

Université Scientifique et Médicale de Grenoble

INSTITUT DES SCIENCES NUCLÉAIRES DE GRENOBLE

53, avenue dos Martyrs - GRENOBLE

ISN 83.10 May 1888

DIRECT MEASUREMENTS OF HEAVY ION REACTION CROSS SECTIONS

S. Kox, R. Cherkaoui, A.J. Cole, A. Gamp , N. Longequeue, J. Menet, R. Ost, C. Perrin, J.B. Viano

Communication presented at the "International Conference on Nucleur Physics", Florence, Italy, 29 Augustes September 1983

Laboratoire associé à l'Institut National de Physique Nucléaire et de Physique des Particules.

DIRECT MEASUREMENTS OF HEAVY ION REACTION CROSS SECTIONS.

S. Kox, R. Cherkaoui, A.J. Cole, A. Gamp*, N. Longequeue, J. Menet, R. Ost, C. Perrin, J.B. Viano.

INSTITUT DES SCIENCES NUCLEAIRES, 53, av. des Martyrs 38026 GRENOBLE FRANCE *also HAHN-MEITNER INSTITUT BERLIN

Using the beam attenuation method we measured heavy ion reaction cross sections, $\sigma_{\rm R}$, at three incident energies and for several target-projectile combinations 1. The systems studied were $^{12}{\rm C}$ + $^{12}{\rm C}$ (at 10 MeV/N), $^{12}{\rm C}$ + $^{12}{\rm C}$ and $^{20}{\rm Ne}$ + $^{12}{\rm C}$, $^{24}{\rm L}^{5}$ be 7g. (at 30 MeV/N) and $^{12}{\rm C}$ + $^{12}{\rm C}$, $^{40}{\rm C}_{\rm a}$, $^{54}{\rm S}^{56}$, $^{57}{\rm Fe}$, $^{64}{\rm S}^{64}$, $^{56}{\rm S}^{12}$, and $^{12}{\rm C}$ + $^{12}{\rm C}$, $^{40}{\rm C}_{\rm a}$, $^{54}{\rm S}^{56}$, $^{57}{\rm Fe}$, $^{64}{\rm S}^{64}$, $^{56}{\rm S}^{21}$, and $^{12}{\rm C}$ + $^{12}{\rm C}$ and at the Grenoble cyclotron facility SARA, the 83 MeV/N $^{12}{\rm C}$ beam was delivered by the CERN synchrocyclotron. The measured energy dependence of the $^{12}{\rm C}$ + $^{12}{\rm C}$ data agrees well with theoretical predictions by DeVries et al. 2 . In fig. 1 we show the mass dependence of $\sigma_{\rm R}$ for the measured projectile-target combinations at 30 and 83 MeV/N. In good approximation there is a linear dependence of $\sigma_{\rm R}$ on $^{1/3}{\rm c}^{1/3}$ at both energies. The difference in slope for the two curves can be interfreted in terms of an energy dependent transparency. Folsowing Karol 3 we compared our data with model calculations using

 $\sigma_{\rm R} = 2\pi \int_{\rm c} (1 - T(b)) b \ db$ where T(b) is the transparency function at impact parameter b.

By identifying T(b) with $T(b) = \exp{[-2(b)/\Lambda(b)]}$ we extracted values for the mean free path $\Lambda(b)$ of the part of the projectile nucleon overlapping with the target nucleus. For $^{12}C + ^{12}C$ collisions at b = 5.36 fm we find $\Lambda = 5.3$ fm which is in agreement with the value extracted from the imaginary part of the optical model potential.

Fig. 1: Mass dependence of the reaction cross section at 30 MeV/N (triangles and at 83 MeV/N (circles). The solid lines are to guide the eye, the dotted lines link model calculations based on the formalism of ref. 3.

References.

¹⁾ C. Perrin et al., Phys. Rev. Lett. 49, 1905 (1982).

²⁾ R.M. DeVries et al., Phys. Rev. C22, 1005 (1982).

³⁾ P.J. Karol, Phys. Rev. C 11, 1203 (1975).