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SUMMRKY : 

Among the many models and mechanisms proposed to explain the ob
served beam-bean effects in storage rings, one -the two dimensional 
single resonance model- appears to be particularly well suited to in
vestigate and understand the familiar growth of vertical dimensions 
commonly seen in flat-beam operated e +e~ storage rings. In this paper, 
after a quick derivation of the method and a comparison of the results 
obtained with existing experimental data, the assumptions are discussed 
in order to explain why this elementary model does well in this particu
lar feature of the beam-beam interaction. 

Seminal given at L.8.L. IBeAk&Ugl and SLAC (Stanford), V&c&ak&i 1983. 
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INTRODUCTION 

After almost twenty years of efforts, the beam-beam Interaction 
remains a major limitation in the performances of most colliding beam 
accelerators. The main features are the following : 

1) Due to their electromagnetic interaction, the counter-rotating 
beams blow-up with a corresponding saturation in luminosity. 

2» Beyond a threshold in current, the beam lifetime drops, more-
less drastically till the beam is lost, indicating that a large fraction 
of particles reach the physical or the dynamical aperture of the ring. 

In both cases, the overall integrated luminosity is severely af
fected, and indeed, most machines have been disapointing from this point 
of view. Many models have been developped and have contributed to 
some understanding but none has really established itself by its ability 
to match or predict the experimental observations. Furthermore, the dif
ferent mechanisms proposed are Usually only relevant to some aspect of 
the beam-beam problem at the time, whereas in a real machine, the vari
ous features o£ the behaviour are intermingled, rendering the experi
mental investigation essential, interactively with the modelling effort, 
one example of this lack of completeness in our picture is the old con
troversy between coherence and incoherence as a dominating feature of the 
problem. In the case of flat-beam operated e +e~ storage rings, it is here 
shown that one effect -the apparence of a strongly blown-up vertical di
mension, in particular in the tails- can be explained with quite some 
success in the frame of incoherence, by the simplest model possible s 
the two dimensional single-resonance model. 

THE SINGLE RESONANCE APPROACH 

in each intersection region, the bunches composing the two counter-
rotating beams interact .electromagnetically. Assuming that one of the 
beams is much stronger than the other, remaining thus unperturbed in the 
interaction or that incoherence dominates the problem, the motion of in
dividual particles can be considered (this will be developped later). In 
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this model, the motion of a single particle in one of the beams, col

liding with a counter-rotating rigid beam, is investigated. 

Radiation damping and diffusion from quantum fluctuations are 

not included in the analysis as the resonant growth we study is a much 

faster process (this will also be developped later). The motion can th'is 

be described with the following hamiltonian : 

H(X,X,Y,Y,6) * H Q + H'(X,Y,8) (i) 

where R represents the unperturbed (single beam) motion throughout the 

ring and H' the perturbation due to the beam-beam interaction, given by : 

^1/f+T f4T 1 

H'(X,Y,e> = V ^ e " l k S 8 dT (2) 
k=-o* Vd/f+T)(f+TÎ 

in which X = x/V 2a o. , y • y/v5oo are dimensionless transverse coor-
x y x y o v 

dinates, S the superpsriodicity and f - -*- the aspect ratio of the °x 
beams (f = 1 for round beams, f **1 for flat beams). 

Expression (2) is the product of the electromagnetic potential 

deriving from a gaussian charge distribution, as calculated in ' » 

and of a series of 6- functions accounting for the succession of localized 

kicks, in a thin lens approximation. 

The strength of the perturbation is contained in V . It is ex

pressed in eq.(3) in terms of the superperiodicity S and the main physical 

parameter of the beam-beam interaction : $ i.e. the linear time shift 

per interaction {assuming equal tune shifts in the two planes : f = £ = £>.. 

S r e N S y 
<3) 

2iry a (a + a Î 

in which N is the number of particles per bunch, r the classical electron 

radius and Y the relativistic factor. 

The unperturbed problem represented by H is integrable, its sol-

* note : for derivation, eq. (12) can be used at vanishingly small amplitudes ; 
the exact expression of the tune shift £ is described for ex. in 21] 
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r 
»» 

V» +1/X)*,, cos<gxe+<y 

in which »» 

V< i + f "» y 

ds R in which »» 

V< i + f "» y 

8 x , y ( s ) "*' 

C« 

are the betatron tunes and 

|OL pa ,$ ,$ | are dimensionless constants of the motion. Allowing these 

constants to vary with time when writing the equations of haKilton with 

the full hamiltonlan of (1) yields : 

da dH' p _ 
— - |x(a ,* ,8), ï(a ,* ,8),e] 
de 3* - * x Y Y J 

* (5) 
dth 3H' 

I — . x(a ,* ,9), ï(a ,* ,6).a 
» rie a» L x x ' ' J 3o X 

and similar equations for the y-motion, a now have the physical sig

nificance of "emittance-variables". TOiey are normalized to the sum of 

the natural beam emittances in the two planes : 

2 x.y with s = - = - ^ (6) 

x y x,y 

Furthermore, tlie use of the canonical variables fa ; * } has 
x,y x,y 

eliminated the integrable part from the equations : (5) is now a set of 

four equations of Hamilton with : 

* y * y isr» 

u - [ ° , ^ o-*(W * »y f£ «.'(yyj 

yiî/Ë+T%S*T) 
(7) 

As shown in , it is preferable to avoid expanding (7} in a poly

nomial (alternating) series and truncating it since the convergence is 

very slow. However, it is easy, using the following expansion into mod-
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if ied Bessel functions ; 

e - x c o s y = ^ ( x ) + 2 £ ( - l ) n cos(ny) I n (x) (8) 
n=l 

to develop (7) in a series of resonant terms : 

+• I* 

+ 2 £ H O B ( V V oos^fo^efy (9> 

+* E "nn^x'V «*2n<B x

e + V c o " 2 , , l a y**Vj 

in which : 

• ' O 

' o\ 2 1/f+T^ o\ 2 t¥Cl 

V<Vf+TXf+T) ( i 0 ) 

H (a ,o ) = ( - l ) n + 0 ' - 1 

nm x y 

(a 1/f+l a f+l\ 

f i 7« + f« ; I f t L ^i i \ 1 ( ! ï ! i i ) 
/ _^ n \2 1/f+T/ ro\2 I + T L 

Jo •yu/f+T) (f+T> 

The single-resonance approximation consists in keeping only one 

of the oscillating terms in (9), assuming that the corresponding phase 

is nearly constant, which in the case of a resonance of order 2|n| +2|m| 

occurs when : 

2nO + 2m0 - ks = 2Aq « 1 (13) iQ^ + SniQy - ks = 2Aq < 1 

and assuming that all other resonant terms of "low order" oscillate fast 

enough to even out over a few turns. A slow beating of the variables then -

dominates the behaviour and can be calculated as the motion becomes iate-

grable. Obviously, no résonance is really isolated as a high order res

onance line can always be found very close to any point in tune diagram. 

However, an integrable approximation of a no»-integrable problem can 

sometimes be quantitatively very good (see last paragraph). 
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An indication of the relative strengths of the resonances is 

contained in the order of magnitude of each exciting term H ^ normalized 

to the leading term H O Q, i.e. • I — / H 0 0 . F»r typical amplitudes, this 

ratio gets smaller and smaller as the order of the corresponding reson

ance is increased, due to the fast decrease with order of the modified 

Bessel functions in (10). For example H /H *\# 10" 3. The weak reson-
11 oo 

ance excitation produces a distorsion of the phase space trajectories 

in such a way that the notion of resonant particles gets trapped in 

islands rather than turning on the usual circles, as sho\m in figure 1 

for a 6 t h order one-dimensional resonance. 

Fig. 1 : Distorsion of phase space in the vicinity of 
a 6 order one-dimensional resonance 

The leading term H , present even when all resonances are far 

away, is responsible for the amplitude-dependent detuning produced in 

the beam-beam interaction, as can be seen from : 

<i+ , 3H' 3B 

« St - 5 2 - =. SÙQv (a ,a } 
de 3a da 

x ,y x ,y 

(12) 

This results in a spread of the tunes that transforms the working 

point, into an area of size S ê in tune diagram, as shown in figare 2a,b) 
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21 for round and flat beams . In order to obtain a large luminosity, the 
biggest tune spread possible has ta he fitted into a region free of low 
order resonance lines (Fig. 2.c). The effect, when the tune spread over
laps a resonance line, is that islands will appear in phase space for 
particles close to that line, at amplitudes such that their effective 
tunes (Q>x y + ® A 2 » v * a r e e x a c t * y on the line. The smallness of the is
lands for relevant amplitudes has led one to consider these beam-beam 
excited resonances unable to explain, alone (i.e. without any additional 
enhancing mechanism'-'), the rather strong effects observed. We shall see 
in the next paragraph that things are different in the case of very flat 
beams. 

© ® 0 
f=1 f=o.i A 

/*£ 

A./ fifcr-^Zs 

&Qx AQ» 

Qv 

1/3-

1/4 

«1 

1/4 1/4 

Fig. 2 : Tune-spread for round (a) and flat (b) beam <taken from Ref. h . Fit
ting of the flat beam tune-spread in a region free oX "low order" 
resonance lines in tune space (c). The dotted lines indicate success
ive beam "enveloppes" i.e. particles such that x2/o 2 + y 2/° 2 - n 2. 

NON-LINEAR COUPLING IN A VERY TLAT BEAM 

The sensitivity of vertical dimensions in the very flat beams 
stored in e +e~ machines has been the subject of much study ' ' ' 
and worry. The role of non-linear coupling, first stressed by B-
Montagne as a relevant mechanism, can be investigated with the above 
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described procedure, yielding, in the case for example of the non-linear 
resonance of lowest order : 

2B J t-2Q y - kS * 2aq« 1 (13) 

the following hamiltonian : 

Hrâs = s î I H o o ( a
x ' a y , + 2 B n ( a x ' V c o s ( 2 n < 2 x ô + * x , + 2 r a < Q y e + * y ) " k s 9 } , l l 4 ) 

Integration is easily performed as two invariants of the motion 
can be derived. The first : 

Cl • °x + \ < 1 5> 

is intuitive since it expresses the exchange of energy between the two 
coupled planes, it also expresses the stability of this difference res
onance. Further eliminating the time-dependence in (14) and using the 
first invariant of (15) yields a new one-dimensional hamiltonian, only 
function of the natural coupled variable of the problem : 

K = o - a (16) 
x y 

and of a "slow phase1* : 

s f [ H fK) + 2H (K) c o s (40)1 + ^ K ' 00 i i 2 

(17) 

<18) 

This hamiltonian is now a constant of the motion i.e. a second 
invariant. The sensitivity of the vertical plane can be understood from 
it. Since the smallness of the excitation, due to the smallness of the 
driving term H (H /H % 10*3 for typical amplitudes), must be looked 11 11 oo 
at in terms of K = a

x * * a
v ' and since ô , < u w (a,./ĉ  ĉ  eM/e_ = f = 1/16 

in the case of the LEP design J 

to satisfy the invariance of C, 

- j 7 , °y x ' y' x "y' "x 
in the case of the LEP design ) , a small resonant beating of K, having 

* note : All the manipulations of the hamiltonian can of course be car
ried on, more concisely, with canonical transformations. 
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For example, an increase due to coupling of 40 % in the vertical ampli
tude will only mean a 2.5 % decrease horizontally, at one a in both 
planes. This would be difficult to observe in the horizontal plane. An 
illustration is given in figure 3, where the transformation due to cou
pling of successive "envelopes" of the distribution (particles such that 
x 2/o 2 + y2/ff2 = n 2 i n = 1,2,...) is shown. 

rT t 
n.io 3 V f/ 
125 2 

\ / 

5.83 1 H' \ y 
r \̂  " i " " ^ 4&T 
L 

i)31.46 1 
1.46 

2 
2.06 

3 «« 
2.52 i * 

Fig. 3 : Transformation due to non-linear coupling of successive "envel
opes" of the beam distribution, i.e. of particles such that 
x '°x + y2/°y * ° 2 ; r i * I ' 2 , n , e variables of the diagram are 
the "emittance variables" (ax,Oy) defined in eg> <6). The cor
responding number of sigmas (n^ny) are also indicated. Part
icles trapped in the resonance beat on lines of constant Cj , 
the variable K oscillating between two extremum values. The 
corresponding beating is much larger vertically and weaker 
horizontally, in the case of very flat beams (aspect 
ratio f = 1/16) as can be seen on the scales of {nx#ny}. 
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Calculating numerically the integrals involved in (10), the trans
formations of beam envelopes for n = l, 3.41, 2 and 3 are obtained gra
phically from invariant (18), in a way illustrated in figure 4.a. The 
particles move on lines of constant a^g within a sector limited by two 
curves corresponding to COS4I/J=±1. Depending on initial conditions, 
these lines axe limited by both curves (case A), the angle $ describing 
all values and the corresponding particle rotating uniformly in phase-space, 
or by only one (case B), the angle ty being now limited to a restricted 
set of values corresponding to a particle the motion of which is trapped 
in an island. The representation in figure 4.a is equivalent to the usual 
island structure appearing in the phase space of a resonant trajectory 
(Fig. 4.b). Estimates of the maximum beating in K are obtained from it. 

® K ® 

Fig. 4 -• Resonant phase-space illustrating usual phase oscillation (fl) and 
resonant trapping (B). The fig. in (a) and (b) are equivalent. 

The Calculations were performed at three different working points 
close to the resonance line, as shown in figure 5, for a tune shift { -0.03 
and a superperiodicity ^ = 4 „ 
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Fig. 5 : Three working points close to the resonance studied, and for 
w.'ich the calculation was performed are here 3hown with their 
cjrL-^ponding tune-spreads. 

Figures 6 to 8 show how beam envelopes for n = 2 and 3 

(n2 =x 2/o 2+y 2/o 2} are transforsied when passing through the resonance* 
x y 

Very clearly, the transfer from horizontal to vertical motion is big in 

the tails, especially when ûq=- .03. This is consistent with the pref-

ered side predicted in , observed experimentally at PETRA" and easily 

understood (see also •*) from the almost triangular shape of the tune-

spread inthe case of a flat beam (Fig. 2.b and 5), allowing the reson

ance line to be crossed more efficiently from just above than from below. 

A magnification (Fig. 9) for smaller amplitudes of figure 8 shows 

that a n = l envelope, corresponding to the cere of the beam is not ef

fected very much, whereas the excitation is already strong for n=1.41. 

This suggests that the resonance drives particles mostly on the edges of 

the core (n = 1.4 ton=3) and in the tails (n > 3). 
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I « 6 g Oj 
MI 2 un m n, 

Fig. 6 : Transformation of beam envelopes below the resonance {Aq = +0.0?) 

t * 6 » a. 
M l 2 2.45 2.83 n, 

Fig. 7 ; Transformation of beam envelopes right on the resonance (Aq = 0.00) 



1.41 2 2.45 213 n, 

Fig. 8 : Transfoxmatxon of beam envelopes above the resonance (Aq = - 0.03) 

= B 

«n 

4 f 

2J3 

2 
M, 

12 lit! I 15 2 a, 
0? 1 122 HI n. 

Fig. 9 : Magnification of ligure 8 for smaller amplitudes 
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Horizontal Density Distribution 

\ 
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• 
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Singlt Branf 
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10 20 
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® 

Verticol Density Distribution 

( 0 ^ 3 . 4 3 m) E = l.55GeV 

^ Colliding Beoms I**I~«3.8x3.BmA 2 

Fig. iQ : Horizontal (aï and vertical <bî particle density distributions 
as measured in SPEAR10*. A strong blow-up in the vertical tail 
is clearly seen. 
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Of course, the biggest blow-up being in the talis, the global 
blow-up of the beam, which can be obtained through a convolution ovei 
the whole distribution, in weaker, as was pointed out by S. Kheifets"-*. 
However, it does not limit the relevance of these results since the 
blow-up observed is mostly in the vertical tails, as was observed for 
example at SPEAR (see Fig. 1C). A similar observation can be found 
„»i In figure 10, nore points, at 2 and 3 o are needed but difficult y 

to obtain through an experiment based on scrapers. A study for different 
tnnes would also be useful. 

WHERE DOES THE MODEL BREAK DOWN ? 

1) Damping and quantum excitation were not included, which is fine 
if the characteristic tiaie for the coupled motion is much shorter than the 

181 damping time. An estimate of the beating tine is obtained using and 

-8H (K) sin 4^ 
11 

8 H (K) sin 4 ip 
(20) 

where the bar means a "typical" value is taken. As shown in figure 11, 
sin 4^2: 1/2 is rather characteristic as an intermediate between the 
largest time (infinite) corresponding to the stable fixed point 
(sin 4^=0) and the shortest corresponding to usual phase oscillations 
(sin 44'= 1>. The number of turns amounts to : 

AS C, 1 
n« = — ^ .024 7=-T- ̂  20 or 30 turns 

to be compared with damping times of 3000 turns for PETRA and 500 turns 
for LEP. This is not where the model brr**As down. 
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HUES 

sin4«>=0 . 
, sin4«i=^ 

/ 

^ K ' ̂ 

l ï i . 11 s Calculation of a characteristics beating time for the reson
ance studied ; as shown, sin 4ty — 1/2 is a rather good average 
between the two extreme values of sin 4|/>=0 (fixed point) and 
and sin 4tji = 1 (usual phase oscillations) . 

2°) ft thin lens approximation was used, permitting the use of 

6-functions for the time dependence, instead of an integration of the 

kicks through the longitudinal extension of the bunch. This is valid if 
201 & > a as shown in 

s 

3°) Synchrotron oscillations would be interesting and easy to in

clude. Effects from synchro-betatror satelittes could then be studied, 

with the limitation that the resonance approximation may break down 

more drastically as the resonance line density is increased (see 6°) 

for this point). 

4°) Errors in phase advance and/or Beta-functions between the dif

ferent interaction regions break up the symmetry of the machine (for 

example for PETRA, S =4 becomes S = l) which is also equivalent to an 

increase in the resonance line density. This was not included here but 

could, with however a similar limitation as in 3°). 

5*) Weak-strong picture for flat beams : 

In the limit of a completely flat beam (f »0 v/o x 0), an infinite 

plane with a charge density o can be considered. It is easily found from 
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symmetry arguments (or from Gauss's th) that the electric field gener

ated is vertical and independent of the distance to the plane : as the 

plane is infinite, an observer cannot tell, just looking at it, how far 

it is. 

In reality, as the beam is almost flat, the electromagnetic field 

will only be almost independent of the vertical dimension y f as long as 

one is not in che core (see Pig. 12). 

1 

• J - ——-*•• 

^ ~ ~ ^ 
_ — — - V ""* 

V / H 1 i \ \> 

Fig. 12 : Electromagnetic field distribution from a very xiat ûeam. AS 
the fields are almost independent of y in a large region out
side of the core, they will not be affected much if the bean 
blows up vertically by a factor 2. 

How, reversing the argument, one finds that vertical blow up 

(of a factor 2 for example) of a very flat beam will not affect the 

field much outside the core (Fig. 12, dotted line). This can also be 

seen looking at the vertical kick {Fig. 13) for a flat beam-

beams, but between 10 and 20 o„ for a ribbon beam. When the beams get 



- 17 -

blown-up this leveling off changes location/ producing quite a dif
ferent kick from the round beam, but roughly the same from the flat 
beam. As an illustration (Fig. 13), a particle oscillating at, say, 
3 o will be kicked by roughly the same amount from a non blown-up 
beam as from one blown-up by for example a factor 2. 

oscillating particle 

Fig. 13 : As the levelling off of the vertical kick occurs very far 
away (10 or 20 o ) for a ribbon beam, a particle oscillating 
at a couple of Oy will get roughly the same kick from a blown-
up or a non-blown up distribution. 
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12] Hore analytically, an inspection of Augustin's formula for the 

flat beam vertical kick also shows that the kick is roughly independent 

y "„( 
Z5 I e 2°y 2

 d v 

x y J

0 

_x2 , - ï - u 2 
_ * ! / °y - T . "y 
1 P - + o ) I e d U y 

^ x y •'o * 

60 -\, S. / v

 e

 Z du, as (J < o 
y o x y y x 

56 ^ -
y 0 , 

« 2 

— i f y > l . 5 o v 

Prom the above argument, the beam-beam interaction in the case of 

very flat beams may, for many of its observed aspects, be considered a 

quasi-weak-strong process even when the two beams are equally strong . 

Although this argument is not valid in the core and far out in the tails 

of the beam, it strengthens the validity of the incoherent picture for 

at least some beam-beam effects such as lifetime problems, backgrounds 

and of course vertical blow-up. It also emphasizes the difference be

tween flat and round beams in the frame of the beam-beam interaction. 

6°) The single resonance approximation is the most severe limita

tion. Approximating a non-integrable problem by an integrable one is 

qualitatively false in the sense that the fundamental "chaotic" property 

of the systen, -i.e. the production, due to the mixing with nearby res

onances, of unpredictable chaotic trajectories- is, a priori, suppressed. 

* note : This remark was initiated by H. ZYNGIER. 
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However, the result can be quantitatively very good (see ) up to a 
threshold in perturbation strength (tune-shift in our casej. 

"Bow isolated" the resonance Is, and up to what threshold, is 
now being tested with a simple two-dimensional tracking program» cal
culating the two invariants of (14) and (15) over a few hundred 
turns and checking their invariance for different tune-shifts. 
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