount of finite Larmor radius stabilization needed to overcome the effects of 

unfavorable average curvature increases as a function of the toroidal 

ballooning parameter. 
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I. INTRODUCTION 

The Suydam criterion [1] governs the ideal MHD stability of flutelike 

modes which are highly localized in the vicinity of a rational surface. It 

depends on a competition between the stabilizing Influence of shear and the 

destabilizing effect of unfavorable curvature. Kularud [2] and Stringer [3] 

have ahown that finite Larmor radius (FLR) effects play an important role 

within an inner layer close to the rational surface and have a stabilizing 

influence on the ideal MHD modes. Their procedure involves a matching of an 

"inner" solution involving FLR radius terms to an "outer" Ideal marginally 

stable solution with both solutions dependent on the parameter governing the 

Suydam criterion. 

There is an analog of the Suydam criterion in an axisymmetric torus -

namely the Mercier criterion [4]. This again involves modes which are 

localized about a rational surface but now are not exactly flutelike. In 

fact, they have a weak ballooning ..'omponent which couples to the modulated 

toroidal curvature to produce an effective average curvature. The Mercier 

criterion Involves a competition between the stabilizing effect of shear and 

this destabilizing unfavorable average curvature. 

In this paper we investigate the effects of FLR on the Mercier 

criterion. Following the procedure of Kefs. 2 and 3, we also consider an 

inner region where FLR effects are significant and an outer ideal region. By 

asymptotically matching the solutions from each region, a stability criterion 

Is obtained. As before, the inner region' involves only the average curvature 

but, as we shall see, the outer ideal region is additionally influenced by the 

presence of stronger ballooning effects not contained In the average 

curvature. This becomes more transparent if we use the ballooning 

transformation [5] which has the consequence that, in ballooning space, we are 
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required to match "inner" ideal solutions to "outer" FLR modified solutions. 

In general, such a calculation will involve the numerical solution of the 

marginally stable ideal MHD ballooning equation. The asymptotic behavior of 

this solution can then be matched to that analytic solution of the outer FLR 

modified equation which is well behaved at infinity, leading to the stability 

criterion. Of course, we know [5] that the asymptotic form of the ideal 

marginal equation is a combination of tvo powerlike solutions with the value 

of each power dependent on the Mercier stability parameter. Indeed we can 

deduce the Mercier stability criterion itself merely from the requirement that 

neither of these solutions oscillate [5]. In the present calculation, 

however, we need to know the ratio of these two solutions in the asymptotic 

behavior. This requires numerical solution of the ideal ballooning equation 

with appropriate boundary conditions at the origin. Hence, ballooning effects 

will now modify the stability criterion. 

Although we could provide a general formulation of this problem which 

would cover an arbitrary sxi symmetric toroidal geometry, it is more 

interesting to consider an explicit example where the ideal ballooning 

equation possesses an analytic solution. Such a solution is possible for 

model equilibria [6-6] corresponding to a toroidal plasma with large aspect 

ratio, high pololdal beta, and low shear. In the following section we obtain 

an analytic stability criterion for this case. 

II. THE FINITE LARMOR RADIUS MODIFIED EIGENVALUE EQUATION AND ITC SOLUTION 

In ballooning space the eigenvalue equation describing the effects of FLR 

is obtained by the replacement n? + U(UJ - i»i) ir> the ideal MHD ballooning 

equation, where u is the mode frequency and &*, ia the ion dlamagnetic drift 

frequency [9]. The ideal MHD ballooning equation is a second order 
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differential equation defined on a pololdal anglelike coordinate 6 where -<•> < 

9 < <•> rather than -« < 9 < it- The equation contains periodic coeff ic ients 

which reflect the 2jt periodicity of the equilibrium, but also contains secular 

terms arising from the presence of shear. Such an equation, In general, would 

require numerical solution. However, If one assumes low shear, i t I s then 

possible to define two length scales, one associated with the period of the 

equilibrium and a longer one associated with the shear through the secular 

terms. An averaging procedure over the shorter periodic scale can then be 

applied to obtain an equation containing only the longer secular scale, the 

properties of the periodic coefficients being subsumed into numerical 

coeff ic ients in this equation. This technique has been applied to a high-8D 

equilibrium (where ft, i s the poloidal beta) in the v ic ini ty of the magnetic 

aids [6 -8 ] . 

We consider a model equation with the structure 

5 _ ( l + u 2 ) f £ + [ J ^ - 6 + Q ( Q - J ^ K l + » Z )>-«> U> 
1+u 

where we have introduced a stretched variable u - s9 defined in terms of the 
shear s » (rdq/qdr), Q and 0*^ are the mode and ion diamagnetlc frequencies 

•" 2 

normalized to the poloidal Alfven frequency, and X is a parameter 
representing ballooning effects. Specifically, Ref. 8 suggests 

\ 2 > a - 3 (JL.)2 f21 

where the pressure parameter 

2R dp 2 
a ' " ~zw q 

B 0 
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w i t h R being the major rad ius , P the preaaure, and BQ the t o r o i d a l magnetic 

f i e l d . Unfavorable average curvature I s represented by 6 where, for example 

[ 7 - 1 0 ] , 

6 - £ ^ f l - ^ . 1 + I ^ f f l ) 2 (3) 
Rs q 

conta ins a d e s t a b i l i z i n g terra when q < 1 and a s t a b i l i z i n g term at f i n i t e 

pressure . When }? • 0 , Eq. (1) can be recognized aa the Fourier transform of 

the e igenvalue equation i n Refs . 2 and 3 . 

The Mercier c r i t e r i o n i s a s s o c i a t e d w i t h the s o l u t i o n s of t h i s equation 

as u + <» when 0 - 0^ ' . The i n s t a b i l i t y cond i t ion i s that the asymptotic 

s o l u t i o n s 

r ± " " 1 ± (i + < 0 1 / 2 <4> 

o s c i l l a t e ; i . e . , 

1 + 46 < 0 (5) 

When the plasma i s s t a b l e according to the Mercier c r i t e r i o n , i . e . , 6 > - 1 / 4 , 

there remains the p o s s i b i l i t y of bal looning i n s t a b i l i t y . The marginal value 

of \ for such i n s t a b i l i t y corresponds to that s o l u t i o n of Eq. (1) w i t h Q = 0, 
r_ 

which behaves a s u as u •+ <= ( i . e . , the "small" s o l u t i o n ) . In. t h i s case Eq. 

(1) has an exact s o l u t i o n of the form 

* ~ (i + u 2 r^ 2 
(6 ) 
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with 

X - £ l l + (1 + 46) 1 / 2 1 (?) 

i.e., r_ - - \ . Thus, at the Mercier marginal point, ballooning instability 

exists when \ > 1/2. 

We cannot solve Eq. (1) exactly, but if we consider, as in earlier 

studies [2,3], 6 » Q(t} - O ^ ) , then we can provide an eigenvalue condition by 

asymptotic matching of the solutions of simpler equations which are valid when 

vr ~ 1 and when 

"" CK£3-%. )' 

Thus, in the region u.' ~ 1 we obtain the ideal equation 

l+u 

and in the region 

u

2 . & » 1 

the FLR modified equation 

AV 

The solution of Eq. (8) can be expressed in teroa of Associated tegendre 

functions of imaginary argument. With the even boundary condition dFg/du - 0 
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at u - 0, 

F 0 - | exp(inX)li - cot | ( v + X - £ ] lP X ( iu ) + expduX) q x ( iu) (10) 
v-1/2 v-1/2 

where v - 1/2 (1 + 4 8 ) 1 / 2 . 

With regard to Eq. (9) we note that Q(0 - 0 ^ ) • - ( d ^ / 4 ) at marginal 

s tabi l i ty and remains negative definite even for a band of stable 

situations. We can therefore write 

a[a - a ^ l - Y2 • ( i i ) 

The solution of Hq. (9) can be obtained In terms of Bessel functions of 

imaginary argument [11] . With the boundary condition F̂  + 0 as u + » we find 

the solution 

* L - CTJ 1 / 2 K V ( yu) . (12) 

It i s interesting to note that when X • 0, the solutions given in Eqs. (10) 

and (12) correspond to an Inversion of the ideal and FLR regimes of the 

calculation in Refs. 2 and 3. 

The eigenvalue condition follows from matching the solutions given in 

Eqs. (10) and (12) in their region of common val idi ty , 1 « u 2 « 6/y 2 ' Using 

the small argument limit of the Bessel functions, K , we find t h a t 1 1 

F 1 - c l U

- v " 1 / 2 + C j U ^ 2 (13) 

where 
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c l _ f 2 . 2 v r(l+v) „ . -

and the asymptotic forms for the Associated Legendre functions lead to the 

behavior [11] 

P 0 ~ c ' u - * - 1 ' 2 + c^v-X/2 ( 1 5 ) 

where 

=1 _ , , , , , - 2 v r t ( l /2 )+\+y]r[ ( l /2 ) - \+y] f eipC-lttX) 
^ l ' ^ 7 ^ U-cot(it/2MX.+v-(l/2)l 

S! s in nv ' * - i l b ) 

The matching condition yields the eigenvalue equation 

(17) 

Note that the marginal s tab i l i ty condition for ballooning modes given by Eq. 

(7) corresponds to the pole, \ « (1/2) + v, of the r function. Since we are 

interested in Mercier unstable situations, 1 + 4fi < 0, we may write v ~ i<j/2 

with a real . After some manipulations Eq. (17) can be written as 

y n - 16 exp[i |2 arg rfl + ^ ) + arg r(l - \ + ^ 1 - arg f d - 2 \ + i f f > 

(18) 
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The ambiguity in n may be removed by considering the Mercier marginal point, 

a - fc. - 0, where it car be shown [2] that Yn * ° <1'e*> n o F L R stabilization 

is necessary). The most unstable choice consistent with \ + 0 is n • 1. 

Since y n - |o*i/2| at marginal stability, the stability criterion is 

|^-| " G^atT) • < 1 9> 

Figure 1 shows plots of Ĝ (o",\) against a for a aeries of values of \ . Note 

here that Gj^o.O) reduces to HjC-^o) of Ref. 3. The validity of the 

asymptotic matching technique required 46/y^ » 1; i.e., 1 + <r > y • 

Although there is no small parameter to ensure this condition, inspection of 

Fig. 1 indicates that it Is reasonably well satisfied numerically. 

We see from Fig. 1 that ballooning effects, which are proportional to \, 

increase the amount of FLR stabilization required for a given unfavorable 

average curvature. The intercept at \ • 1/2 when a " 0 corresponds to the 

presence of ideal ballooning instability even when there is no Mercier 

instability. The stabilizing influence of FLR on these ballooning modes has 

been reported in earlier work [12]. 

III. DISCUSSION AND CONCLUSIONS 

He have considered the stabilization due to diamagnetic drift effects of 

a Mercier unstable toroidal equilibrium. To illustrate the salient features 

we have concentrated on a simple model equilibrium which exhibits unfavorable 

average curvature and, of course, regions of local unfavorable curvature 

leading to ballooning effects. The results generalize to a torus the 

cylindrical calculations of Kulsrud [2] and Stringer [3] at the expense of 

adding an additional parameter associated with ballooning. Clearly, Fig. 1 
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implies a greater degree of FLR stabilization is necessary in the torus to 

overcome the effects of unfavorable average curvature. In fact, even when the 

equilibrium Is marginally Herder unstable, FLR is necessary to stabilize the 

usual ballooning instability [12]. 

In terms of physical variables the stability criterion given by Eq. (19) 

expressed as 

A > ^ - T i\)1'2 G,C6,o-> (20) 

where H i s the toro idal mode number, r n i s the density scale length, a^ • 

(m i T) 1 ' 2 / eB i s the ion Larmor rad ius , and fj • 2P/B 2 i s the usual plasma 

pressure parameter. 

Since a par t icular model equilibrium was employed in deriving Eq. (20), 

th i s analyt ic form for the FTLR modified Merrier c r i t e r i on should only be used 

to e s t ab l i sh general qua l i t a t ive trends for r e a l i s t i c s i t u a t i o n s . However, 

the techniques described in t h i s paper can be applied in rarst to an a rb i t r a ry 

equilibrium to obtain more precise r e s u l t s . Specif ical ly , in the asymptotic 

FLR region one can always obtain an averaged equation analogous to Eq. (9) 

based on the two scales avai lable : the short periodic scale of the 

equilibrium and the long secular scale associated with shear in the asymptotic 

region [ 5 ] . An analyt ic solution of t h i s equation, analogous to Eq. (12), 

must then be matched onto a solution of the marginal ideal ballooning 

equation. I t should be noted tha t i t w i l l not usually be possible to produce 

an averaged equation corresponding to Eq. ( 8 ) . TW.B was feas ible in the 

present study because of the small shear i n the model equilibrium 

considered. For the more general cases i t w i l l be necessary to determine the 

r a t i o , c3/c£, from numerical solut ions to the ideal ballooning equation which 
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are In turn matched to an analytic form corresponding to Eq. (14). 

In conclusion, we have taken Into account the stabi l iz ing f i n i t e 

gyroradlus contribution. from the Ion dlamagnetlc drifts together with 

destabilizing ballooning effects In deriving a FLR modified Mercler 

criterion. An analytic farm of th'.s result i s presented for a model 

equilibrium, and the numerical procedure necessary to generalize to more 

rea l i s t i c equilibria i s described. 
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FIGURE CAPTION 

FIG. 1. Influence of the ballooning parameter, X, on the degree of FLR 

stabilization, represented by y, on the Herder instability, 

characterized by o- The \ • 0 curve reduces to the previous result 

of Ref. 3, and the general expression for y is specified by Eqs. (18) 

and (19). 
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