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ABSTRACT

The decay properties of overlapping compound

nucleus resonances *v discussed. It is argued that the cor-

relatic- width of Agassi,Weidenmülier and Mantzouranis is to be

identified with the average total width of Kawai, Kerman and

McVoy. It is also shown that in the very strong coupling

limit, the crt ;und system behaves like a system with isolated

resonances •• ?>. absorption,1 .
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Properties of the compound nucleus in the

overlapping, 7 >> D , limit have been discussed extensively in

1 2)
recent years in two quite different formalisms ' , which

unfortunately employ the same symbols for "obvious" quantities

such as the average width, T , and spacing, D , whose definitions

may seem at first sight to be unambiguous. However, the widths,

spacings and partial widths of strongly overlapping compound

resonances are not only not unambigously defined, they are not in

any sense physically measurable, and so may be given different

definitions for different purposes. Precisely this seems to

have occurred, with the consequence that the same symbol (D)

has been used to describe different quantities, and different

symbols, e.g., the correlation width, r and r appear to

have been applied to the same quantity, thus generating the

maximum confusion possible.

We offer the present comments in an attempt to

alleviate this confusion, and do so by considering an important

physical characteristic of a system with overlapping resonances,

namely its time-decay properties, which are mathematically

equivalent to th

relation function,

equivalent to the properties of the S-matrix energy-autocor-

(1)

Just as the fluctuation cross section

(2)

provides one measurable parameter to describe the compound
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system, the £-dependence of C f (:.) may, under certain

circumstances, provide another, r or the decay rate of

the system.

In order to define notation carefully in the KKM

approach , we note that the arguments employed to calculate

(s)C , (e) can be immediately extended to provide an expression

for c < * > ( £ > « > :

It is essential to recognize that all the symbols carrying the

resonance index q are not immediate properties of the "true"

(but unobservable, and in that sense unphysical) overlapping

poles of the S-matrix. Rather, they refer to poles of an

approximation to that S-matrix, re-written via the KKM optical

background techniques. They have been tailored to free their

residues g from the constraints of analytic unitarity,

without large violation of unitarity for E near the real axis

and thus make them as random as possible in their distribution

over q . What we here designate as r , D and a are to

be urderstood as part of the KKM parametrization of the compound

system. They are certainly not observable quantities, nor are

even their averages necessarily so, but (as usual) the

physically observable quantities are parametrized in terms of

them.

Equation (3) is true provided that these

parameters satisfy

f; ')> \
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If no further conditions are imposed, nothing more specific can

be said about the -:-dependence of C f (e) ; if the q-average

(a sum over q) is approximated by an integral, one would

clearly expect C f (e) to have a branch cut along the negative
ao

imaginary axis, and the time-decay of the system of overlapping

resonances (given by the Fourier transform of C f (e) if the

arrival-time of the incident pulse is very short) would have

the form

ro - p*
pet) = J fen e dr (5)

which in general is certainly not exponential.

Consider, however, the implication of assuming

that the number N of open channels is very large, N >> 1.

Because of their maximum randomness, the |g ] 2 are ideally

suited to describe this limit, for they can be expected to
N

behave like independent random variables, whose sums \ |g |2,
c=l q c

in the large - N limit, become random Gaussian variables by the

Central limit theorem, with distributions whose widths are

proportional to N 2 . Although the '." are not exactly

equal to these sums, this clearly implies that the width of the

r -distribution p(D will become very small in the large - N

limit. In this limit (with no further conditions on transmission

coefficients), the r ,s can be removed from the average in

Eq. (3) and replaced by their average. Defining the average

of the KKM r ,s to be
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we thus have

and correspondingly the occupation probability of the compound

nucleus becomes

P it) /- e~ *

I.e., requiring nothing but the condition for Eq. (8) on the

KKM parameters, the system of overlapping resonances decays

exponentially, with a decay rate given by Tv ; because

of the statistical independence of the KKM r 's ,

their average is precisely the (exponential) decay rate of the

overlapping resonances in the limit of many open channels.

By comparison, AWM obtain, in the same N » 1

limit (expressed as Tr p » 1) ,

C C€) =z <(T.t> 1-&TL (9)

which implies that

(10)

This may at first sight seem strange, since AWM observe that

in aeneral rAWM > V , but by -T they mean twice the
corr.

average of the "true pole" distances from the real energy

axis, i This is no contradiction, but merely implies



that rvVM ^ ?„ „ , which is indeed born out by a numerical

calculation3 of ""„_,.. carried out some years ago.

But what of the AWM unitarity sura rule,

** D

For camparison we recall that average unitarity is expressed in

KKM long ago by

Tr P =

where

KKM '

(13)

A
and we have assumed

here and throughout, we do not consider direct coupled channels effects)

Eqs. ;1O), (11) and (12), rather than contradicting each other ,

simply imply that

(14)

We are not able to provide an estimate of the right-hand side

of Eq. (14), but by analogy with what is known about "tru*

pole" parameters, we suspect that in the r >> D case considered

here, it is greater than unity. Its actual value does not seem
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to be of great significance, however, for we recall that neither

of the D's is physically observable. D R K M is the spacing of

AWM"KKM poles" and D is the spacing of the bound (q-space)

states of H , the "model hamiltonian" employed in their H =

= H +V approach.

Finally, we note that the ratio of Eq. (14) can

be evaluated in the limit of very strong coupling of the AWM

model states |y> to the continuum, since, amusingly enough,

this limit implies very weak absorption from the optical space

(P). I.e., as V-M» , the resonances approach the weak-absorption

limit r « D and g c*0 , (for any definition of r and D) ,

in which very little flux penetrates into the compound-nucleus.

The argument is immediate: if '/-»•=• , then the imaginary part of

the optical potential,

w = (15)

also becomes infinite. But this implies an infinite change in

momentum as a wave attempts to cross the boundary - and this in

turn makes the reflection from the boundary perfect. No flux

enters the interior of the nucleus, so the compound states are

never excited. Hence the conclusion: strong coupling Implies

weak absorption. The resonances in this limit are non-overlapping,

T = r and Eq.(14) (which obviously obtains in this limit)

implies that D A W M = D K K M .
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