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ABSTRACT

Heavy-ion elastic scattering is discussed as containing

two features; over all optical behavior characterized by

several physical parameters such as the size of the system, the

- .rength of the Coulomb interaction, etc., am? deviations from

t.iis behaviour related directly to some aspects of the under-

lying nuclear structure. Two examples of such deviations are

discussed in detail. The first is the anomalous back-angle

scattering of no-nuclei. The second example is connected with

the effect of deformation.
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I. INTRODUCTION

In discussing heavy-ion elastic scattering one usually

emphasizes at length the wave optical behaviour. Such behaviour

comes about as a result of several gross properties of the

system. Its relatively large size, the strong absorption present

(diffraction), strong Coulomb repulsion and nuclear attraction

(refraction, rainbow and glory) and a well-defined surface

region (determining the fall-off of -jS- in the shadow region) .

These features, quite common in most heavy-ion systems, constitute

a convenient and useful "language" with which the elastic

scattering may be? described and analyzed.

Nuclei clearly exhibit other features besides the

gross ones mentioned above. These other properties are more

closely relatei to specific nuclear structure aspects, e.g.,

deformation. Thereiore one would expect several important

deviations from the optical behavior. Here, we shall discuss

in detail two such deviations.

The paper is divided into two sections. The first,

section II deals with the anomalous large-angle scattering of

na-nuclei. We shall concentrate on direct reaction interpretation

of the anomalous behaviour and leave out completely intermediate

structure resonance explanation. In section III we turn to the

effect of nuclear deformation on ~ at not too large energies.

A convenient vehicle through which one may discuss the effect

of the coupling to low-lying collective states is long-range

absorption, which we shall discuss in detail.
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II. ANOMALOUS BACK-ANGLE SCATTERING

A well-known case usually cited as exhibiting

deviations from pure optical behaviour is that referring to

systems behaving anomalously at back angles (a-scattering,

16 280 + Si , etc.). What one usually discovers in these systems

is a large increase in
Ruth

(8) at back angles accompanied

by a rather regular angular structure. Further, the excitation

function — - — (TT,E) at e = IT exhibits quite a conspicuous
°Ruth

intermediate structure with an average width of about 1 MeV.

To put the situation into perspective we show in Fig. 1 a plot

Fig. 1: Cross-sections at 9 = 180 vs . E-

Dashed line is the pure Coulomb elastic

16 28
scattering cross-section for 0+ Si.

Dotted line is the cross-section obtained

with the E-18 potential. Full curve is

the experimental I80°-excitation function
1 c 28

for 0 • Si , and dashed-dotted one

for 160*3°Si.
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e*of the experimental excitation function . (E,ir) for

1 6O+ 2 8Si and 1 6O+ 3 0Si. One sees clearly that the data sit

at a mid-point between a pure Rutherford (no nuclear structure

whatsover) and a pure strong absorption, E-18 (nuclear structure

manifested purely optically).

Several interpretations have been advanced in the

quest for a consistent description of the data. For a detailed

discussion we refer the reader to the recent review by Braun-

2)Hunzinger and Barrette . These interpretations range from

a pure resonance, intermediate structure, picture affecting

both the angular distributions and the excitation functions, to

a pure-direct picture involving basically coupled channels

feed-back-type effects. Neither of these extreme pictures

seems to account for all facets of the data. Although recent

measurements of angular distributions of a-transfer reactions,

16 28
as well as inelastic scattering, of systems such as 0+ Si

indicate that a pure, isolated resonance generated, intermediate

structure interpretation of the gross structure of the anomalous

back angle elastic scattering is not viable, owing to the lack

of clear channels correlations, some type of resonancebased

phenomenon is, however, certainly taking place and generating,

at least the fine structure seen in most excitation functions.

Simple "direct" models have also been proposed for

the purpose of explaining the gross features of the cross,

section at back angles. These range from simple changes in the

"normal" optical potentials to simple changes in the "normal"

elastic S-matrix. The necessity for invoking these changes in

the normal "E-18" type description arose from two important

observations; (a) the quite conspicuous rise in — 2 — (180°)
aRuth

to a Value, at E c m * 35 MeV , almost four orders of magnitude
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bigger than the corresponding "E-18" value, and (b) the period

of the angle oscillations, A8 , supplies a value of the contributing

angular momentum 40(E) through A6 = -s*-TpT , which is twice

as large as the angular momentum, *El
E) that determines the

period, AE , of the energy oscillation in the 180°-excitation

function, AE • 1 /
3E

The first anomaly has been accounted for through the

use of the so-called surface transparent potentials. These

optical potentials are characterized by an imaginary part with

very small diffusiveness which results in an Increased

reflection. However, these potentials, though quite adequate

in describing the angular distributions, fail dramatically in

describing the second anomaly associated with the excitation

function. This clearly points to the need for a second

important modification of the normal optical E-18 potential,

namely the addition of a small, albeit important parity-dependent

component (proportional to (-}*) , which would not modify the

angular distribution since it contributes mostly at back-angles.

The 180° excitation function would then behave approximately

2 fVE> 1
- sin -=»— IT , thus giving rise to a local period AE =

2
, permitting the identification £Q(E) = 4P(E) . Ref.

3, exhibits the type of fit to the E-osciilations obtained by

the Minnesota group with the above-mentioned two modifications

in the optical potential describing 160r 28Si . A fit of a

similar quality to the E-oscillations in the 180° excitation

function was obtained in Ref. 4 using, as a starting point,

the S-matrix description (Fig. 2). The elastic S-matrix used

contains a normal optical E-18 type contribution, a parity-

independent "window-like" contribution that peaks at an l ,
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Fig. 2: Fit to the 180 - o<*

excitation function of

16O+28Si obtained in

Ref.4 .
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slightly lower than the grazing one, and a small parity-dependent

"window". The elastic S-element without the parity-dependent

window was found to resemble very much the one generated from

the surface transparent optical potential. The findings of

Ref. 4 clearly support the conclusions reached by the Minnesota

group concerning the need for a surface-transparent, parity-

dependent optical potential.

A possible mechanism that gives rise to the anomalous

behaviour of the heavy-ion system could be the coupling of the

elastic channel to several important a-transfer channels. In

16 28
the case or. 0 + Si , we may associate the parity independent

window to the process depicted in Fig. (3). Similarly the

parity dependent window can be attached to the diagram shown in

Fig. (3c) . This diagram does give rise to a (-) term since
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Fig. 3 - Contributing ^ /""" >""""-.v»»*-:

processes to anomalous 4 4 +

•a /a /a
scattering. ; / /

Si £—^ 0

c)

it represents an effective elastic transfer process.

We endeavour here to present a short account of how

these diagrams generate £ and E windows.

The T-matrix representing the scattering in the

elastic and a-transfer channels subspace may be given by

T = T tSlcT Sl[ n»

where T is diagonal and represents the "optical" E-18-type

contribution, il is the corresponding Miiller distorting

operator

SI =1 /Y-£ T
b (2)
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and T1 i s given by

and thus contributes to the transition. (V is assumed to be

non-diagonal in channel space).

The e l a s t i c element cf T may ba generated perturbative

r=

_l t J \/ f-1 *•" \J f~ \/ 11" ' (4)

The second term corresponds to the diagram shown in Fig.(3a,b).

In order to exhibit the general characteristics of

the contributing processes, we shall present a simple evaluation

of these corrections based on the following approximations

8 0 o
j G. -»--iir5(E -H )

2) Use no-recoil.

The partial wave amplitude corresponding to a process

of order n is then given by (ignoring angular momentum

transfer)

&*) K K/«j >«,-,) 71 /-/Try
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where I£ in the usual DWBA radial integral, K£ is given by

a corresponding integral involving the dual radial wave

function e. the Q-value and A. are spectroscopic factors.

The K,s appearing in K, are bound state wave numbers. As

shown in Ref. 5 the product K£I£ has a clear window shape

whose details are determined by, among other things, the

Sommerfeld parameter, and the K,s .

The elastic transfer diagram shown in Fig. (3c) can

be evaluated along similar lines. Actually the fit obtained

in Ref. (4) was partly tailored according to the description

given above. The higher the order of the process,the narrower

the resulting Jt-window would be, as expected in any coherent

multistep process.

The product KI also exhibits an energy-window

6)
shape . To exhibit this characteristic of our anomalous

transfer contribution to the elastic scattering T matrix, we

use a semiclassical description of the transfer process,

originally developed for the DWBA amplitude by Brink'7' and

Broglia and Winther ' , and recently generalized to multistep

9)transfer processes by Kanunuri and Matsuoka ' . The transition

amplitude for a two-step sequential transfer via an intermediate

state m is given by

_ « ©

where f is the one-step form factor given by KM .

Specifying the intermediate state to be 12C + 32S

and considering elastic scattering f = i , we obtain for
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(7)

where

X -

* =.

F(x) i s Dawson's integral

N. , N- are nonnalization oonsts.

AE = E - Ê = E - 1 7 . 8

In the above treatment absorption is not taken into

account since it is implicitly assumed that one is considering

only the grazing I . We modify the above expression by

considering the following estimate for the absorption

A = „,

when, as implied, w
Eio is the imaginary part of the E-18

optical potential which is used rather widely to describe the

16 28
elastic scattering of 0+ Si at small angles. The energy

window associated with the round-trip a-transfer contribution

to the elastic scattering is identified as the product A C'* ,

which can be written as

(.1) ) 1J

Figure (4) shows the resul t of applying Eq. (9) to

the 0 + Si system, both for the parity-independent ccmponent

of the anomalous E-window, Eq. (9) and the parity-dependent

window AC* jWith c | . calculated following the same procedure
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as the one used for evaluating c[?' , Eq. (7) . in both cases

006

004

0.02

EXCIT FUNCT
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55

Fig. 4 - Energy windows calculated using Eq. (9). (From Ref. 6).

the same anomalous radius parameter, us 7.6 fm (used

previously in Ref. (4)) was employed.

As one can see the agreement of E. with the

average trend of the excitation function data is quite good.

The fine structure oscillations,according to our model, result

from the interference between Acj^ and A c|^ (see Figs.

(3a) and (3c)).

We should stress that there is no a priori reason

that suggests the same value of for both AC

As a matter of fact it would seem more natural to

take a smaller value for R in A c j ^ than that in A j ^

since the elastic transfer of three 01,8 is a higher ordez

process than the round-trip process of one a . Furthermore
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the data points themselves show that thre is a second major

peaking at about E =45 MeV.

5(2)In Figure 5 we show our result' using R = 7.36 fm

and R(3) « 5.8 fm.

Fig. 5 - Same as Fig. 6, with two values of the anomalous radius.

We could not push the peaking of the Ac],' to

higher energies, as that would require the use of an anomalous

radius at which W
E _ I Q becomes quite large and a more exact

treatment of A would be needed.

The sensitivity of our calculated window functions

to the distance of closest approach of the corresponding

transfer processes, is a possible indication that the anomalous

back-angle data may furnish invaluable information concerning

the ion-ion interaction at small separation distances. This

fact is intimately related to the clear interplay between the



.13.

quasi-elastic, a-transfer processes, and the elastic scattering.

An important consequence of our findings is connected

with the question of de-averaging the 180° ±5 -excitation

function data addressed by Frahn and Kauffmann . These

authors correctly pointed out that as a result of the quite

common procedure of averaging the data points in an angular

interval -5° & A9 á 5° around 6 = 180°, one would necessarily

end up with smaller over-all excitation function than the

180°-one. Clearly when confronted with dynamical models that

supply a 180 -excitation fun tion, the data has to be de-averaged.

We would like to point out at this point that this

de-averaging procedure Is model-dependent. It depends crucially

on the value of critical radius attached to the mechanism

responsible for the energy-structure in the excitation function.

Therefore, in the light of our multi-step a-transfer model, the

results of Ref. (10) have to be revised.

To show this, we first consider the results obtained

by Frahn and Kauffmann . The measured excitation function is

an average of the differential cross section o(8) over a

solid angle element Aft = 2TT sin 6 46 with an interval A6 =

= (iT-a,TT) , divided by the Rutherford cross section at 6 = n ;

this function will be denoted by ~p{E)

It is clear that p can be evaluated if the angular

dependence of p(6,E) = o{6,E)/aR(n,E) is known in A© . It

is known, however, that the enhanced large-angle scattering

cross section has a universal structure given by
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(TI)

s
where Giü, E) is a slowly varying function of = TT-6 compared

to the Bessel function JQi7fo). The value À = Ê + ̂  » 1

denotes the anomalous angular momentum of the enhancement-

causing part of the partial-wave S-matrix. It is related to

the radius parameter through

I

A = k R f x —^—; H2)

where É is the "threshold" of the anomaly. E»17.8 MeV 6)

The de-averaging function D(ot,E) defined by

can be evaluated in good approximation as

-1
(14)

The function D(«,E) is quite sensitive to the

values of I and accordingly R . To show this we exhibit in

Fig. (6) the above function calculated with the two values of

the anomalous radius referred to above R • 7.36 fm and
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Fig. 6 - The

averaging func-

tion D(a,E)

calculated with

R» 7.36 fin

(full line) and

R=5.8 fm

(dashed line).
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By multiplying the data points of Ref. 2) , in the

energy range 20 MeV< E < 30 MeV with D(E,5°) calculated

with R1 = 7.36 fm and the points in the energy range

S0<E c m<50MeV by with (see Pig. 2),

we obtain a de-averaged 180°-excitation function that is more

regular, with the second peaking at ^cm
m 45 MeV attaining

a value very close to the first major peaking at E * 23 MeV.
cm

This is in contrast to the finding of Ref. 10) where there was

a great disparity in favor of the second peaking

It would be quite interesting to test the sensitivity

of the de-averaging function to the anomalous radius experimentally

by measuring averaged data for two different values of the

averaging angle interval.
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II. STATIC AMD DYNAMIC DEFORMATION EFFECTS; LONG RANGE ABSORPTION

Another important case showing, a clear deviation from

the optical behaviour involves the scattering of deformed

targets and/or projectiles at energies close to the Coulomb

barrier. As a result of the strong Coulomb excitation of

collective states, one expects a gradual depopulation of the

elastic channel, even at sub-barrier energies. A nice example

showing this effect is presented in Fig. 7 involving the system

.--*._«--«. i -f-

b

1.0

0-8-

oro.6 -

75 0A

0.2 -

>

-

1

tí-

r̂ -—.

20 60 100 140 180

Fig. 7 - Spectra and -2- for the system 0 + Sm. (From
R

Ref. 11).
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20Ne + ASm , A= 148, 150 and 15211>. The strength of the

coupling of the elastic 0+ channel to the 2* state increases

gradually from vibrational < Sm) to rotational ( 3m), as

is clearly seen ir the Ne-spectrum (Fig. (7.a)). Consequently

the depopulation (absorption) in the Ne + Sm is much

stronger than either the 20Ne+150Sm and Ne • Sm . The

cross-section ratio ° * -. AQ reaches its smallest valuo

of -0.2 at back angles.

The trend of the data clearly points to the presence

of long-range absorption to be contrasted with the nuclear

short-range absorption responsible for the diffractive behaviour

discussed earlier. Actually the short range nuclear absorption,

20 Aat the sub-barrier energies involved in the Ne + Sm system

under discussion, would give rise to a minor deviation from the

Rutherford scattering, concentrated at angles very close to

180°.

The long-range nature of the absorption referred to

above cannot certainly be accounted for by a change in the

optical potential, and one has to resort to coupled channels

calculations. A more drastic departure from the optical

behaviour, arising from the same coupled channels effect is

shown in Fig, (8) . The cm energy at which the data were

taken is slightly above the Coulomb barrier of 18O+ 184W ,

and then one would expect a conspicuous "Fresnel" form of

— 2 — in the forward hemisphere. As one can clearly see the
°Ruth

long-range absorption is quite strong even in this higher-

energy case, resulting in a drastic modification of the "Fresnel"
12 184

shape. Similar features are seen in the C+ W system

at E. . « 70 MeV.Lao
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1.0 -

Pig. 8 - -2- for 1 8 O +
1 8 4 W at

90 MeV. (From Ref. 12). Also shown

1 8O+ 2 0 8Pb (90 MeV)in i fOr

and 12C + 1 8 4W (70 MeV).
u>

0.1

900 SM K» i»
OttMWL NUMKR

» 40 CO SO IOO

A way of simplifying the analysis of data such as the

one above is through the construction of a component in the

optical potential that represents the feed-back of the inelastic

2* channel into the elastic channel. This may easily be done

through Feshbach's theory of the optical potential, which gives,

in the particular case of two channels, the following form of the

polarization potential

H-)
(15)

where VQ2*r) i s t n e c o uP l i n9 potential and i*+' (?,?•) is

the 2+-channel Coulomb-modified Green's function.

When expanded in partial waves, the radial part of

V * , would necessarily be angular momentum dependent and non-
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local. However a locally-equivalent potential may be obtained

approximately through the identification

+ (Kr>Jr'^w '"'"<-* í16)

where ty (k,r) represents the radial wave function in the

elastic channel. At sub-barrier eneigies, ty,(k,r) may be

approximated by the regular Coulomb wave function P4(kfr)

whi^h makes possible the construction of v
D Oi'

r^ • 1*ie resulting

expression for V ol(
r) may be written as , ignoring the

energy loss involved in the excitation process.

j£í ,£0
As a result of the assumption that the energy loss is

zero V .(r) comes out to be purely negative imaginary. The

situation is reversed in the case of large energy losses, as

V , (r) becomes predominantly real. The reason is that in the

former case the vibrational period is much larger than the

collision time (sudden limit), therefore the system simply does

not have enough time to react during the collision process and

accordingly no modification are inflicted on the real inter-

action. In the large-energy-loss case (virtual excitation of

giant resonances),the system manages to execute several

vibrations during the collision process, thus resulting in a

change in the effective real ion-ion interaction without

inflicting much change in the absorptive component. For a

detailed discussion on this point see Ref. (14).

The above long-ranged potential is a rather smooth
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function of both 2. and r . This feature permits the inclusion

in — 2 — of the effect arising from the polarization potential
°Ruth

in a simple manner. At energies below the Coulomb barrier the

elastic scattering amplitude is dominated by the near-side

Coulomb part. Accordingly only one turning point will contribute.

Since owing to the fact that effect of long range absorption

due to Coulc?ib excitation is mostly felt at not too high

energies, one expects that the nearside amplitude dominates.

Further, considering the polarization potential as a small

perturbation, we may evaluate the resulting correction to the

total phase shift using the WKB approximation

where 6, is the "spherical" complex phase shift and k

and r.(Jl) is the corresponding local wave number and turning

point, respectively. Since V .(r) is of a long range and

acts in the interval rt(£) < r < <*> , we may replace k.(r) and

r.(D by their Coulomb forms.

The stationary phase evaluation of the nearside

amplitude f NO) then yields

'A

At sub-barrier energies, £> i\.) may be considered

predominantly Coulomb with a small correction arising from
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Re V p o l(r) .

(20)

— I

where

Our one-stationary-phase-point approximation for -rx

then reads

C

which, upon evaluating b and -r̂  to first order in A8 ,

can be cast into the following

-2-Í8) -

1JJ 1J <22)
\

The above formula was found to be quite adequate in

describing sub-barrier elastic scattering of heavy ions. For

strongly deformed nuclei the inclusion of the low lying 2*
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in evaluating V results in a almost purely absorptive

polarization potential. The correction A8 due to the real

component is quite negligible. Using V' of Eq. (17), then

results in

-£ f

The angular function g(0) attains its maximum value of unity

at 8 = 7i / and it vanishes at 6 = 0. The solid lines in Fig.

(7a) are simply the — - 2 — of Eq. (23) calculated after
°Ruth

approximately accounting for the small energy-loss encountered
70 A

in Ne + Sm, through the quantities gT(£T) and g p U p )

with Ç = | n f (see Refs. 13 and 14).

In the other extreme of scattering of spherical nuclei

where Coulomb excitation of low-lying states is negligible, the

virtual excitation of giant resonances come into play. Here

the adiabatic limit gives a purely real Jl-independent polarization

potential which has the following form for the giant quadrupole

case

cr> = -

(24)
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where AE i s the exc i tat ion energy of GQR (AEl - -77?
A / J

and B(E2) i s the corresponding reduced excitation probability.

When used in Eqs. (6) and (8) ,• we obtain the following
o 15)expression for —
J

^- = J -

"£) MO <fc^j>9-

L
Though quite small, the deviation from unity of

— - — due to the virtual GQR excitation together with other
aRuth

small effects, has been observed recently by Lynch et al. .

Although we have presented our expression for •£- ,

Eq. (23), that correspond to the case of one real stationary

phase point, adequate at sub-barrier energies, the generalization

to above barrier energies is quite simple. This comes about

as a result of the rather slow l-dependence of V ,(r), which

even in cases involving two stationary phase points, i.e.

Coulomb rainbow scattering or Fresnel diffraction, can be

factored out as a common factor to both contributions. This is

particularly valid near the rainbow angle (or critical Fresnel

angle). Therefore we may write in general
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(26)

where i corresponds to the average value of the two stationary

phase angular momenta. To show the adequacy of the above

description we show in figure (9) the calculation of ———
ifi 1»« R u t h

for 0 + W at EL=90MeV done both though opt ical model
calculation that included V . and the result obtained from

poi
Eq. (26) with U - 2 — calculated with an optical potential

l°Ruth'o
that does not contain V . . The agreement i s very good.

Fig. 9 - Dashed curve is \ £- \ (Eq. 26) obtained with the
1 R Jo

optical potential, V » 40 MeV , W=9.06 MeV, r =1.313 fm and

a = 0.457 fm. Full curve is obtained when V . is added to
pol

the p o t e n t i a l above. [From W.Love e t a l . , Phys. Rev. L e t t . 33

(1977) 6. The daahed-dotted curve is the result obtained fran Eq. (26).
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