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1 - IRTROBUCTION

The SLED method was invented at SIAC! in order to produce more
elactron (and positron) energy from the existing klystrons. It consists
roughly in an RF pulse compression which increases the average peak

power over a shorter pulse length, and has been successfully applied at
SLAC starting from the initial 2.5 ys RF pulses (SLED 1 experiment).

Since that time higher performances were aimed at by doubling the
RF pulse length (5 us) from the klystrons and corresponding experiments
are in progress right now (SLED 2 programme).

The LEP injector nmz, also now is supposed to operate in the
SLED-2 mode. At DESY similar developments have been undertaken too, to
ijmprove the lirac performances.

However in all cases the accelerating sections were rot initially
optimized for such a mode of operation, and in most cases the designers
ended with long accelerating sections making a more efficient use of



the klystron power, with rectangular pulses, sometimes at the expense
of a longer linmac.

The present study deals with new approaches for designing linacs,
and in particular compact linacs, considering from the beginning a
pulse compression scheme, where the main fencure consists of having an
exponential pulse shape instead of r lar.

Moreover a detailed comparison is made batween constant impedance
and constant gradient travelling wave (TW) acceleiating structures. As
a matter of rfact the constant impedance structure when optimized looks
sligthy better than the second one. In addition short structures appear
to be more efficient for a given number of RF sources. Consequently
linear accelerators can be made more simple and less expensive, and if
one allows for higher tolerable accelerating gradients they can be made
even compact.

11 - ENERGY GAIN IN THE SLED MODE

11.1. Pulse shapes dus to the compression scheme

This is a brief recall of what was p ted in ref 1),
Figure 1 indicates schematically the compression network, where two
high Q cavities are coupled to the high power wave guide system,
between the klystron ocutput and the accelerating section input coupler.

The klystron pulse starts f£illing the storage cavities. After a
whirs, at time tl, the RF phase {s rapidly reversed by 180° by using a
fast electronic switch at the input of the klystron. Then the cavities
start emptying and the corresponding output power is added to the
direct klystron pulse towards the accelerating section. This results in
a much higher peak power feeding the section, which however decreases
exponentially until time t, where the %lystron pulse stops. After

2

time tz a small amount of power corresponding to the remaining stored

energy in the cavities, still feeds the section but that part of the
pulse will be ignored in what follows.
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FIG. 1| - Pulse compression scheme



Let's call region 1 that part of the net load wave between O and
tl' and region 2 the next part between tland tz wvhich is the most inte-
resting cne as it éoz:espondl to a short high peak power pulse.

For 2 unit rectangular RF pulse at the cutput of the klystron,
the net load field pulse before entering the accelerating section is
given by the following equaticns! :

) -t
E(t) = (@-1)-ae © for 0<te<t
t-tg
= Te . (a-
E,(t) = Ye (@-1) for t, <t <t,
where :
2 O
T = Wt E is the storage cavity £illing time

Q. is the unloaded quality factor of the storage cavities

8 is the coupling coefficient

28

¢ T 1+8
b
Te
Yy = a(2-e )

For a finite peak powsr P at the output of the klystron and
without the storage cavities the accelerating field in the first cell
of the structure would be given by :

or 1/2
_ )
:, - ;Pv :

go’

where Toe vgo' Q are rés.extively the shunt impedance per umit length,
the group velocity and the quality factor of the first accelerating

cell.



With the compression scheme the real accelerating field is the
product of Bo and the multiplication factors 81 2(1:).
[4

II.2. The case of constant impedance structures

------- et e e

In a constant impedance striucture all the cellb are identical,
and hence r, Vq, Q will remain constant along the structure.

Due to power dissipation in the cells the amplitude of the propa-
gating field will decrease exponentially. At a given azimuth z the field
becomes :

-(w/2v_Q)z
E(z,t) = E , [t-At@]e g
’

where index 1,2 refers to the two different time intervals as previous-
1y defined.: Here again the expression needs to be multiplied by l:o for
a given peak power P from the klystron.

At(z) is the wave propagation time from the origin up to z :

z
s (@) =J LAl
° g

It looks interesting to use the normalized variable z' = %wheze
L is the length of the structure. Then :

At = t1_2'

a
L
with 'ra -y

go .
Depending wether the time t- At appears to be below or above tl. the
field B1 ar 52 should be used. That tells us that a field discontinui-

ty will appear at some location zi in the structure such that :



t-Ats= tl

or t - Q:1 =, z;
If zi < 1 the energy gain along the structure is the contribu-
tion of two field integrals :

zi ot 1 wr
-z _——

vy = | Ble-stziile R a4 | Ele-stizle 2 gz

o zi

where now t represents the time at which the particle traverses the
structure (the transit time of the particle is negligible as compared
to the filling time of the structure).

Let's call v1 and vz the integrals relative to 31 and zz. One

gats :

[ 1 T t T, T T
A AL, 1] a2, _a,
T, T T, 1 T, T T T T 1
v =-te-)t]e t-e ! [-ale le? ¢ -0t
171 T T
al a
3 T T T,
-— - — -—
L3 T, " m, | TR A T i
Vz(zi) = {a-1)= |e -1 +y = e -e
a b a

1 w
with : Tl - 20



It is interesting to look at the behaviour of the function 'J(zi)
in the interval 0 < zi < 1. It can be shown numerically that for each
value of z; there is a value of B which maximizes the energy gain., This

has besn t:ken into account in the plots of Figure 2 where it appears
that the maximum energy gain coxresponds to zi- 1, which means thac the
beam should enter the structure at time t = tz = t! + Ts and that the
width of the comprxessed pulse must be equal to the filling time of the

structure.

The study will follow by considering only this optimum case for

which :
v1 = 0
= (™
v = vz(zl 1)

‘This leads to :

_a La

T T T, . T T

s e 1 2 |0 T c
v"- (a 1)1_ e 1 +y§ ™ -e

However this is not the exact energy multiplication factor as for
a unit pulse entering a constant impedance structure the energy gain

over a unit length is :

-2

T ’ T

v ='T—11-e 1
[ a \.

Hence the real multiplication factor is the ratio VH/VO. For
each value of T there is a value of 8, hence a value of Tor which
maximizes this multiplication factor as seen on Figure 3.

II.3. The_case of constant gradient structures

In a constant gréd.i.ent structure all the cells are different. As
the flowing power decreases due to wall losses, the group velocity is
made smaller and smaller (for instance by reducing the iris diameter in



v 50
u = 1.884 100 571
9 = 15200 -
g, = 220000
tz = 4.5 us
T = 0.8 us

28 a ¥ 140

0 025 058 05 F 4 1

FIG. 2 - Multiplication factor for a constant impedance
structure as a function of the beam timing
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an iris loaded structure) in order to keep the accelerating field cons-
tant for a rectangular input power pulse.

If the Q and the shunt impedance remain the group velo-
city should vary linearly aleng the structure :

z
vq(z) = vgo 1-q Z’

where L is the length of the structure and where the coefficient g can
be expressed in term of the attenuation factor X :

vV = V (z=1
oL g( )

or ir. term of the £illing time T, of the structure :

L
o | S92 240
Ta Iv(z) zxu
o 9

II)‘I'a

Q

g = 1-e

When such a structure is fed with a SLED pulse the effective accelera-
ting gradient is no more a constant. It can be determined analytically
and integrated along the guxucture following the same procedure as in
section II.2. This treatment has already been done elsewhere! but for
the convunience of the reader we shall reproduce it here briefly.
Defining again the variab.e z' = z/L, te propagation time is now :

At(2') = T, [un(1l-gz')/Laf{l - g} ]

and the field discontinuity will appear at the location zl' such that :
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t-tl

T

1 a

Ii’; R (!-g)

The energy gain, for t, <tc< tz, is the contribution of two
integrals respectively on 'l and !2 with the right boundaries :

v = VI'I-V2

where :
-t
' Te 14y 14v -1
v’ = (a-1) (1-2;) -ae (l-qzi) - (l-q)! [g(l+\!)]

- t—tl

T co -1
V2 - -(a—l)zi + ve ¢ [1 - tl-gzi)'l'w] [q(1+v)]

Ta -1
with: v - [Ln (1-q)]
(=4

The energy gain v(zit is plotted on Figure 4, as weli as the
optimum values of 8, as functions of zi. Here again it is clear that

the maximum energy gain is obtained for zi = 1 corresponding to

t-t2~t1+ta 3
Jla
‘ T -1
V= ve ° [1-(1-q)“"] [9(1+v)] - @-1)

In the present case vH represents the energy smultiplication

factoy as for a constant gradient fed by a unit rectangular pulse,
E = 1, the energy gain is unity after one filling time :

1
V°= l E gz =1
o



-12 -

v 50
s = 1.888 100 57!
0 = 15200 Bﬂl
Qc = 220000
t2 = 4.5 ps

u | ‘!a = 0.8 ps B ‘n

1 1 1

0 025 050 5 Zi 1

FIG. 4 - Muiciplication factor for a constant gradient
structure as a function of the beam timing
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The energy multiplication factor VH is plot*ed on Figure S as a

function of the filling time 1", for optimum 8 values.

II.4. Rough comparison between both structures

The gualitative behaviour of a gradient under
SLED pulses is very similar to that of a constant impedance structure
although the tendency has been reversed. As a matter of fact for a
constant gradient structure fed with a SLED pulse the effe~tive accele-
rating field as seen by the particle will increase with z due to the
fact that at the output of the structure the particle will see the
highest field emitted at time t1 which has no effective attemuation. On
the reverse for a constant impedance structure the attenuation of the
structure is more or less compensated by the increase of the emitted
field with z. This behaviour is shown on Pigure 6.

Quantitatively, the multiplication fac*or is slightly better for
a constant impedance structure, although this is not very impressive.
However to clarify this it is necessary to compare the exact energy
gain of each structure, having the same £illing time, and the same
input power, and considering that the shunt impsdance of the cells
varies with the inner geometry, hence with the group velocity, while
the @ is roughly constant. To illustrate this point let's consider the
cell characteristics of the LEP injector linmacs (LIL)}? which operate
at 3 Gliz in the 27/3 mode :

@ = 15200
r = 86- 3.6 (2a)2

v/e = (2a) 3.23/g91

where 2a, the iris di ¢ 18 exp d in cm while the shunt impe-
dance r is in MQ/m.

For a 4.5 metres 'long structure and input direct peak power of
7.5 MW, Figure 7 gives the energy gain of the two types of structures
as a function of 'ra, which can be varied by changing the iris diameter
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of the cells. It can be seen that the constant impedance structure is
slightly more efficient (about 1.7 %). In both ca%ses there is an
optimum value of T. which means that when 1‘ is too high the compression
scheme becomes worse, and when T. is too low the efficiency of the
structure to convert RF power into accelerating field becomes poor. For
the present case (1a)°pt * .8 us, (tc)opt = 2,12 ys {with ch 220000,

8 = 10, t2 = 4.5 ps) and the corresponding iris diameters

constant gradient (23)0 = 2.4 cm

(2»)L = 2.00 cm

constant impedance 2a = 2.40 cm

Table 1 gives a more complete comparisoa of both structures for diffe-
rent values of the structure length.

III - OPTIMUM STRUCTURE LENGTH AND SLED PARAMETERS SETTING

In what follows we shall concentrate only on constant impedance
structures, knowing from the previous section that they are slightly
more efficient and copsidering that they will be much easier to build,

It has been seen that for a given structure length there was an
ensemble of optimum values for B, Te and Ta which realize the correct
matching between the SLED pulse and the accelerating structure. It is
interesting to look in more details at the performances of these struc-
tures versus different parameters, like the parameter setting of the
scorage cavities (Qc' B8), the length and the aperture of the accelera-
‘ting struc*-ures, the width of the direct peak power pulses from the
klystrons.

For a constant impedance structure, fed by a klystron peak power

pulse P, t2' through a- couple of storage cavities with a v phase shift
at time tl = tz - ‘a' the energy gain is :
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Constant gradient

L 1.0 1.5 2.0 2.5 3.0 3.5 4,0 4.5 5.0
[m]

(Za)obm]l.ﬂo 1,99 2.16| 2.30] 2.4 ) 2.56| 2.68 | 2.74 ] 2.85

{2a)L[‘m] 1.4 1.5 1.6 1.7 1.8 1.9 2,0 2.0 2.1

Bopt. 10 10 10 10 §.10 10 10 10 10

1, [usl| .8 .8 .8 .8 .8 .8 .8 .8 .8

T [usl| 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

Vnev] 35.7 | 43.1 | 42.0 |s4.0 ]| 58.3 | 62.4 |65.9 |69.0 |72.0

Constant impedance

nl 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

2a [em]{ 1.5 1.7 1.9 2.0 2.1 2.2 2.3 2.4 2.4

B 10 10 10 10 10 10 10 10 10

L [wsl| .8 .8 .8 .B .8 .8 .8 .8 .8

T [wsl} 2.1 2.1 2.1 2.1 2.1 2. 2.1 24 2.1

36.1 | 43.6 | 49.6 | 54.8 | 59.3 | 63.3 | 67.0 {70.2 |73.2

Vimev]

Table 1 : Comparison between optimized constant gradient and constant
imped. st

(P = 7.5 MW t2 = 4.5 us Q = 15200 Qc = 220000}



t, 4.5 4.5 5.5 $.5 .5 2.5 4.5 4.5 4.5
us
Q 15200 15200 15200 15200 15200 15200 14200 13200 12200
2 220000 | 150000 | 100000 220000 | 220000 | 220000 220000 | 220000 | 220000
2 2.4 2.4 2.4 2.3 2.5 2.6 2.4 2.4 2.4
8 10 7 5 "9 13 16 10 10 10
opt
Ta us .79 .79 .79 .91 .69 .61 .79 .79 .79
T, 2.12 1.99 1.77 2.34 1.67 1.37 2.12 2.12 2.12
us
Viey 70.2 68.7 66.5 74.2 64.9 57.4 69.0 67.7 66.1
Table 2 : Energy gain versus SLED parameters setting (L = 4.5 m)

- 6 -
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where R = rL is the total shunt impedance of the structure, and ta=L/Vg
its f£illing time.

The fact that for a given length there is an optimum value for L
means that there is an optimum value for Vg, hence for the iris aperture
2a of the structure. Por the previous examwple of LIL cells Figure 8
shows the evolution of the RF performances versus the iris diameter,
for different structure length. As the length decreases the iris diame-
ter also decreases in order to keep the right matching value for Tae In
all cases 8 and T have been optimized.

The maximum energy gains obtained for each structure length ar
plotted on Figure 9 as well as the corresponding values of L and T
which clearly remain constant.

Table 2 gives the energy gain as a function of the other parame-
ters, like tz, Q‘_ and Q (5=cte). The following conclusions can be

drawn :

- neither Q nor Qc have influence on the optimum value of T,
Both give a little effect on the optimum energy gain. The optimum
value of Tc changes with Qc

- the optimum value of Ty changes with the width 1:2 of the direct
klystron wave. For long pulses one can held longer £illing time, but
that means a smaller aperture for a fixed structure length. An important
increase of the energy gain follows an increase of tz

- one of the most important feature, congidering the results
plotted on Figure 9 is that the total energy gain from one klystron
source will be higher if the power is shared hetween smaller structures,
for the samre total length. This fact is illustrated on Figure 10,
assuming no power losses in the RF networks, and knowing that the
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energy gain follows tne square root of the input power. Of course smal-
ler structures, when optimized, will have smaller apertnée and the
interesting result is that the minimum structure length will directly
depend on the beam aperture requirement. For instance a minimum aperture
of 1.8 cm would leaé@ to a design length of 1.8 m for LIL type cells,
according to Figure 11.

IV - APPROACHES FOR COMPACT LINAC DESIGN

This section is an application of the previous results, where as
an example we propose to design a 250 MeV linac, by introducing the

following constraints :

(2a)_ = 2.0 cm
w=2nf = 1.884.10'0 57!
Q@ = 15200
Q, = 180.000
t2 = 5 yus
P iystron = 90 MW

The corresponding design curves are plotted on Figure 12. The design

parameters which answer to the problem are :

L = 2.5m

g = 8

-
L}

2.12 ps

T = .8 us

o
u

4.2 ps

Depending on the number of structures which are fed ky a singla
klystron we obtain the following energy gains/klystron and effective
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accelerating gradients (Table 3).

Linac
Total energy| Effective acce-| length [m] | Minimum

Number of struc-| gain [MeV]/ | lerating gra- for number of
tures/klystron klystron dient : MV/m V 2 250 MeV | klystrons

1 129 51.6 5 2

2 122 36.5 10 2

3 223 29.8 15 2

4 258 25.8 10 1

Table 3 : Linac performances versus the mmber of structures per klystron

Clearly if we want to keep the gradient at a reasonable level, a
single klystron feeding 4 accelerating structures would be fine. If
doubling the gradient is acceptable then one can consider having twice
as many klystrons for half the total linac length. That would be the
approach for a compact linac. Rowever the breakdown limit, whatever it
is, is not represented by the effective accelerating field, but rather
by the maximum instantaneous field which happens at the input of the
structure at time 1:l and which is given by :

By T Blr-et+l)
In the present worse case (first line of table 3) this leads to :

By = 85 MV/m

This maximum field will be somewhat lower for an optimized cons-
tant gradient structure. However such a structure would be longer in
order to satisfy the aperture requirement (this can be seen on Table 1

t the p setting is different there).

It is believed, from laboratory experimenis, that gradients up
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to 100 MV/m can be achieved“:5, but it remains to prove that they can
also be achieved in the presence of a beam.

With the present state of the art in peak power klystrons and
assuming permissible gradients up to 100 MV/m, the choice between the
number of klystrons and the linac length, at least for low and medium
energy linacs, will be rather determined by cost and site considerations.

It may be also worthwile considering the possibility of moving
sligtly away from the optimmm structure length to reach a certain fixed
linac enerq: . but in case of an erergy reduction it is vertainly better
to reduce the klystron peak power.

V - CONCLUSIONS

It has been shown that the optimum structure length only depends
on the beam aperture requirement, when fed by a SLED type pulse, and
that it will be shorter for a constant impedance structure than for a
constant gradient structure. The minimum length for a structure leads
to the best efficiency even if that means feeding many more structures
with a single klystron.

The short constant impedance structures are sujtable for higher
gradients and more compact linacs, and this is obtained by adding more
power sources. In addition they are easier and cheeper to build. It
has been shown also that with present existing klystrons (commercially
available) it is hardly possihi.e to push the effective accelerating
voliage well above 50 MV/m, at least keeping the aperture of comven-
tionnal iris loaded structures at a reasonable level. One possible
improvement wonld consist in an increase of the klystron pulse width,
but this is partly counteract by an increase of the optimum filling
time. In other words the simple feeling that the compressed pulse can
be made very narrow to increase the instantaneous peak power is not
completely relevanc. '

.
The aim at very high gradients, using ITW accelerating structures,
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will need developping new types of accelerating structures and power
sources, but it may also need developping new compression schemes. At
present time, mostly the U.S. Laboratories are doing serious efforts
in these directions, limited to imprx or fors of
tionnal technics of linear acceleration.
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