* ¢
« * r" d A
w |’ .-:!" f {
w? SLAC~PUB~--3332
DE84 012513
THE 308/ E PROCESSOR”

P. F. KuNg, M. GRAVINA, G, Ox0BY, P. RANKIM, AND Q. TRANG
Stenford Lineor Aceclerator Conter
Stanford University, Stanferd, California 84305

snd

P. M. FERRAN, A. Fuco), R HINTON, D, JACOBE,
B. MARTIN, H, MASUCH, AND K.M. STORR
CERN
1811 Geneva 28, Switzerland

1. Intfﬂdlltlnn

Since the introduetion of the 168/E,! emulating processors have been used over
s wide range of applications? including both offiine event reconstruction and Monte
Carlo applicatiops, snd online triggering and filterlng.

This paper will describe n second generation processor, the 3081/E. This new
processor not only has much more memory space, incorporates many more 1IBM
instiuctions, and bas fulf double precision floating point arithmetic, but it also has
faster execution times aad is much simpler to bulld, debug, snd malatain.

Nonetheless, with the 168/E, valuable experience hes been gained on how to
make efficient use of this kind of processor which, unlike computers or commereinl
tmicroprocessors, does not run an operating systam nor have s direet conmection
te /O devices. ‘The 308L/F takes ndvantage of this experieace by maintaining
the same style of flexible but simply iuterface us the 268/E. This paper will also
deseribe how sneb processors have been snd will be used.

¢ Work supported by the Department of Energy, contract DE-ACO3-265F 00515

Invited paper presented st the Symposium on Receat Developments in
Compnting, Processor, and Software Research for High-Energy Phyaics,

‘w
Guanajusto, Mexico, May &-11, 1084 sy
=

T 7S — # - . 1 ‘ L] ,

2. The Processor

mmmammm;umamxmmumm
have been given elsewhere,® 30 qaly a beief summary will be givea bere. The pro-
cessor has & modular structure, There sre four execution units intesfaced to two 64
mmmmm;wsmmemmmmmsm.d
data and 1 pavity bit per dyte, Also interficed to these busses ate the control snd
register unit, dats memory, and the interface. The control and segister unit serves
four functious: it contains the microprogram address counter, conditional branch-
ing logic, the data memory address logie, and the registar files. A micrcinstraction :
can transfer two operands simultaneously on the ABUS and BRUS busses from dats
memory sud/or regisiers to an execution unit. The restlls from sd execution unit
ave transferred on the BBUS to a register, to memory, or slong with a new operand
on the ABUS to another execution unit. Instructions ave fetched on o third, 32 bis
wide bus, the PMD bus (ot shown in Fig. 1). There in » single elock which bas &
cycle time of 120 naec, .

16l | Dote
I:im Mamory Interfcce

32
ADR
84

ABUS azzzzz:
Baus —44 re

N/ -

Infeger Wy -n Divide

3-43
ddddn

" Fig. 1. Block disgram of 3081/

An importaat goal of the 3081/E processor project is to produce a processor
that is simple, reliable, and easy to debug sod maintsin. The choice of the modules
archifectuye helped tremendously to reach these goals. The design of the processor
is wnck simpler than the 168/5. The daign is much more conservative and uses
olF-the-sL.Jf wmultiple source TTL components. Every eflost was made to reduce the
man-power cost to build, debug, snd maintain the processor. FORTRAN simulations
have been done of each execution unit which have made » valuable contribuiion to
the designing and in debogging. For axample, the Add/Subtraction execulion unit
with over 200 M3 circuits, had only onp design error whed it was debugged, and
this error was just one signal that bad the opposite polurity in the hardware due to

2
mmwrmnrrmsmmmsmm

PR

an error in the simulation. The cost of the processor, power supply, and chassis is
expected to be under US$ 10,000 excluding the cost of momon ;.

2.1 MEMORY

Memory is one of the most important aspesta of any eomputer or processoz. Ia
the high edergy physics Seld, both the size of analysis programs and the quantity of
data per event have grown 8o that the memory space nceded is measured in ynits
of Megebytes,

The merncry of the 3081/ E is implemented nsing the less dense but faster static
memory circuits. Today they have 55 nse¢ maximum access and cycle tima, come in
packages of 16 Kbits, and cost sbout US$ 5,000 per Megabyte. The speed of memory
is imoportant because even with the bist of compilers, s processor still obtains one
operand {of the two [or an atithmetic instruction) from memory gver 75% of the
time, Thus the speed of s processor tends to be dominated by its memory access
time. The fast mamory and 64 bit data path to it i= also the best sclution for online
applications which must support FAETBUS 1/0 rates.

A 3081/ E memory board st present contains one ball Megabyte of either pro-
gram or data memory with byte parity. The processor can accept a maximum of
fourteen memory boards or 7 Megabytes. It is expected that 84K static memory
cireuits wiil be introduced in 1984 so by 1985 they will be reasonsbl: vriced. Their
use will lower the eost of the processor’s memory and make it posmble to have a

_ processor with 98 Megabytes.

2,2 EXECUTION UNITS

For high energy pbysics code, good foating point performance is essential, es-
pecistly due to the beavy yse of trigonometric functions in most analysis codes for
solencidal detectors, Attempts to use commereially available microprocessors with
their floating point co-pracessors have led to disappointingly poor performance,

The following sectiona give a short deseription of each of the execution units.
Fleating point add/subtract

A REAL#4 or REAL*8 add/subtract is done in 360 nsec, including reading
one operond from memory. The floating point compare instruetion needs only to
generaie the condition codes and pal. a result, thus it is one cyele shorter. This
execution unit is also able 1o do an integer to floating point conversion in 380 nsecs.

Multiply

The implernentation of the multiply exceution unit bas been optimized for sin-
glo precision execution time. INTEGER#4 and REAL+4 multiplies take 360 nsec
jncluding readiog one operand from memory. Modern, multiple-sourced {thus ¢ost
campetitive) 16 by 16 multiplier circuits are vsed. To implement double precision
multiplication in the aume way would take a considerable number of cirenits, there
fore, en iterative technique is used that iareasonably fast. The results of 8 REAL#S

3

g1 W — A o v =T R R T - (N 1 e

multiply is available after only 4 internal cycles for su overall time fo 720 Daecs
including reading one operat] from memory.

Divide

The divide exerution unit does division iteratively, 2 bits per eyele whleh leada
to 5 INTEGER»4 divide in about 2 psecs and & REALs4 divide in about 1.5 pnecs,
Integer .

All integer instructions except multiplication and division are done in the in-
teger execution unit. This unit handles the four-byte (INTEGER=4) and two-byte
(INTEGERs2) arithmetic operations, and also the instructions with one-byte
operands (LOGICAL#] and CHARAGTER#n), Thi» is especinlly importrat for im-
plementation of the instructions required by the FORTRAN '77 compilers. Both
single word (32 bit) and double word {84 bit) shilis by any number of places are
doxne in one cycle. Shift instructions are important for onlive trigger applications,
when packed binary information needs to be expanded to individual words.
Optional units

It is possible to add other execution units to the 3081/ ¢ busces. For exampls,
one could add & matrix multiplier /accunulator for lattice gauge theory caleulations,
PROM based look up tables, or other specialized ‘hardware subroutines'. For the
moment such devices are beyond the scope of the 3081/F project. ‘They are also
less necessary as the praceasor is riready inherently very fast. It will also be possible
to upgrade any of the existing execution units, when sufficient technology advances
warrant the change, thus achieving higher performance and/or lower coet,

2.3 INSTRUCTION PIPELINING

The separation of execution upits, each capable of operating on its operanda
internally, allows for instruction pipelining. First there is pipelining of memory
address caleulation on the contro! and register board, Secondly, the Add/Subtract
and Multiply execution units are capable of pipelining internally, ‘That is, they
can accept u new operand pair every eycle, then output the results in the next two
cycles, Thirdly, one eycle can send an operand pair to say the add/subtract urit,
and the next cycle can send an opersnd pair to the multiply. Fourthly, in the same
cycle ap execulion unit ¢an output results xnd saother execution unit, or memory,
¢an zecept the results, thus overlapping input and output cycles. In addition, the
separation of program and data mer:ory and the separate program data bus means
that program and data memories are accessed shaultaveouel:,

Pipelining leads to substantial performsnce improvements in typical h:;h eaergy
physics code. For example, the following line of FORTRAN ¢ode:

XC = VIX * (XA — XZERO) + VIY o (YB = YZERO)

would require 23 cycles witbout pipelining, but only 14 with the pipelining eapabil-
ities of the 308L/E.

I

i iy Yy —" - T

2.4 THE MICROCODE AND THE TRANSLATOR

The processor’s ibstruction set is not that of the IBM, but is its own microcode,
which resembles that of 8 Reduced Instruction Set Computer (RiSC).? One could
in principal write a compiler to generate the microcode, as done with 1BM's 801
project,” instead it is generated by a software program, called the Transiator. This
prpram reads IBM object code modules, translates them to object microcode, links
them together to form an absolute load module for the prosessor, thus using the 18M
object code s ar intermediate language. The source of the 1BM object code could
be the output of a FORTRAN compiler from any 1BM compatible vendor or that of
8 linkage editor on either the YM/CM3, MVS, or MVT operating systems. For all
praclical purposes the translator step has litfle impact on the user. It can be locked
on &s & modified compile or link step. The user will be no more concerned with the
3081/E microcode then he would be about the object eode from the compiler.

The microcode requires more memory rpace then the object code. The ex-
pansion factor is three in the worst case of po pipelining, and 1.2 in the case of
complete pipelining. Nevertheless, at least 30,000 lines of FORTRAN source code
csn be accommodated per Megabyte of program memory, and many more lines
when pipelining is generated.

The advantage of using a translator is the elimination of the complex hardware
that decodes 1BM ipstructions ioto microinstractions. This hardware, called the
I-unit by 1IBM engineers, ¢an consume well over half the total design and debugging
effort of a processor. A further adventage of using the translator with the 3081/
is that instruction pipelining wil) be generated with a full knowledge of the context
of eech instruction.

‘2.5 INTERFACE

The interface to the 3081/F processor is of the same style as the 188/E's,
That is, either the CPU or the interface has control of the internal busses, When
the preeessor is not running, all of the processor's memory is directly addressable
through the interface. The precessor thus appears as a simple slave device on, say,
a FASTBUS cable segment. The transfer rate to or from the processor could be
over 32 Megabytes per second if FASTBUS cable segments were sufficiently fast or
84 Megabylcs per second il a 84 bit interlace bus were used. VM*™ and CAMAC
interfaces are a'so being considered.

Tk _re features to make it easier to debug the processor and/or program.
The in.esrace halts the processor if there is a parity error on the ARUS, BBUS, or
PMD bus, The interface also has registers to allow one to halt the processor when
certain conditions arise in & way similar to the Program Event Recording (PER)
registers of IBM mainframes.” For example, there is a stop on a Store within an
address range, & step on modification of a certain register, ete. Debugging some
kinds of program errot may be moru user friendly on the 3081/E processor than it
is on a mainframe computer.

2.6 PERFORMANCE

To accurately predict the execution speed of the 3081/F is rather difficult, as,
in common with many processors, it will depend on program’s instruction mix. The

pipelining of instructions makes predictions even more dificult. However, three

studies have been made to predict the upper and lower bounds of the expected
performauce.

The lower bound of processor performance can be estimated by assuming that
instruction pipelining never occurs. With this assumption the execution time of each
1BM instruction is known. Ten different event reconstruction and other programs
were traced while in execution to measure the frequency of instructions executed.
VVith these numbers, the performance of the 3081/F processor would be 0.98 to
1.01 times that of an IBM 370/168.

An upper limit is estimated by assuming that pipelining occurs to sach an extent
that every inatruction takes effectively 1 cycle. With the same samples of code, this
implies execution times 2.5 times faster than an 18M 370/168; a figure that ean not
be realistically expected.

A third measure was obiaiced by translating an inner loop of one of these pro-
grams. The loop consisted of 82 FORTRAN statements containing 32 IF statements.
Since IF statements break instraction pipelining, it was important to try a loop with
a typical number of them. This loop also consisted of several divides aud memory
references wiih a non-zero index register. The caleulated execution time for one
pass through the loop for the 3081/F is 47 pusecs, while for an 18BM 370/168 the
time would ba 71 pzecs. Thus the processor would be 1.5 times faster for thia loop.

One can zonslude, thevefore, that the performarce of the 3081/ will be at
Jeast that of an 1BM 370/168 for typical high energy physics event reconstruetion
code, or about four times that of the VAX 11/780, and up to 50%5 faster under
the condition that most of the execution time is spent in foating point loops. The
performance of the 3081/ F is comparable with a well known array processor. The
FP5-164% has & theoretical maximum execution specd of twelve MFLOPS, while
the 3081/E theoretical maximum is 8.3 MFLOPS. In practice,’ Lattice gauge pro-
grams, implemented in microcode of the array processor, schieve sbout six MFLOPS,
while examples of that same code, implemented in FORTRAN, would achieve four
MFLOPS on the 3081/E.

3. Use of Proceasor

In the high energy pbysics environnient, the use of computing resources could
be put into two broad categories. The first consists of the thousands of short jobs to
write and debug analysis programs, do alignment znd calibrations, do physics snal-
ysis on pracessed events, efz. This ecategory includes editing, compiling, generation
of load modules, using interactive symbolic debuggers, efe. The second category ia

i

AT R

the loog production jobs on raw dsta or for generation of Monte Carlo events, or
io the online environment running filtering programs or analysis programs. Usn-
ally there are adequate computing resources for the first category and tha limits
on productivity are set by user fricndliness of the operating system, response time
to smnli needs of CPU time, the fast access to disk files, printers, graphic devices,
and toe memory paging of the computer. For the eccond category, the limits on
the number of events that can be processed or Monte Carlo generated are se' by
the svailable CPU power. It is this category of processing where the inexpensive
powerful cmulating proeessors can play an important role.

As the 3081/F i» a processor and not a computer, it, like other processors,
requires zupport from a Bost computer to handle input and output operatiops to
physical 1/0 devices. When multiple processors are to be used (23 is frequently
the case since one prucessor is only a fraction of a mainframe computer), this 1/0
support must be carefully designed for performanced A multi-processor system
consisting of five 3081/E processors, for example, will have the CPU power of &
3081K, and its 1/O support system must be able to supply the dats bandwidth to
keep the prvcessors busy. In practice, this means tape drives, disks, and ehanne]
rates comparable to those found on mainframe or supermini computers.

Much experience has been gained on multiple processor systems with the 168/
in both the offline and online environments. The planned uses of the 3081/F will
build on this experience by preserving the same style of interface as the 168/ £ which
worked well and making a fe=r improvements ir areas that only becume apparent
after much 168/ F experience. The remainder of this section deseribes how 168/ E’s
have been used and thus how we expec: the 3081/F will be used. The interface of
the 3081/ is designed for both the online and offline mulii-processor environment.
The offline enviroument vill be discussed first as jt is easier to understand.

3.1 MoDEL OF OFFLINE EVENT ANALYSIS

Counsider the following medel of how an event analysis program is structured.
The typical program has the following steps:

1. Initislize, Initialization starts with the loading of BLOCK DATA statements
into memory and continues with reading constants from disk and perhaps call-
ing some subrouatines to caleutate Sxed arrays that will be used in
event processing.

2. Read Event. An event is read from a mass storage medium, usually tape.
Checks prc made to see that the record is an event record and aot some
other type of record on the tape.

3. Procesa Event, Event processing involves unpacking the raw data, generating
coordinates, finding tracks, fitting tracks, ele. It isimportan. to pote that this
pracessing uses much inore memory for temporary varisbles than the initja!
eize of the raw wata. At the end of eveal proceasing, data is eompressed into
& block for writing to an ocutput tape.

e e e e e e e

[,

4. Wiite Event. The event is written to the cutput tape and the program !onp:
back 1o read the next event.

§. Print Job Summary. When the event provessing is complete, the program
prints a summ: vy of the job in the form of stasistics gathered, histograms, efe.

Four rémarks caa be made about this structure. Fivst, only the event processing
sten is CPU intensive, That is, even if the initialization o1 cummary steps take a
considerable amouet of CPU time, they are only done once, thas don't really matter
for a job that will run for many hours. Second, all the steps except the event
protessing step are I/0 intensive, That is, the event processing step usually only
has & few print statements for an occasional error message. Third, the program as
shown above was written to run on a single processor. That is, it will process evesits
on the same processor doing the I/O and the events are processed sequentially
in the same order that they appear on the input tapes. Fourth, there is g large
smount of tzmporary memary space used in the course of analyzing an event and;
typically, a complex interrelation between this space and the program in Yarious
stages of processing,.

1t is therefore natural 1o move the event processing step to the processors, lnd
Ieave a skeleton program on the host CPU for the other sieps. For asingle Processor,
the original program is modified by:

1. inserting 1/0 calls to download the processor with program sad constaat dl.tl.
after initialization is ecompleted and before the fiest event is read.

2. replacing the processing step with 1/0 calls to send and receive event dtu
with the processor.

3. and inserting I/O calls o receive the job summary data from the processor
after the lnst event is wrzitten to tape and before the printing of job lummlry
in started.

Theae modifications ¢an usually be made with little difficully by anyone ‘mlh
some knowledge of the progrem.

For a multi-processor eavironment, the program can be further modified so that
it reads events and sends them to a processor until each processor has an event, then
for each event received back from a processor th . host program writes it to tane,
reads another event, and sends to the next available processor, At the end of the
job, the host program would just receive events and write to tape until all processors
are empty. Also the job summary data would be received from each procusaor, and
combined before the printing of job summary.

This mode! of using multiple processors allows a single host program to make
efficient use of all the processors while requiring only a single set of input and output
devices working on s single data siresm. Letting each processor completely handle
an event on its own, from input to output, avoids the diffculty of bresking up the
program into stages with each stage being run on a different processor. It also allows

. e rm—— i e e Tt e S SRRAT 7T e e g R

multiple slave processors with a simple interface to be attached to a single bus for
trroeferring dats.

When the host computer is an I8M compatible mainframe, then there are the
following additional advantages:

1. The initialization step can remain entirely on the host. After initialization
is done, the labelled COMMON blocks with the initialized data can be down-
jonded to the same Iabelled coMMON blocks in the processors
without translation of any kind. Thus the initialization code does not need
any modification.

2. The output event data received from the processors can be written to tape
directly without translation of any kind.

3. The job summary data can be received from a processor by direct copy from
labelled COMMON blocks in the processor to the same labelled cOMMON
blacks an the host, thus the print summary rontines do not need modification
ard can be called directly.)

This model has in fact been realized in the use of 188/F processors at many
laboratories and universities.® The reorganization of the original program has not
been rndical, indeed it is logical, and once done it has presented little problem even
when, at a later date, major changes bave been made to the eode. In practice, the
host computer may be attached to the processors via another computer with event
buffers for further efficiency. The buffers allow event data to be unloaded from
the processors a3 scon a5 it is ready, and new event daéa to loaded into processors
immediately, thus causing minimem idle time on the proesasors and overlspping
physical 1/0 with processing. At SLAC,}%M apd cERN,12-M ppp-11s were used
for attached 168/F processors as early as 1879. A Nord computer was used at
DESY.1 It is also possible for the tape drives to be on a superminicomputer, such
has been done with attached 168/F processors at Toronto!® and Saclay,l? with
some lozs of ease due to differences in floating point formats,

3.2 ONLINE USE

Multiple 188/ £ processor systems have been vsed in the online environment
in a configuration that closely resembles that of the offline systems.!81% Similar
online systems sre being planned for sLc and LEP detectors. 24 In the online
environment, the input dais comes directly from the detector, being processed by
the emulators before it reaches the data acquisition computer. The bus interface
to the processor is, for example, FASTBUS. Everything else about the running of
‘jobs’ is virtually the same as the offline environment.

The 3081/ hes many important characteristics for the online environment.
Being an emulator of a mainframe, programs can quickly be moved from the of-
line to the online environment. It also hes high 1/0O data capability to minimize
deadtime, fast integer instructions including sbifting and multiplies for unpacking

data, large memory space to buffer data blocks from different parts of the detactor,
memory parity checking, efe. The separation of program and data memories helps
avoid accidental overwriting of program in complex dats acquisition systems. Dual
port mteriacmg, which allows simultsneous leading of one processor and unloading
of another.is easily accomplished®18. Part of the data acquisition system ¢an plug
into the internal busses of the processor as has been done with the 168/ E- 253“

3.3 OTHER USEs

It is clear ¢hat event orientated jobs fit well into the structure duscribed above
But other types of job, such as simulations based on Iattices or numerical interra-
tion, ean also uss such » system. Although one's first inclination is to put one
processor per node in a lattics simulstion, it has been pointed out by Fox?? that
one processar per noda will lead to largs inefficiencies in the processor comamunt-
cating with nearest neighbors, At SLAC, nina 188/F processors kave been used
by running the entire lattice on & single processcr, hut having different sets of pa-
rameters, such a.s coupling constants or lattice size, running on dtﬂ’e:ent proeuaors
simultaneously.Z

Thus, for this type of job the 'event’ is a get of parameters, each processor msy
svork on a single 'event’ for hours and the job summary printing is the comparison
of the results with different parameters. These kinds of jobs require no hardware or
software changes to a multiple processor system that can siso run the event analysis
jobs, thus various kinds of jobs can be submitted to the system juet like one would
submit jobs to a batch queue on a computer.

In some cases, some limited 1/0 capability is desirable, ‘limited’ is important
because if 1/0 capsblhty becomes very important one probably doean’t have a cPU
bound job and such a job would rup best on a real computer. 1/0 capability if
it is physically done on a host computer and only virtually doue on a processor
is mostly a question of the sofiware interfacing and not the processor hardware,
For example, limited PRINT statements ¢an be accommodated by (he processor
writing to a buffer in it's own memory, with the bufer only being read out st
the end of processing an event as has been done at Saclay with the 188/E pro-
cessors. In the other exireme, a processor could run part of the operating system;
such is the case with 1BM's X'T/370 where the 370 processor runs the CMS com-
ponent of the vM/SP operating system while the 8088 procesaor of the fBM PC in
which it is housed handles the physical 1/0 by emulating the 1/0 component o! the
operating system.

4. Conclusion

The 3081/ E project was formed to prepare a much improved 1BM mainframe
emulstor for the future. Tts design is based on & large amount of experience ja
using the 168/F processor to increase available CPU power in both online and

10

e —— e +sams 4

T

offline environments. The processor will be at least equal to the execution speed
of a 370/168 and tp to 1.5 times faster for keavy Boating point code. A single
processor will thus be at least four times more powerful than the VAX 11/780,
and five processors on a system would equa) at lenst the performance of the raM
3081K. With its large meraory space and simple but fiexible high speed interfacs,

the 3081/E i well suited for the online and offline needs of high energy physics in
the future.

. The project is being cartied out as a collaboration between SLAC and CERN DD
division. The work has been divided equally between them. Final debugging should
occur at SLAC s00n with processors being generslly available for use by early 1985.

10,

i1,

12.

Relerences

. Paul F. Kunz, “The LASS hardware processor”, Nucl. Instr. Meih. 135, 435

(1978).

. P. F. Kunz, “Use of Emulsting Processors in High Energy Physics”, Phys. Ser.

23, 402 (1981).

. P. F. Kunz ¢t al., “The 3081/ E Processor”, Proe. of the Three Day In-Depih

Review on the Impact of Specialized Processors in Elementary Partiele Physics,
Pedova, ltaly, March £3-25, 1988.

. D. A, Patterson and C. H. Séquine, ‘RISC-1: A Redueed Insiruetion Set VLSI

Computer”, Proc. Eighth Ann. Sym. on Computer Arehitecture, Moy, 1051,

. G. Radin, “The 801 Minicomputer”, IBM J. Res. Develop. 27, 237 (1983),
. Floating Point Systems, Beaverton, Oregon.
. Ken Wilson, Private Communication.

A. Fucei and K. M. Story, “Using 3081/ Emulators in On-Line and Of-Line
Environments®, Proe. of the Three Day In-Depth Review on the Impact of Spe-
efalized Pracesssrs in Elementary Particle Physies, Padova, italy, Morch 23-25,
1988.

A W. Edwards, N. A, McCubhin and), P. Porte, “Preparation of Offi-line
Programs for the Present 168/ F and Recommendations for the Future”, CERN
DD/83/21, Oct 1983,

P. F. Kunz, Richard N, Fall, Michael F. Gravina, J. H. Halpetin, L. I. Levinson,
Gerard J. Oxoby and Quang H. Trang “Expetience Using the 168/E Micropro-
cessor for Off-line Data Analysis”, IEEE Trans, NS-£7, 582 {1080}

L. S. Rochester, “Microprocessors in Physics Experiments at SLAC”, Tapizal
Conf. on Application of Microprocessors to High Encrgy Fhysics Ezperimenta,
Geneva, Swilzerland, May 4-6, 1981. CERN Microproe. 204 {1081},

C. Bertuzzi, D. Drijard, H. Frebae, P. Gavillet, R. Gokieli, P, G. Jonocenti,
R. Messerli, G. Mornacchi, A. Norton and J. P. Porte, “On-line use of the
168/ £ Emulatoer at the CERN 1SR SFM detector™, Topical Conf. on Application
of Mieraproceseors lo High Energy Phyrics Ezperiments, Geneva, Switzerland,
Muy 4-6, 1981. CERN Microproe. 320 (1981),

11

.........

13

14,

15,
186,
17.
18.

5 R B BRE

8

D. R. Botterill and A W. Edwards, “Experiences using the 188/£ Micropro-
eessor Within the Europran Muon Collaboration (EMC)®, Tupica! Conf. on
Application of Microproceasors to High Energy Physics Ezperiments, Geneva,
Swilserland, May {-6, 1081, CERN Microproe. 336 (1031),

D. Lord, P. Kunz, D. R. Botterill, A. Edwards, A. Fucei, G. Lee, B. Mattin,
G. Mornacchi, P. Scharfl-Hansen, M. Store and T. Streater *The 168/5 at
CERN and the MARK H: An Improved Processor Design”, Topical Conf. on
Application of Microprocessors lo High Energy Physics Esperiments, Geneva,
Suitzerland, May {-6, 1951, CERN Microproc. 341 (1881),

T. Barklow, thesis, University of Wisconsin—Madison.

Steve Bracker, private communications.

Jacques Prevost, private communications,

J. T. Carroll, M. DeMoulin, A. Fueei, B. Martin, A. Norton, J. P. Porte snd K.
M. Storr, ® Data Acquisition using the 188/ E™, Proc. of the Three Day In-Depth
Review on the Impact of Specialized Processors in Elemeniary Particle Physics,
Padouva, ltaly, March 28-25, 1083,

. G. Arnison et al,, Phys. Lett. }26B, 308 {1083).
. A. J. Lankford snd T. Glanrman, “ Dats Acquisition and FASTBUS for the

Mark I Detector”, IEEE Trans. Nucl. Sci. N5-81, 228 (1084},

. A. Lankford, Paper submitted to these proceeding. .
. The 1.3 Collaboration, “Trigger and Dats Acquisition System of 13", CERN/-

LEPC/845, LEPC/PR3/L3, Sanunry 1984,

. ALEPH Collaboration, “ Data Acquisition snd Dats Analysis*, CERN[LEI’C[-

84-8, LEPC/M46, Janusry 1984,

. P. Gavillet, B. Heck and F. Udo, “Proposal for Triggering DELPHI", DELPHI

Note 83-3 ELEC,

. D. Bernstein, J. T. Carroll, V. H. Mitnick, L. Pafirath snd D. B. Parker,

“SNOOP module CAMAC Interface to the 168/ E Microprocessor®, IEEE Trans,
HWuel. Sei, NS-27, 587 (1080).

. L. T. Cazxoll, 1, Braw, T. Mayuyama, D. B. Parker, J. S, Chima, D. R. Prite,

P. Rankin and R. W, Hatley “On-line experience with the 188/5", Topieal
Conf. on Application of Microprocessora to High Energy Physics Esperiments,
Geneva, Switzerland, Moy 4-8, 1081, CERN Mieroproe. 50§ {1981)

. G, Fox, * Scientific Caleulations with Ensemble Computers®, Proz. of the Three

Day In-Depth Review on the Impaoet of Speeialired Frocessors in Elementory
Particle Physirs, Poadovo, Holp, March 23-25, 1083

. J. E. Hirsch, R. L. Sogar, D. J. Scalapino and R, Blankenbecler, “Monte Curlo

Simulations of One-dimensional Fermion Systems®, NSF-ITP-82-44.

DISCLAIMER

This repost wns prepared as an account of work sponsored by an agency of the
Urited States Government. Neither the United Statea Government nor any agency
thereof, nor any of their employees, makes any warranty, express or impiled, or
assumes auy legal Liability or respansibility for the accuracy, completeness, ar use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Refecence herein to any spe-
cific commercial preduct, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsemert, rocom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opluions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof,

