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A ?EU METHODS FOR TW, THEORY 0* COLLECTIVE MOTIONS AND COLLISIONS 
by 

B.r.. Oiraud 

1. Introduction and foreword 

The title originally planned for this series of lectures was 
"Time-dependent Hartree ^ock Theory of Nucle-ir Motions and Collisions". 
In fact, in what follows, the TDHF method will be considered for collec­
tive motion only. This is because a new, more nractical theory of col­
lisions has recently emerged. These lectures thus contain two nain and 
distinct chapters, the first dedicated to this new theory of collisions 
and the second to collective motion. As a distraction to the reader, a 
last and small chanter recalls elementary ideas about some conjectured 
mechanisms for the dynamics of a very special system with collective 
motions, namely a living organ in the nervous system. This Summer 
School being dedicated to the subject of order and chaos, it is hoped 
that the considerations which follow never go too far from that fasci­
nating s'ibject indeed. 

2. The Boosted Shell Model Theorv of Collisions 

2.1 Jacobi coordinates versus individual coordinates 
Consider, for the sake of simplicity, 5 particules with coordinates 

Xi...Xc.and ? 3-body final channel where, for instance, particles 1 and 
2 are bound in a first cluster and oarticules 3 and 4 are bound in a 
second cluster. An intuitive reoresentation which is adjusted to this 
situation deals with the Jacobi degrees of freedom 

:, • - .„ -, V*4 V*2 „ - VVV*4 
= x 2 - X ) , :' = x^-v3, . - ' - - j T-, c - x 5 5 

» VVVV*5 (2.I.1) R = s • D 

Whenever lone range forces do not complicate the theory the channel 
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Xèx = '^nt^'* " / L t i C ) exp[i(k,.D,*k".D")] T(S), (2.1.2) 

where t̂î ,. and $'.' „ are the internal wave functions for the clusters, 
int int 

and r is any state for the physically irrelevant total center of mass. 

The difference in boundary conditions for Ç', c," on one hand and 

p' t o" on the other hand is striking, since the former involve square 

integrable, decaying tail states while the latter occur in plane waves 

extending to infinity. Such a difference is a fundamental feature of 

the theory of collisions and seems to enforce the use of Jacobi coordi­

nates. It is clear, however, that the use of such coordinates becomes a 

nightmare when the particle number reaches more than a few units. If 
19 56 

only because of antisymmetrization problems, a F + Fe channel des­
cription in Jacobi coordinates is utterly beyond any practicability. 

•> 
It is necessarv to return to individual coordinates x.. Let 

l 
;>' (x.,x„) and ." (x_,x.) be shell model descriptions of the two clus-
sm 1 2 sm 3 4 
ters, namelv •>' is a product of two orbitals cj>.(x.) <o„(x9), with an-stn I I i. i. 
tisvmmctrization if necessarv, and i/' is also a product u>,ip.. As a 

sm r 3 4 
matter of fact tj,' is often a enr. of such products (PAO., in order to 

sm \ i. 

improve the cluster wave function by configuration mixing, and i>" can 

also be enlarged to a similar configuration mixing. The poini of inte­

rest is that j. . 

>s^r«S- ^y{-¥) • ( 2 * 1 - 3 > 
where the approximate equality sign = means that the factorization for 

a center-of-mass were packet y' is excellent (it is even exact in 

Gaussian models). In the same wav >i>" - ty" „ v" and we further stress 
sm i n t 

t h a t the r:- ri.n- momenta c a r r i e d by y and y " v a n i s h . 

Consider now 
- »"n, l . k - , . —j , - B m U v x , J = e x p , y - Tj . - y - , :'mixy*u> 

r / - k"\ V*2 l - -
xp-i(k' • V ) ' - T i j ;'sm(VX2> ( 2 ' ' - 4 > 

exo(i k " . x 5 ) v ( x 5 ) 

where v is, like /' and v", a wave oacket centered at the origin of the 

coordinate frame and motionless on the average. It is obvious that the 



- 3 -
- k" orbits ip3, ip, present in i>" a.re now boosted by k' —*- and the orbits -* k" «Op tp2 are boosted by -k' - -=-, while the fifth particle is boosted by 

•+• ' 

an amount k". The balance of momenta thus amounts to an average relative 
momentum k' between the two clusters and an average momentum k" between 
the fifth particle and the center of mass of the two clusters. In other 
words, upon taking advantage of Eq.(2.1.3) and its equivalent for 0" , 
we find 

[ n t ( 0 ^ n t (C" ) exp[i(k\6' +k".p")] 

, . r i + x 2 \ .,rs + x4\ , H x 2\ 
v~2~; 

Y^-^2- 1} ^<x5> • (2.1.5) 

The last step is to recognize that the product Y'Y"Y °f wave packets 
also reads 

where r', !"" and ? are localized around the origin with vanishing avera­
ge momenta. This occurs because, as shown by Eq.(2.1.1), p', o" and R 
are just rearrangements of —•-*•, » and x,,and because the latter 
degrees of freedom are localized by Y'Y"Y around the origin with va­
nishing average momenta. It is easy to check such properties in the 
case of Gaussian waves packets with suitable widths, for which all the 
factorizations shown in Eqs.(2.1.5) and (2.1.6) can be made exact. 

We now insert Eq.(2.l.6) in Eq.(2.1.5) and compare with Eq.(2.1.2). 
It is setn that x' differs from the exact x'« D v J u s t t n e cut-off fac-
tors r'(c') r"(p"). Such factors can be extremely useful in practical 
calculations of matrix elements involving that channel, for they prevent 
the integration domain to extend to infinity. Hence divergences are eli­
minated from the theory. An even greater advantage is that, according 
to Eq.(2.l,4), v' is still a shell model-like state, namely a product 
of (boosted) orbitals or a sum of such products. Hence all calculations 
can be done in a representation of individual coordinates x.. In parti­
cular, the problem of antisymmetrization is not formidable any more. 

How sensitive is the theory with respect to the widths of the 
wave packets .', v"i y ° r "'. ""» "? As regards the total center of mass, 
the physics is i pr\w' corwletely insensitive to F, provided that wave 
packet is the same in all the channel functions y which appear in the 
theory. If " depends on y, special precautions can be taken, but these 
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technicalities will not be discussed in these lectures. More important 
is the rôle of F*, f". As long as the ranges of the nucleus- .ileus in­
teractions which prevail in the channels under study are smaller than 
the ranges b of those wave packets, little is changed to the physics. 
This is because anyhow these interactions would have provided a cut-off. 
If the ranges of the interactions are larger than the ranges b of I", 
T", then the spreads Ak', Ak" induced by I", F" around the physical, 
central momenta k', k" cannot be neglected. In other words, the physi­
cal amplitudes, which should be calculated at sharp values of the mo­
menta, are smeared by the wave packets. This is however a well documen­
ted problem, for there exists standard techniques for unfolding and 
recovery of an averaged signal. This technical question will not be 
discussed here but the considerations which follow will show how the 
representation of x in terms of individual coordinates x. is a decisi­
ve advantage for practical calculations. 

2.2 Variational estimates of amplitudes 

We now consider an initial and a final channel, with wave functions 
y and Y' respectively. In any realistic case, the initial channel Aex Aex • J 

will be a two-body channel, for ternary reactions are exceptional. Thus 
X contains only one label îc. On the other hand any fragmentation can 
occur in the final channel and thus x' c*n contain any number of rela-
tive momenta k', k",...k , where N is the number of elementary 
particles involved. As described in paragraph 2.1, x_ x and x' will 
now be replaced by boosted shell model wave packets X a n^ X'« 

The traditional T-matrix theory of collisions derives the transi­
tion amplitude from the matrix element 

T = <v' |f > + <••' !(E • ie - H ) " 1 |7 > , (2.2.1) 
ex ex ex ex1 ' ex 

where E is the total physical energy carried by x and x' (relative 
GX CX 

kinet ic energies minus binding energ ies ) , c i s an i n f i n i t e s ima l , H i s 
the N-par t ic le Hamiltonian with subt rac t ion of the center of mass k ine­
t i c energy, 

N N 
M - 7 t . - r + 7 v . . ( 2 . 2 . 2 ) • L . l cm . '. . I J i= l i > j = l 

and , -' are defined bv ex ex 
!- e x > = (H-E) !y e x> f >; x, - (H-E) \x^> . (2.2.3) 
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The Born term, <x' [^ > is not very difficult to calculate in a ex ex J 

practical case, at least up to an excellent approximation. The only dif­
ficult part of a theory of collisions, and thus the only interesting 
problem, is the multistep amplitude AT as defined by the second term 

cx 
in the right-hand side of Eq.(2.2.1). 

There are many reasons why it is impossible to calculate AT 
exactly. The first is that |x > and jx' > are not perfectly well 

6X 6X 
known, since one does not know how to solve accurately the asymptotic 
Schrodinger equations 

< H 0 - E ) ! X G X > - <H;-E)ix;x> - o . . 

where H and H' are the channel Hamilton}ans. More important, one does 
not know how to invert exactly the many-body operator (E+iF-H), even 
where f is a finite imaginary part. Last but not least the limit where 
F becomes an infinitesimal t is not trivial. 

In order to face these difficulties one first notices that 

(H-E)l/ e x> = Vlx e x and (H-E)[x e x> - V | x e x > , (2.2.4) 

where V and V' are the prior and post interactions respectively, 

V = H-H , V" = H-H' , (2.2.5) 
o o ' 

namely V = v-. + v~ 2 +• v.. + v,_ + v,. + v,- • v
5-i • V C A if °ne consi­

ders for example a final channel with 5 particles, two-body interactions 
and the fragmentation scheme described by Eq.(2.1.2). Then rather that 
|* > and |?' >, Eq.(2.2.3), we define, as an approximation to 
Eq.(2.2.4), 

I1:' •> = V|>:> and ! •'•- - V''jx'> , (2.2.6) 

where .'• and >;'- a r e n o w boosted shell model wave packets as discussed 
in the previous paragraph, see Eq. (2.1.*) for example. The quantity under 
study is now '-''(E+it-H) - !•->, which is still non trivial because the 
Green function is on shell. 

We notice however that the wave oackets |x>, !x ! > introduce a 
width for the momenta k, k'... hence a width for the energy E. It makes 
then sense to define 

•T = <?' ; (E+i ! - H ) _ 1 | ••> (2.2.7) 
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with a finite ". It will now be shown how AT is easy to evaluate, at 

least in an approximative and practical way, in order to obtain a preli­

minary but still physical information on the much more complicated quan­

tity AT . 

ex 
H] 

The quantity AT is just the stationnary value of the functional 

^(9',*) =• <•>' \V> + <*•!'!» - <*' | (E+iT-H) j*> , (2.2.8) 

with respect to variations of the trial functions $', $. Indeed, the 

coefficients of variations <5£* | and J6$> are, respectively, 

5F/Ô«Î>'! « !'f> - (E+if-K)!?> , (2.2.9a) 

*F/-:!î> = <?'! - <*'\lF.+i?-H) . (2.2.9b) 

Hence stationarity is reached if 

1^ = R:?:- and <r.k" = <••' 'C, , (2.2.10a) 

with 

r, = (E+i^-H)"1 . (2.2.10b) 

It can be stressed here that 0 is a bounded operator since T is finite 

and H hermitian. Hence '̂  and |*'> are in the Hilbert soace, like 

•A >» ix'N ''<*> a n d ''• Inserting Eq.(2.2.10) in the functional, 

Eq. (2.2.8), orovides the stationary value F s t = <4"|^l^> "AT. 

It is remarkable that the calculation of V only demands straight­

forward matrix elements of H. Not even an unperturbed Green function C,0 

is demanded as an inversion, like in the traditional Schwinger varia-
'21 

tional principle ' '. It is the stationarity, namely the cancellation 

of all derivatives with respect to the parameters which specify $ and 

*' in a realistic calculation, which will generate an (approximate) 

inversion of (E+iT-H). All calculations are made in the single particle 

coordinate representation x.}, hence these calculations are only invol­

ving shell model techniques. 

The nethod introduced in these two oaragraphs 2.1 and 2.2 thus 

reduce the studv of collisions to those techniques already familiar in 
f3-5] 

the study of bound states. Several numerical applications ' are 

alreadv under way. The next paragraph will show how a mean field theory 

also emerges from this method. 
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2.3 Where physics starts : mean field approach 

The two previous paragraphs show that calculations which were for­
merly unthinkable can now be undertaken. Two questions must now be rai­
sed, namely i) how fast can one have a reasonably convergent estimate 
of AT, and ii) what physical interpretation can one propose the result ? 

The traditional approach to problem i) is to search for a mean 
field approximation. In other words, one first uses trial functions 
which are factorized, for example 

N 
!<5> - £«, !«P.(xi)> , (2.3.1) 

and one cancels the functional derivative of the functional F, 
Eq(2.2.8), with respect to these single oarticle orbitals <o.. The same 
stationarity with respect to the orbitals 10! of v' is also implemented, 
and one obtains mean field equations for the to., «9!. 

Indeed, as an illustration, let us assume that * and ^' are also 
product of single particle orbitals 0. , #! and that no antisymmetriza-
tion is needed in the theory. Let us further assume that *' * '*, namely 
that we are only interested in.a diagonal amplitude AT. An finally let 
us assume that '• and H can simultaneously be written with just real num­
bers. All these restrictions are sometimes unrealistic, but the reader 
can find in Refs.[3-5] enough matter for generalization. The present, 
simplified case is the investigation of the functional 

F D = <<*'!?> + <?!•*> - <V!(W-H)|*> , (2.3.2) 

whereW = E+iF. It can be noticed at once that Eqs.(2.2.10) provide 
|<J>'> • |-i*> in that special case. This is because only W goes to W 
when converting the stationarity solution <$'| into a ket|*'>. Thus F^ 
reduces to 

F £ - 2 (•'/,:•) - (;!(W-tf)'?> , (2.3.3) 

where we now use a round bracket ( ) and one only trial function in a 
Euclidian rather than Hernitian metric. 

Let us now rewrite Eq.(2.3.3) as a function of >,0 rather than C. 
In other words let us temporarily constrain the Euclidian norm (*•§) to 
I and use > as an explicit norm and phase variational parameter. Sta-
tionaritv of F_ with resoect to > then orovides the stationarity 

F. 
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condition 

2(*|?) - 2X (0!(W-H)!*> = 0 , (2.3.4) 

hence the functional F becomes 
E 

F i2LJ , (2.3.5) 
(»|(W-H)k) 

where in fact the norm condition on <t> could be relaxed again. But we 
shall retain this condition in the following way. For the definition 
of a mean field approximation the factorized ansatz, Eq.(2.3.1), pro­
vides that 

N 
(*!*) - I (tfJo.) . (2.3.6) 

i-1 
The variation of G, Eq.(2.3.5), will thus be made under the constraints 

do. !<9L) = 1 (2.3.7) 

with corresponding Lagrange multipliers \i. . 

We thus consider the associated functional 
i •> N 

F = f '(*U) - (M(W-H)k) + I Ujfco.lip.) , (2.3.8) 
i*l 

where the Lagrange multiplier f takes care of the ratio between the 
denominator and the numerator when stationarity is reached, namely 

f = <'AcA-r> = (••'•) (2.3.9) 

when \\> = Q\^>. The calculation of F and its derivative with respect 
to «j. are straightforward, namely 

. N N N 
F - f"' : Op.!*.) - w ~ (<p.|tp.) + I («P. |t|«p.) 

i=i l l i-i l l i=i l 

+ T / («0(0 v i o t p ) - L U;(«o.ko.) , 
II* J» I J J 1=1 

hence the stationarity conditions 

0 . { W w . - f"1 (•'••)-^r^ !-V - w ! V • t h j ) 

(2.3.10) 

+ U. Uo.) + u. !<o.) , ( 2 . 3 . 1 1 ) 
l l l l 
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where the mean field U. acting on orbital ip. is defined as (notice the 
2 1 x 

Euclidian density (p.) 
7 J 

U^x) dx' v(x-x') I o?(x') . (2.3.12) 

Several remarks are in order at this stape. First, the center of 
mass correction -T provided by Eq.(2.2.2) has been neglected here, cm 
This approximation has been voluntary, for the sake of simplicity, for 
otherwise the kinetic energy in Eas.(2.3.IO) and (2.3.11) would contain 
slightly tedious (but straightforward) two-body additional terms. 
Second, one notices a -y factor in front of 6F/6<p., Eq. (2.3.11). This is 
because we have taken simultaneously the derivatives with respect to 
both bras and kets. Indeed the Euclidian metric provides analyticity with 
respect to (.0., whether in a bra or a ket. Third, because of Eq. (2.3.9), 

1 -1 the coefficient f (-'•') disappears in front of |x»> in Eq. (2.3.11) . 
Fourth, we have already taken advantage of the constraints, Eq. (2.3.7), 
in the derivation of Eqs.(2.3.IO) and (2.3.11), although the presence 
of the Lagrange multipliers •„. should actually let the scalar products 
Op. |<p. ) be considered tenporarily as variable quantities. It can be 
checked in Ref.[5], where a more general derivation of Eqs.(2.3.11) has 
been provided, that the final self consistency condition for the 
Lagrange multioliers u. actually reads 

u- = 7 Op.jtjo.) + •=• 7 Oo.to. Ivjtp.ia ) • (2.3.13) 
1 j?i J J " j*i J * J K 

k*i 

Clearly, this Eq.(2.3.l3) expresses the self energy of all the 
particles but particle i. It is now possible to summarize Eq.(2.3.11) 
as 

(W-„.-t-r.) ,o.) - ';.) - ^ - | y , (2.3.14) 

where actually the coefficient (* : •)/(&. \'l>. ) can be temporarily dis­
carded orovided <0. is immediately renormalized suitably to satisfy 
Eq.(2.3.7). 

We do not know yet how to solve efficiently the N-coupled cubic 
equations (2.3.14). Prelininary results are described in Ref.[5], where 
one investigate a collision p+ H " p*n+d. In this Ref.[5] we have 
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attempted a brute force iteration. Namely one tries a first guess for 
the tp., which defines the U. and u., then one inverts the (W-y.-t-U.) 
and this provides a second guess for the if)., which defines in turn a 
second guess for the U. and u. and so on. 

A certain amount of convergence is reached in some cases, but not 
all. In any case, the density patterns of the orbitals show reasonable 
tendancies. For instance the "spectator" particles, namely those which 
make the deuteron d, tend to be smooth. On the contrary the "partici-
oant" particles, namely the projectile p and the kicked out neutron n, 
do show more complicated density patterns for their orbitals. Density 
neaks, cleavage lines, vortices for the nucléon flow are possible in­
terpretations, to be further confirmed or contradicted by a better 
analysis of the wave functions - and <$'. 

This brings us back to question ii) raised at the beginning of this 
paragraph, namely the physical significance of all this. It can be 
stressed that the main interest of present theory may be to suggest 
reaction mechanisms rather than calculate detailed cross sections. This 
can be seen in different ways, among which, of course, the participant 
vs spectator patterns which have just been discussed. 

But what happens if Eqs.(2.3.14) turn out to have no solution ? 
Such a lack of solution is not impossible a priori, because the func­
tional F also reads 

F = -(<y| - <V'!G) (E+ir-H)(|*> - o\y>) + <y'\c,\y> , (2.3.15) 

whose hyperbolic character <X'|(E+iT-H)|X> is explicit. The extremum 
generated by Eqs.(2.2.10) thus seems to be a saddle point, which may 
disappear when the functional is restricted to just products of orbi­
tals, Eq.(2.3.1). While an iterative algorithm starting from a high-
energy limit, first euess 

Icpf0- = (F.-t)"' !•!..• , (2.3.16) 

would be a reasonable calculation to undertake, the sequence of second 
guess r , third guess 0 ... and so on deduced from Eqs.(2.3.1A) may 
have no chance to converge. 

Nonetheless the patterns shown by the orbitals in that sequence 
- have a physical interest, For nothing prevents to define, in a 
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second round of the variational calculation, a new trial function with 

correlations 

|0> - I c n {*
( n )> , (2.3.17) 

n 

where now the linear coefficients c are the variational parameters. 

While Eq.(2.3.l) makes a non linear ansatz, this Eq.(2.3.17) restores 

the linearity of the theory. An insertion of Eq.(2.3.17) into 

Eq.(2.2.l0) provides a linear discretization of Eq.(2.2.10), hence a 

set of linear equations for the c . It is trivial to solve these equations 

and obtain a unique estimate for AT, despite the lack of convergence of 

the non linear algorithm. More important, if che patterns shown by the 

orbitals <£>. - are explicit enough to suggest reaction mechanisms, then 

the linear superposition, Eq.(2.3.17), dous provide an interference 

bitween these mechanisms. 

This interpretation of the theory in terms of interference of me­

chanisms can be pushed further. It could also happen, indeed, that 

Eqs.(2.3.14) have nam/ solutions rather than none (or one). These many 

solutions would of course be obtained with different initial guesses, 

* , for the iterative algorithm. Let {<? } be these different solutions. 

The obvious generalizations of Eq.(2.3.17) are the ansatz 

l*> = J c |* > , (2.3.18) 
ûc 

and the ansatz 

|*> = ) c ( n ) |« ( n )> . (2.3.19) 
' a ' a 

a,n 

The latter obviously combines different solutions and their successive 

guesses. 

2.4 Ai '^o'- correlations 

There could be cases where the mean field equations might be too 

cumbersome, or their interpretation in terms of reaction mechanisms 

might be difficult. Nothing then prevents to feed the variational prin­

ciple with explicit trial functions, such as those shown by Fig.l. 

For instance, one nay consider solutions <5> of the cranking model, 

or also quadrupole-boosted states 

• W ' ^ J " 0 * 
where the 5 parameters 3 can be complex and Î1 is a static shell model 
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state, with or without a reference déformation. 

The variational principle will then select values of us and 6 
U 

which are privileged in the reaction mechanism. 

When nuclear compression is at stake, trial functions **, where 

orbital s ip(Ax) just exhibit a scale factor A (preferably complex in ana­

lytical models) are certainly in order. 

Shock waves can also be investigated in a self consistent way. 

Given an orbital <o of a reference state $ , nothing prevents to define 

i-exp (ik.x) ip (r) inside 9 i-exp UK.XJ ip (r) inside y 
<Pc£<x) = \ _ ° , (2.4.2) 

(x) outside 6 
«Mt**' ~ 1 -

H!>(> 

where the phrase"inside" and "outside" 9 refer to the cone with angle 9 

at its tip. For the sake of smoothness of the wave function the boost 

factor should actually read something like 

ik.x 
exp 7 rr 

1 + exp 
/a-3" 

V 6 J 
where a is the polar angle of x as referred to k and the tip of the 

cone and .5 defines the width of the transition zone. Again the varia­

tional principle will select dominant values for the cone angle 9 and 

the discontinuity boost k. 

An implosion model is also available. It consits in boosting 

inwards an outer ring of nuclear matter. The ansatz looks like 

«Ux") - expf i K r

 r r ) io (x) (2.4.3) 

i , ( ° Y 
1 + e x p v ~ i - ; 

where r is the inner radius of the implosing shell and c again defines 

a smooch but narrow transition zone. 

And so on. All these mechanisms can be made to interfere in a com­

bined ansatz 

•f - \d.o f(w) J

(. • df %(.'•) *sc * jd>. h(A) * A • de dk i(9,k) « J 

fdK j (K) o R , (2.4.4) 

where the mixture amplitudes f,g,h(i,j,... are now governed by linear 
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integral equations deduced trivially from the projection of Eqs.(2.2.10) 
into the subsnace spanned by * ,*„...,*„. 

Time dependent Hartree-Fock states * could also be used as a 
basis. The ansatz is 

0 = j dt f(t) * t , (2.4.5) 

where {* } is taken for times where the nuclei remain in the interac­
tion region. The variational equation related to Eq.(2.2.10) is then 
the integral equation 

jdt <$t,l(W-tf) |0t> f(t) - <*t,|*> . (2.4.6) 

This is just an inhomogeneous generalization of the Griffin-Hi11-Wheeler 
equation ' . The matrix elements <* , \i >, <* , |4'> and <* t|W|* > 
shown bv Eq.(2.4.6) involve factorized states and stay therefore within 
the domain of practical calculations. Then the manipulation of 
Eq.(2.4.6) is verv close to the manipulations which have become familiar 

[8 9Î in the generator coordinate theory of collisions ' 

2.5 Back to Diane waves and on shell amplitudes 

This is a problem which has not yet been faced numerically in the 
present theory. For the one shell anmlitude is actually 

AT = lim (lim AT) , (2.5.1) 
e X f+0 ̂ b-«° ' 

whereb means the ranges of the wave packets for relative motion. The 
limits must be taken in that order, namely first b-*» then T-K), for the 
range of the Green function goes to infinity when F-*0, while the theory 
demands that the wave packet cut-off should not be artificial. 

Returning to Eq.(2.2.6), however, we see that, in the case of 
two-fragment channels, the multiplication of fx> by v makes anyhow j*> 
a short ran«e state. In thac sense the limit b-"» might not be critical. 

In any case we can remember that a wave packet x (or X*) depends 
on many labels. One sees explicitly in Eq.(2.1.4) the boost labels 
k',k",...,etc but there are also parameters inside the shell model wave 
functions >' ,'" ,...., etc. 

sm' sm 
Let r, be the set of all these labels. Nothing prevents to expand 
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JX e x> • jd* f<*) IX^ . (2.5.2) 

where a discrete set of values of the parameters TT can be used for sim­

plicity, the subscript T has been added to the wave packet x for the 

sake of clarity and f(:r) is a suitable mixture amplitude. Nothing pre­

vents in particular to select f(~) in such a way that the relative mo­

mentum be defined much sharper than in the initial wave packet x« 

Then, after a similar manipulation for x'» o n e finds 

ÛT = lira [dît dît' <v;,iV ,(E-H+ir)" 1 v|x > «^OOfOO • (2.5.3) 
ex r ^ Q j -,. TT 

In other words, and this will be the conclusion of the present 

chapter, the boosted shell model theory of collisions is just a change 

of representation for the calculation of transition amplitudes. As seen 

in the previous oara<»ranh, this change of representation opens the way 

to a large body of numerical calculations and physical interpretations 

in terms of reaction mechanisms. All the methods used in the calculation 

of bound states now become available for the calculation of collisions. 

3. Time Dependent Hartree-Fock Theory of Collective Motion 

3.1 Time dependent Hartree-Fock 

There are many ways to introduce TDHF. One of the most ambitious 

ways is to use the fact that the set of all Slater determinants $ for N 

fermions makes an over complete set in the corresponding Hilbert space, 

in order to prove that there exists a measure du(<J>) for which the iden­

tity operator resolves as 

I = d̂ ('i) iyX^i . (3.1.1) 

This leads to a functional integral ' representation of the mitrix 

elements of the evolution operator 

t 

<o f jexp(- i Ht)|o.> - | P[î(T)Jexp[i j dt l . ( i ) j , (3 .1.2) 

o 

where V(T) is any path in the space of Slater determinants with boundary 
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conditions 

HO) - <p£ , $(t) - * £ , (3.1.3) 

and 0[<I>(T)Î is the functional measure. The Lagrangian density is defi­

ned as 

L(x) = i«p(x)|^ *(T)>-<.5(T);L!$(T)> (3.1.4) 

The stationary phase approximation to eq. (3.1.2) selects as "least 

action path" the TDHF path, with the equation of motion 

i £ |«> - H(<t>)!*> , (3.1.5) 

where H(<p) is the usual Hartree-Fock Hamiltonian 

H = T+U , (3.1.6) 

N 
with T and LI the N-particle kinetic energy T - £ t. and average 

N ^ ' 
potential energy U = » u.,respectively. The mean field uacting on 

i-l 1 

the orbitals of $ is defined, as usual in Hartree-Fock theory, by 

<xju|x'> = c(x-x') ! dx" vd-»")p(xn

tx
n) 

-V(X-X')D(X,X') , (3.1.7) 

where the one-body density matrix p is obtained trivially from the 

orbitals <£. which make v, 

M 
p(x,x') = ; <p.(x)tp*(x') . (3.1.8) 

i*l l l 

One recognizes in eq. (3.1.7) the local two-body potential v introduced 

in eq. (2.2.2), hence a local direct term and a non local exchange term 

in u (locality of v is a simplification, not a mandatory element of 

the theory). Again ore neglects the subtraction of T , in order to 

simplify eq. (3.1.6). This detail will be understood in the following. 

The functional integral approach has at least one serious drawback, 

namely the contradiction between JZqs. (3.1.3) and Eq. (3.1.5). For 

the latter is a first order differential equation with respect to time. 

Hence only one out of the two boundary conditions Eqs. (3.1.3) can be 

normally satisfied in a generic situation, not both. Improvements of 
[121 

the theory are possible , at the cost of introducing an additional 

evolution equation, namely that of a measure operator in a Heisenberg 
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representation. But these improvements are not yet related to the fin­
ding of collective modes and will not be discussed here, although 
they will be stimulating in the. near future. 

Returning to traditional TDHF, the simplest way to justify 
Eq. (3.1.5) is admit that since we do not know how to solve accura­
tely an a computer the realistic time dependent Schrodinger equation 
(TDSE), 

i ^ V - W , (3.1.9) 

one may replace '? by a Slater determinant <J> in first approximation, 
and then just remember that, by Thouless' theorem, an infinitesimal 
variation of $ is just a one-particle, one-hole vector. Thus 
Eq. (3.1.9) can be projected in the particle-hole space, 

i<ph|<i» = < ph | H14> > , 

This is nothing but Eq. (3.1.5) since the very definition of the Hartree-
Fock Hamiltonian H(ç>) provides that 

<ph[H|<p> s <ph(H|$> 

It could be pointed out that the infinitesimal variation i<pdt has 
also a component proportional to $ itself. This raises interesting 

[13] 
questions of phase evolution of 4> and gauge invariance of the theo­
ry. The relation between Eq. (3.1.9) and Eq. (3.1.5) must therefore just 
be completed by a prescription such as 

i<$|<(» - «p[H|<p--+y(T> , 

where u(x) is a suitable phase. This question, however, does not seem 
yet to be full correlated to the subject of collective motion and will 

[13] not be discussed further, although it was shown to play a role in 
the search for periodic TDHF solutions and their quantization. 

Let us come to the point. When is a TDHF (numerical) solution 
of any interest for a collective (nuclear) motion ? 

And what is collectivity in the first place ? This question will 
be faced later in this lecture. For the present paragraph, we shall 
be satisfied with two empirical criteria, as follows. 
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A TDHF solution will first be found to be interesting for collec­

tive motion if its time evolution reads 

R 
c|>(T) * n exp[i a(x)X U(0) , (3.1.10) 

p»l M M 

where a (t) is any function of time which helps fitting the evolution 

of <{>, and X is among the collective one-body operators one finds 

in the nuclear zoology. The ideal case occurs of course when the R 

operators X make a (closed) Lie algebra and when the approximate 

equality sign =* is a true equality sign. 

The relation between " collective" TDHF and "collective" operators 

is not a circular argument. For if X coincides with, e.g., angular 

momentum operators, or quadrupole operators or higher multipoles, one 

stays on the firm ground of the many-year success of the collective 

model of Bohr and Mottelson. 

A second, weaker condition for the pertinence of a TDHF solution 

is to obtain a time independent collective state 

"•? = J dt f(T)$(t) , (3.1.11) 

[14] 
after using time as a generator coordinate. The condition is weaker 

than Eq. (3.1.10) for it is the linear subspace spanned by the set 

(0(T)1 which then makes sense rather than each individual $(?). Again 

the argument is not completely circular, for there is a large consensus 

in the literature about which states ¥ in the spectrum of a nucleus 

are collective and which are not. 

Some practical examples are now in order. They are the subject 

of the next paragraph. 

3.2 Two elementary cases of TDHF collectivity 

The first elementary case is that of translation. Consider a 

doubly even nucleus and any of its static Hartree Fock solutions $ Q. 

We will now prove, as a theorem, that if we label W-Ap) in momentum 

representation the orbitals which make $ , then the translated and 
o 

boosted orbitals 

<p.(p,T) « expJifJy -e.-î.p^jp^p-ï) , (3.2.1) 

where f.. is the static self energy of tp. . make a determinant <J>(T) 
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which is a TDHF solution. 

For that purpose, we first notice that the transformation, 

Eq. (3.2.1), is indeed a relation between the hole states as referred 

to <j> and 4 as vacuums, respectively, but also that the same relation 

holds for the relation between partiale states. Let i and i', then i 

and i', respectively denote two orbitals (particle or hole states) of 

<t> and <p . With the convention that Planck's constant H and nucléon mass T o 

m are unity, the one-body kinetic energy t shows the following relation 

for its matrix elements 

<i'|t|i> = <i^|ft+k.p-^|io>exp[i(Ei,-ci)T] • (3.2.2) 

2 
This is because t » p /2, which commutes with the phase exponential 

found in the right hand side of Eq. (3.2.1). 

Then we consider the equivalent of Eq. (3.2.1) in coordinate 

representation 
*\ 

*P L(X,T) a expjif^-- e^T+k.(x-ki) j(pio(x-kT) . (3.2.3) 

This induces for the density matrices p and p of à and <f> , respective-
o o 

ly, the relation 

p(x.x') = exp[i k.(x-x')]p (x-kT.x'-kT) . (3.2.4) 
o 

Hence the corresponding mean field potentials u and u verify 

<x|ulx'> - exp[i k.(î-î*)]<x-kT|u |x'-kT> . (3.2.5) 

As a consequence one finds the relation between matrix elements, 

<i'iu|i> = <i'!u li > exp[i(E.,-e.)T] . (3.2.6) 

o o o i l 

From Eqs. (3.2.2) and (3.2.6) one now obtains 

<i'!(t-»-u)|i> - <i '!(t+u ) j i >exp[i(e.,-e.)T] (3.2.7) 
O 0 O 1 1 

2x 
+ < i 

O ̂
• P - T ^ V «PlK^.-e^T] 

Since ù is a static Hartree-Fock solution, [i > is an eigenstate of 
o o 

(t+u ) with that static self energy e^, hence 

<i ' | ( t*u) | i> - < i j j ( c l *î .p - M ' i o > • x P l i < e i i - c i ) T ] . (3.2.8) 
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We now return to eq. (3.2.1) to find the time derivative of [i>, 

i-= |i> - (c.+k.p -•^-]|i> , (3.2.9) 

and also notice that 

<i'|i> » <i^jio>exp[i(e!-ei)T] , (3.2.10a) 

<i'ip|i> - <i^|piio>exp[i(ei,-ei)T] . (3.2.10b) 

Hence the expected theorem, 

<i'i(t+u)ii> « <i-|r e i +k.p- k_\ji> « <i'|i ̂ L |i> . (3.2.11) 

In other words, the boosted static Hartree-Fock determinants pro­
pagates linearly with a fixed velocity and no spreading as a TDHF 
solution. This lack of spreading is a typical solitonic behaviour. 
As usual, the trend towards spreading induced by the Laplacian t is 
compensated by the trend towards shrinking induced by the cubic non 
linearity u<p, since u, Eq. (3.1.7), is quadratic with respect to u>, 
see Eq. (3.1.8). 

It is amusing to realize that spreading does occur is TDHF with 
an initial condition such that shown on fig. 2a. In that situation, one 
has on purpose switched off the non linearity, upon inducing no overlap 
between the initial orbitals. This cancels the potential u, and only 
the Laplacian t is active. 

There is no need to stress that Eqs. (3.2.1) and (3.2.3) are per­
fect illustrations of Eq. (3.1.10). The operators X are here, obviously, 
the total center of mass coordinate and momentum. Furthermore it is here 
obvious that Eq.(3.1.11) amounts to projection of the total linear momentum, 
in the Peierls-Yoccoz way. For the time T occurs inside $via combinations 
x-kT, hence it is as well a position index in a sequence of translated states. 

The case of translations having been dealt with, we now turn to a 
second elementary case, that of vibrations. As studied by Bonche, 
Doubre and Quentin , let $ 

in a quadrupole mode however 
Doubre and Quentin1 , let ^(0) be a static HF solution $ , boosted 

<p. (x,0) - exp[i £q(x)]«p. (x) . (3.2.12) 
1 lO 



>2 OS 



- 22 -

Here q(x) is the usual quadrupole, and e is an adjustable parameter. 
One selects e such that eq be small within the range of the (bound) 
orbits tp. . 10 

The initial condition $(0) built by the orbitals (p., Eq.(3.2.12) 
does induce a TDHF evolution $(t) which was found in Ref.[15] to be 
strongly harmonic for several periods. This harmonicity can be proved 
to be of a RPA type if e is sufficiently small [15]. For large values 
of e, however, the RPA limit may be more difficult to justify. None­
theless, the numerical plot of the expectation value of the quadrupole 

<Q>(T) = I <<Pi(T)[q|tPi(i)> , (3.2.13) 

does show a very regular harmonic behavior. This is strong evidence of 
quadrupole vibration, although the conjugate operator with respect to" 
q is not known explicitly from first principles, hence Eq.(3.1.I0) 
cannot be used easily. The frequency shown by <'Q>(T), however, is 
strongly reminiscent of the frequencies obtained by elementary (shell 
model) calculations of the 2 vibrational spectrum. It is then most 
likely that Eq.(3.l.ll) would have provided such vibrational time inde­
pendent states V. In any case, it is remarkable that the cubic TDHF 
equation can provide such a harmonic behavior, since the initial condi­
tion, Eq.(3.2.12), was plugged directly into a numerical time evolution 
code without any a priori linearization for small values of e. This 
second elementary application of TDHF is both a simple and intringuing 
case of collective behaviour. 

3.3 Transition from TDHF collectivity to TDHF chaos 

The two simple examples described in the previous paragraph were 
one-center problems. Most of the TDHF calculations actually deal with 
two-center cases, namely the collision of two nuclei. For a good sample 
of the zoology of solutions, the reader may refer to Sandhya Devi 
et ai [16], Cusson et al [17] and Grammaticos [18] for example. There 
is no unique classification of the increasing complexities of the pat­
terns obtained, but an attempt is proposed by Fig.2. 

We first put aside the initial conditions 2a (maximum spreading) 
and 2f (implosion of two shells), which have never been investigated 
numerically. They would be interesting, however. Indeed, some overlap 
between the "orbitals"shown by Fig.2a would be built up after some 
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spreading, hence the non linearity would be partly restored. It is an 
open question whether critical values of this overlap would occur. On 
the other hand the implosion geometry, Fig.2f, is ideally suited to the 
study of partial waves, for the angular momentum is far better defi­
ned [14] than in the usual impact parameter [16-18] initial condition. 
Besides, if the outer shell is a photon shell and the inner shell an 
atomic shell rather than nuclear shells, this geometry provides a simu­
lation of laser compression experiments (the modification of mean field 
equations to include bosons is straightforward). 

The initial conditions 2b-e correspond to the impact parameter re­
presentation. Namely the initial orbitals read 

cp.(p,t=0) £ exp(+i | . p) <pio(p * k) , (3.3.1) 

where the + sign refers to the projectile and target, respectively, and 
<p.̂  is a static orbital like that considered for Eq.(3.2.1). The vector 
b has a component along-k, which shifts the nuclei apart before the col-
lision, and a component perpendicular to k, which defines an impact 
parameter. 

Many cases occur. The simplest case correspond to propagation of 
the nuclei along curved trajectories, but without distorsion. This 

[19] case, Fig.2b, has been analytically investigated . Then some simple 
distorsions may occur, first in the intermediate stages only, see 
Fig.2c, and then also in the final stages, see Fig.2d. Last but not 
least the distorsions can be so large that a parametrization in terms 
of low order multipoles (quadrupole , octupole...) is no more possible. 
This is the case of Fig.2e, where a fusion situation is reached. Some 
chaotic limit may thus have been reached. 

We have no a priori rigorous criterion for the classification of 
some TDHF evolutions as more collective than others. The visual observa­
tion of density patterns for the time-dependent orbitals is a largely 
sub,~-:-:ij-? method for such an analysis. This is why we have added at 
the end of these lectures a provocative section on the subject of pat­
tern discrimination by the nervous system. Before going into much specu­
lations, however, we shall dedicate the next two paragraphs to more 
elementary approaches for the recognition of collectivity : a metric 
approach and an adiabatic non metric approach. 
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3.4 Metric collectivity 

Let us try to make advantage of the fact, that our wave functions 
<Kx) are just defining a trajectory on the unit sphere of the Hilbert 

JO 
space. It is not difficult to define the rate -3— at which this wave 

dT 
function evolves as a function of time, 

( W-31 a> • 
The physical meaning of this rate, an inverse time, i s obviously given 

A9 
by the energy of propagation. Renormalization of d<j>/dr by — then pro­
vides the basic unit vector 

'dT > \TFJ dT > • (3-4'2) 

which is nothing but the unitary tangent to the trajectory. 

The next step is, obviously, to consider the derivative of this 
tangent and observe that the length of this derivation is nothing but 
the curvature 

C 2 = <£*\i*> . (3.4.3) 

How can this formal quantity C be interpreted in terms of collec-
2 

tivity ? On one hand, it is obvious that C > 1, because the propaga­
tion occurs on the unit sphere in the Hilbert space, the curvature of 
which being obviously 1. On the other hand, it is intuitive that if 
the trajectory $(T) generates a very large curvature, in other words 
winds very rapidly, the algebra {X }, see Eq.(3.l.l0), which one would 
try for a collectivity parametrization would be fairly complicated. 
This complicated situation would not be very interesting and would ra­
ther indicate chacs rather than order. As defined by Eq.(3.4.3), C is 
a dimensionless number. Since the two limits C-l and C infinite are 
found to be improper, the range of C to be investigated is likely to be 
a few units. 

In order to refine our intuition let us consider again the heuris­
tic ansatz for collectivity, Eq.(3.1,IO), in its simplest form (one 
linear term for the argument of the exponential) 

£(T) - exp(itX) M O ) • (3.A.4) 
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It is trivial to check from Eqs.(3.4.1) and (3.4.3) that 

and 

fê) - «K°)|x2|<i>(o)> (3.4.5) 

c2.<»(o)|x»|«o)> § ( 3 ^ 6 ) 

«fr ( o ) \ x ' \ $ ( o ) > 1 

with X hermitian of course. It is now seen that the curvature is I if 
2 

and only if $(0) is an eigenstate of X , for otherwise the fourth mo-
4 2 

ment <X > is larger than the square of the second moment <X >. For such 

an eigenstate the time evolution, Eq.(3.4.4), reduces to an uninteres­

ting phase. 

More interesting is the case where <t>(o) is a coherent state with 

respect to X. Namely, let us assume there exists a set of commuting 

observables ^ » which commute with X and which provide a complete 

basis |x .\> of the Hilbert space (here x and Ç are eigenvalues of X and 

^ respectively). If then a Gaussian approximation is possible, 

<x ô'j9(o)> <* exp[-(x-*)2/32] *<0 . (3.4.7) 

where z is any complex number, 3 is some width and <x( £) takes care of 

the degrees of freedom which differ from X, then <fc(o) appears like a 

Glauber coherent state with respect to X. In our heuristic search for 

collectivity, such coherent states make sense, for several reasons. 

First, they make an over complete basis, like that discussed in para­

graph 2.1. Second, they are often the starting point of a classical ap­

proximation, and collective motion is often associated to the dominance 

of one degree of freedom, with large quantum numbers, all the other 

degrees of freedom having been averaged out. This is a typical classi­

cal limit. Third, and maybe more important, a large class of represen­

tations in group theory can be constructed from maximum weight states, 

which are indeed coherent states. 

As a matter of fact, the value C » »'3, corresponding to coherent 

states, seems to be a critical value for the collectivity of a trajec-

tory. This value comes obviously from the fact that the 4 moment of 

a Gaussian equals 3 times the square of the 2 n moment. But it was also 
[20] 

found to occur for Slater determinants when the generator X, 

Eq.(3.4.4), is a particle-hole operator with maximum sharing of the 
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particle-hole strength between all available particle-hole components. 
This even spreading of the strength is the usual criterion retained in 
Tamm-Dancoff or RPA calculations to give evidence of collectivity. This 

[21] critical value C * /3 was also found to be the limit curvature of 
geodesies on orbits of Lie group (special unitary and symplectic) which 
are familiar in the traditional theory of collective motion (SU(3), 
SP(I,R), e t c . ) . 

Thus, given a numerical TDHF trajectory $(t), it is interesting 
to calculate at each time the curvature C(T) and give a close look at 
these periods when C - ^3. But of course other criteria are possible. 
Nothing yet is known about the information contained in higher deriva­
tives d <t>/dH . Nothing is known about the relaxation times for these 
curvatures ; how long will a C -" /3 survive the non linearity of the 
TDHF dynamics ? How stable with respect to the initial condition <f(o) 
is the existence of such a "collective" portion of a TDHF trajectory ? 

To summarize this paragraph, elementary geometrical considerations 
can be deduced from the metric of the Hilbert space in which time 
dependent trajectories c( :) are embedded. There seems to be a connection 
between the curvature properties of these trajectories and their phy­
sical meaning : triviality (C-l), collectivity (C-/3) and chaos (C»l). 
But the nature of this connection, the nature of the collective degrees 
of freedom themselves and a complete set of geometrical criteria are 
still unknown. 

3.5 Adiabatic collectivity 

As pointed out by Kerman and Koonin [22], the TDHF equation (3.1.5) 
is strictly equivalent to an infinite set of Hamilton equations. In 
other words, let the orbitals ip. which make $ be expanded on a complete 
basis 'u : of single particle functions 

lip. > = > c. iu *> . (3.5.1) l in ' n n 
The energy functional 

F(0 .: <i'H;i> (3.5.2) 

is then a 4 degree polynomial with respect to the coefficient ^int o r 

their real and imaginary parts ^q. and ^p. . It is then equivalent 
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to solve Eq.(3.1.5) or to solve 

d 3E 
d?«in = 3 p - • ( 3" 5- 3 a> 

rin 
a ? p i » - • § ? : - • ( 3 - 5 - 3 b > 

un 
The question of collective coordinates is thus raised in a classi­

cal phase space rather than in a Hilbert space. The metric used In pa­
ragraph 3.A is lost however. Generally, there is not in that phase spa­
ce a sufficient number of conserved quantities J (and conjugate coor­
dinates a ) to make Eqs.(3.5.3) an analytically integrable system whe­
reby the collective classical degrees of freedom would be, trivially, 
the J , ot . In general Eqs.(3.5.3) are not an analytically integrable 
Hamilton system. 

Let us concentrate, for awhile, on the search for collectivity in 
a classical unintegrable problem. Since collectivity is an attempt to 
model iz-j the system by a smal'^r number of degrees of freedom (and 
actually just one in the simplest case), a possible answer is provided 
by the search for adiabaticity. 

We define here adiabaticity by two criteria, namely 
i) limit of low velocities and/or momenta and 
ii) large amplitudes for positions. 

This definition is more restrictive than it looks at first. For 
it actually breaks the Hamilton invariance of the theory. Indeed, cri­
teria i) and ii) handle momenta and positions separately. The textbook : 
canonical transformation q •» p and p * -q, which conserves Poisson 
brackets, is thus forbidden. In other words, this definition of adiaba­
ticity tolerates canonical transformations which mix positions among 
themselves only. Furthermore, the limit of low velocities may techni­
cally diffei from that of low momenta. This subtle point will not be 
discussed in the following, where we shall restrict ourselves to a re­
presentation where the dynamics could actually be formulated by a 
Lagrangian L which is just quadratic in the velocities and a Hamiltonian 
just quadratic in the momenta, with strictly positive masses 

1 r ' 2 •* i = Tj- I n>v <lu - W(q) 
2 ••> 2 (3.5.4) 
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Since momenta and positions cannot be mixed, the coordinate 
(hyper) plane, defined by all p v"0, is invariant under the residual 
transformation allowed, namely the mixing of the q v among themselves 
into a now set of positions X, - (here we assume X to be of dimension 
I and " to take care of all the other degrees of freedom). We now 
look in that plane for a line ^ * ^ , namely all degrees of free­
dom constant except X and want this line to be a candidate for a col­
lective path according to criteria i) and ii). It must be pointed out 
here, for the sake of clarity, that this path is not a trajectory in 
the phase space, since momenta and velocities always vanish on that 
path. Rather, the path is the projection on the coordinate hyperplane 
of trajectories in the phase space. 

The situation described by Eqs.(3.5.4) is not the most general, 
but it has a large validity range. Then Eqs.(3.5.3) become, trivially 

™v A v = P v ' (3.5.5a) 

p v = -(grad ft')., , (3.5.5b) 

where the gradient is taken with respect to q. We now take advantage of 
criteria i) to initiate a trajectory from the coordinate hyperplane and 
find that the projection of trajectory has a cusp, since q » 0, whose 
tangent is given by the next derivative, namely Newton's equation 

m v q v = -(grad W ) y . (3.5.6) 

Unsurprisingly, gradient lines (tangent to the force) thus appear 
like candidates for collective path. We now ask whether there are many 
trajectories in phase space whose projections on the coordinate hyper­
plane is the same gradient line. If so, criterion ii) will be satisfied 
to some extent at least, for the coordinate along the gradient line 
will be taken as X, orthogonal coordinates will be taken as - , the 
multiplicity of trajectories projecting along the same path will mean 
decoupling between X and ^ , and the various kinetic energies in that 
multiplicity will provide various propagation ranges, hence a chance for 
the large amplitudes required by criterion ii). 

Two trajectories projecting along the same path differ by their 
momentum only. According to Eq.(3.5.5b), the next trajectory to consi-
der after that which starts with p«0 is a boosted trajectory which 
starts at the same q, but with an infinitesimal momentum proportional 
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to - grad W. According to Eq.(3.5.5a) this second trajectory projects 
with the same tangent as the first one, see Eq.(3.5.6). We have found 
two trajectories which, at least locally, project along the same path. 

The process must be reinstated all along the gradient line which 
is a candidate to be the path. The algorithm c a n be phrased into the 
language of fiber bundles, in the following steps 

a) select any gradient line in the position hyperplane. The line 
is the candidate for collective path. It is the base of the fiber bundle 
which will be defined ROW ; 

b) as the fiber for any point q of the gradient line consider the 
points for which p is small and proportional to q, where q is calcula­
ted from the equations of motion for that value of q and for p*0 ; 

c) consider all the trajectories in phase space whose initial con­
ditions are taken from the fiber bundle ; 

d) these trajectories make a 2-parameter family, hence span a 
3-dimensional hypersurface, which is very close to the 2-dimensional 
bundle ; 

e) adiabatic collectivity, namely selection of the best path, is 
obtained when the deviation of the 3-dimensional hypersurface away from 
the 2-dimensional bundle is minimal. 

This scheme is summarized by Fig.3. It is a very simple and realis­
tic scheme, but it can be critized on several grounds. First, the 
Lagrangian and/or Hamiltonian may be more complicated than those shown 
by Eqs.(3.5.4). In particular, velocity dependent forces may distort the 
boosted trajectories away from the non boosted ones. Nonetheless, in a 
natural representation where the q and p are single particle coordinates 
and momenta, the initial directions of trajectories initiated with p*0 
still make a vector field which deserves investigation even though it 
may not be a gradient field. It is still tempting to construct a bundle 
out of a line tangent to that vector field and fibers which are rela­
ted to a natural boost. 

A second criticism is that the fibers must be truncated at some 
strength of the boost, and also the trajectories must be interrupted 
after some time. Also the width i of the 3-dimensional hypersurface with 
respect to the 2-dimensional bundle must be estimated by an a priori 
arbitrary rule. We notice, however, that although the phase space has 
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no natural metric, the position space and the momentum space may often 

have natural metrics. Hence, although the width L will be parameter de­

pendent (with respect to the truncations listed above), the likely 

behaviour of A with respect to these parameters will be exponential. It 

is the coefficients of these exponents which are expected to be model 

independent and which can then be used as criteria for collectivity. 

We now return to TDHF and briefly recall the considerations of 

Ref.[19]. The line of the argument is very close to the scheme a) to 

e). 

We first use the projection theorem by Baranger and Veneroni 

Each complex determinant i is rn-.fected into a position-like, time even 

(real) determinant : alono a f-'r-^p defined by a particle hole operator 

as a generator 

: = e1'' ; o (3.5.7) 

The technical rules for the unicitv of v and $ are described in that 

Ref.[15] 3nd will not be recalled here. The point of interest is that 

now the set of :•'-.;' determinants £ play the rôle of a position hyper-

plane, although it is in fact a *urveà hypersurface. 

A trajectory initiated from a real determinant $ is then found, 
[19] ° 

just from the TDHF algebra, to define a sequence of particle-hole 

operators W , W , W ... etc. These operators just occur when the equa­

tion of motion is expanded in powers of an adiabaticity parameter e. In 

other words, W is the Hartree-Fock Hamiltonian of A 

W - H(<t ) , (3.5.8) 
o o 

one considers the fiber 

Mo) = expfi -: W ('. )] : (3.5.9) 

o o o 

and the TDHF trajectories initiated from o(o). It turns out that the 

time evolution brings both ri\il and imaginary variations into the deter­

minants *(".). The fiber, with generator W , corresponds to imaginary 

variations (momentum-1 ike). Position-like variations are found at the 

next order in , and provide the tangent to the candidate for collecti-
[19] 

ve path. Except for technical corrections , this tangent is defined 
by the particle hole operator W., hence the (approximate) path equation 

d • * > 

wi<0 ;'„*- » (3.5.10) dx T'o' 'o 
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where the label x just reminds that we are looking for a collective 
degree of freedom X. 

The solution of Eq.(3.5.l0) plays the rôle of a gradient line. Al­
ternately, a more direct definition of a gradient line is given by the 
equation 

d|+ > 
ir-'W'V • < 3 - 5 - n > 

These two equations (3.5.10) and (3.5.11) are usually not compatible. 
Their compatibility is a condition for the selection of the best candi­
date for collective path. 

The use of Eq.(3.5.9) for the fibers and of Eq.(3.5.10) or 
(3.5.11) for the base provides a fiber bundle. The minimization of the 
deviations of the TDHF trajectories, initiated from that bundle, away 
from the bundle, is a second condition for the selection of the best 
collective path. The reader is referred to Ref.[19] for more technical 
details, or for the generalization to more than one collective degree 
of freedom. 

The physical summary of this long argument is in fact simple. A 
two-parameter family of TDHF trajectories normally makes a 3-dimensio-
nal hypersurface. If there exists situations where the hypersurface is 
very thin in one coordinate-like dimension, if one of the other two di­
mensions is coordinate-like and the second momentum-like, these latter two 
dimensions are in fact analogous to the phase space of just one degree 
of freedom, now labelled collective. The width is due to the residual 
coupling of this not-quite-isolated degree of freedom to all the other 
degrees of freedom to be neglected in a collective model, 

4. Order from Chaos : Pattern Discrimination 

4.1 Signal screening 

There is at least one part of the nervous system which a few spe­
cialists have dared to modelize and which is of special interest in a 
discussion of collective motion. For this part, the cerebellum » has 
been proved by many medical evidences to play an important role in the 
control of motricity. There is no need to stress that motricity is 
based on the coherent action of many a priori independent motor units 
as individual degrees of freedom. Hence motricity gives typical cases 
of collective motion. 
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The point is. many signals are carried to the cerebellum, from 
most parts of the body, by nerve fibers, the so-called mossy fibers. 
Some of these signals can be pertinent for the control of a given ele­
ment of muscular action. Host of these signals may not be pertinent. 
The extraordinary complexity of the incoming influxes of signals look 
a priori like a chaos. If the task of a given major element of the cere­
bellum, the so called Purkinje cell, is to provide a significant output, 
some screening of the input is mandatory. 

This section deals with the theories proposed by Marr [23] and 
Albus [24] for the functionninjt of the cerebellum. We will only sketch 
their arguments, and will bring no personal view, except the hope that 
some day a better understanding of living systems could help the physi­
cist with a better understanding of what physical collectivity is (and 
conversely) . In what follows we focus only on that aspect of Karr's and 
Albus ' theories which deal with pattern discrimination, and neglect the rest, 
although it is as important (theory of learning, stabilization of the system, 
etc.) . Fora less simplistic approach the inters ted reader will refer to the origi­
nal papers [23-24]_ 

The next paragraph will now describe the system which connects 
mossy fibers to much more numerous relay cells, the so called grain 
cells. As a matter of fact, to one Purkinje cell one estimates that 
about 7000 mossy fibers send messages via 200.000 relay cells and their 
corresponding fibers. 

Since the 200.000 relay fibers (named the parallel fibers in the 
physiology literature) can carry obviously more information than the 
7000 irossy fibers, it will be shown that pattern discrimination is pos­
sible. 

4.2 The mossy fiber-parallel fiber system 

The svstem is schematized in an ultra simplified way in Fig.4. The 
orders of magnitudes are of course taken from Refs.[23-24]. As far as 
one Purkinje cell is concerned, a mossy fiber connecting to that cell 
does so via many paths, an average of 130 paths. In other words, a 
mossy fiber like fiber I of Fig.4 is connected to as many as 130 grain 
cells whose parallel fibers reach a given Purkinje cell. This is a con­
siderable convergence-divergences ratio. Conversely, a grain cell is 
usually connected to an average of 4 to 5 mossy fibers, see grain cell 
n°l on Pip,.4. 
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Let us count the number of connections (synapses) between mossy 
fibers and grain cells. Viewed from the relevant parallel fibers or 
grains, this number is 

N = 200.000 x 4.5 = 900.000 • (4.2.1) 

Viewed from the point of view of mossy fibers, this number is as well 

N = 7000 x 130 ^ 900.000 - (4.2.2) 

The average ratio of 130 between parallel fibers and itossy fibers 
leads to one of the major proposals of the theories of Marr and Albus, 
namely that the system acts as an expansion recoder. More precisely, 
patterns of active mossy fibers which are very much alike can be con­
verted into patterns of active parallel fibers which are very different. 
Hence a significant discriminatory power of the systeo. A seemingly ran­
dom activity in the mossy fibers is translated into a contrasted pattern 
of parallel fibers, âome of them collectively active, some of them 
collectively silent. 

The algebraic details of this mechanism will now be sketched in 
the next paragraph. 

4.1 Statistics of the contrast generator 

Assume that a sensory message of the body to the cerebellum in­
volves the activity of L mossy fibers among the 7000 under considera­
tion. There is physiological evidence that L may vary between a few 
tens and 1000 or 2000, but that the maximum of 7000 is not reached 
(otherwise the system would saturate). 

Assume another (pertinent ?) message also involves a pattern of 
L' - L BOSSy fibers. This second pattern differs from the first one, 
but both may have V active fibers in conroon. 

If W is not neeliaible with respect to L, the ratio W/L has the 
meaning of a ratio of confusion. Indeed if W/L is larger than 0.5 for 
instance, a distinction between the two patterns may be difficult. 

We now remember that each grain is connected to C - 4 or 5 mossy 
fibers and will assume, for the sake of simplicity, that a parallel 
fiber will be active if, and only if, the 4 to 5 mossv fibers to which 
the corresponding grain is connected are active. 
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There are a priori 

N ' - cnëcT! ( 4 - 2 - 3 ) 

ways of combining the L mossy fibers of the first pattern in order to 
obtain activity of W grains (or parallel fibers). There are also the 
same number N' of ways to convert the second pattern of mossy fibers 
into a pattern of parallel fibers. Because the two sets of irossy fibers 
have W fibers in common, the two sets of ways have now a number 

U» 
N" = — (4 2 4) 

C!(W-C)! I*.*.«J 
of common ways. The ratio 

W"/N« - W !<L-C!) « W(W-1)...(W-C+1) 
' (W-C)!L! L(L-l)...(L-Ol) l*.*.3J 

measures now the probability of confusion between the corresponding 
patterns of parallel fibers. 

In so far as 
C « W < L , (4.2.6) 

the new confusion ratio verifies the condition 

N'VN' = (") «* " . (4.2.7) 
The contrast between the two patterns of active parallel fibers is then 
much higher than the contrast between the two initial patterns of acti­
ve mossy fibers. 

If one of these mos3y fibers patterns is interpreted, for physio­
logical reasons, as "noise" and the other as "pertinent", the system is 
thus able to take advantage of the improved contrast at the level of 
parallel fibers and use it for motricity control. 

4.4 Discussion 

The I _ J connection schemes which are possible between mossy 
fibers and grains are not a l l actually realized. Nor are the ( -1 schemes 
realized in general. For there are only 200.000 grains involved, which 
is large but not as large as the total number of schemes, hus the 
200.000 grains provide only a sampling of these combination ways. 
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Whether the sampling is just random, or shows some trend to an 

order parameter like a spin glass model or even exhibits a strong or­

dered structure is not known. Since anyhow there is strong evidence of 

motricity control by the cerebellum, it is reasonable to conclude that 

this biological structure hides a very elaborate processing of data in 

order to sort out collective behavior from non collective one. 

The hunt for collectivity criterion which was the main subject of 

the previous section, section 3, could only benefit from the perspec­

tive offered by section 4. One-body densities which have little con­

trast could correspond to highly discriminating many-body correlations 

(this reminds us also of the search for order parameters in spin glas­

ses). This is an open, but very stimulating question. 

5. GENERAL CONCLUSION AND ACKNOWLEDGMENTS 

The ideas proposed in these lectures are in fact fairly simple 

and should not be obscured by the mathematical or numerical apparatus 

which follows them. For the theory of collisions, we have just propo­

sed that there is a representation (the boosted shell model) in which 

matrix elements of the T-matrix are easier to evaluate, via a varia­

tional principle. For the theory of collective motion we have stressed 

that there is a certain amount of arbitrariness in the way collectivi­

ty is defined. In the various geometrical approaches to collectivity 

(restriction to a Lie group, curvature properties with a given metric, 

dissymetry between momenta and coordinate in an adiabatic theory, etc), 

it is the physicist himself who selects, to a large extent, the geome­

try he likes for reasons of simplicity. And if some day biological mo­

dels are better understood, they could also provide us with clues for 

what we call simple collective behaviour of a physical system and what 

we still classify as chaos. 
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this work results from the hospitality of the Laboratoire dePhysiologi 

de la Faculté de Médecine Pitié-Salpétrière, which is gratefully 
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