

Université Scientifique et Médicale de Grenoble

INSTITUT DES SCIENCES NUCLÉAIRES DE GRENOBLE

FRP40 1900

53, avenue des Martyrs - GRENOBLE

1SN 84.06

MEASUREMENT OF $\mathcal{J}^{(2)}_{\text{band}}$ IN ¹²³Cs

J. GIZON¹, V. BARCI¹, H. EL-SAMMAN¹, A. GIZON¹, Y. GONO², T. BENGTSSON³

¹ISN Grenoble, France RIKEN Saitama, Japan ³Institute of Technology Lund, Sweden

International Symposium on In-Beam Nuclear Spectroscopy, Debrecen, Hungary, May 14-18, 1984

Laboratoire associé à l'Institut National de Physique Nucléaire et de Physique des Particules.

International Symposium on In-beam Nuclear Spectroscopy, Debrecen, Hungary . May 14-18, 1984

MEASUREMENT OF $\mathcal{J}_{\text{band}}^{(2)}$ IN ¹²³ Cs

J. Gizon, V. Barci, H. El-Samman, A. Gizon, Y. Gono, T. Bengtsson

*ISN Grenoble France, "RIKEN Saitama Japan,""Inst. of Technology Lund Sweden

(12). As shown in a preceding paper [1] the collective moments of inertia $J_{a,c}$ of Xe and Ba nuclei behave differently. This can be interpreted considering the collectivity (Ba) or non-collectivity (Xc) of these nuclei and/ or the existence of a strongly deformed secondary minimum in the potentialenergy surfaces of the bariums. Experimental data were collected on ¹²³Cs in order to bring some insight on the behaviour of nuclei in this transitional region.

At experiment was performed with the Grenoble cyclotron by bombarding a ¹¹⁵In target with 80 MeV ¹²C ions. The γ - γ energy correlations were measured using six 8"x6" hexagonal NaI(T1) detectors. At this beam energy, the correlation matrix-is mainly generated by ¹²³Cs since the 4n channel represents more than 60.% of the total cross-section.

It appears in fig. I that, up to $h^2 w^2 = 0.16 \text{ MeV}^2$, the moment of inertia of ¹²³Cs increases and follows the $\mathcal{J}_0 + 3w^2 \mathcal{J}_1$ relation where \mathcal{J}_0 and \mathcal{J}_1 are deduced from the discrete lines. ¹²³Cs and ¹²²Xe behave similarly up to 0.30 MeV² and then the moment of inertia increases rapidly in ¹²³Cs while it stays almost constant in the xenon. This effect observed in the cesium is directly related to the addition of a proton to the ¹²²Xe core.

Indeed, calculations as in ref.[1] show that the $(\pi h_{1/2}^2 \vee h_{1/2}^6)$ band with a prolate deformation $(\mathcal{J}_1^{(2)} = 35 - 40 h^2 \text{ MeV}^{-1})$ is lower than the band with the same configuration at $\gamma = 30^\circ$ above spin 20 for ¹²³Cs, whereas for ¹²²Xe, they are calculated to have almost the same energy. The experimental results of ref.[1] indicate that ¹²²Xe tends to favour the triaxial bands. It is thus tempting to interpret the rise of $\mathcal{J}_1^{(2)}$ in ¹²³Cs as a change of deformation from $\gamma = 30^\circ$ to $\gamma = 0^\circ$.

[1] H. El-Samman et al., Communication to this conference

Fig.1 : Comparison of the collective moments of inertia of 122_{Xe} and 123_{Cs} .

.