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ABSTRACT. Contrary to the predominant way of doing physics,

-*** snow* that the geometric structure of a general

differentiable space-time manifolõ can be determined by means

of the introduction m that manifold of a minimal set of

fundamental dynamical quantities associated to a particle

endowed with the fundamental property of covariant momentum.

Thus, general relativistic physics implies a general pseudo-

Riemannian geometry, whereas the physics of the special theory

of relativity is tied up with Minkowski space-time, and

Newtonian dynamics is bound to Newtonian space-time. While in

the relativistic instance, the Riemannian character of the

manifold is basically fixed by means only of the Hamiltonian

state function of the particle (its energy), in the latter

case, «» have to resort, perhaps not unexpectedly, to the two

dynamical entities mass and energy, se-parateiy.



1. INTRODUCTION

It has been claimed1 that maybe the most important

consequence of relativity theory is that space and time are

not concepts which can be considered independently of each

other, but that they must be combined in such a fashion as

to give a four-dimensional description of physical phenomena.

In this context, it has been stated, then, that dynamics becomes

an aspect of geometry. This establishes an intimate relation

between dynamics and geometry which can be considered even in

prerelativistic theories .

In the usual manner of describing the natural world,

this association between dynamics and geometry is customarily

considered <* < rol lows. When building a dynamical model of '"ature

one always t t, ins by postulating a certain space-time and from

there pror < -i ; to develop a certain physics in that arena, which

is then cx<$?dered as a substratum to the physical world. That is,

one usual! . starts frcii a given, preestablished geometry, upon

which a • «^sequential dynamics is established, and it is well

known that the choice of the geometry (of the postulated space-

time) unit'ieiy determines the physics that can be constructed in

that postulated space-time. Thus, just as the only dynamics

compatible with the absolute space-time of Newton is precisely

Newtonian dynamics, correspondingly, in Minkowski space-time,

only the dynamics of special relativity can be naturally built.

In the present work, we intend to show how the introduction

from the onset, In a general differentiate space-time manifold,

of a certain well defined minimal set of fundamental dynamical

allows the specific geometric structure of that



manifold to be fixed. This view is basically contrary to the

usual one and will be detailed below.

Before turning over to the point of view to be

developed here, let us present the special relativistic and

Newtonian cases, as they are usually stated. The four-dimensional

space-time manifold of Minkowski consists of a three-dimensional

spatial hypercone with time pointing along its symmetry axis.

The geometry of this manifold has as its invariance group the

full Ix>rentz group (or group of Poincarê):

x'v = L* xv + aM (1.1)

with greek indices running from 1 to 4. Here, (Lw) is a '4x4)

orthogonal matrix and au is an arbitrary (constant) 4-vector.

Since it is perhaps somewhat less familiar than its

Minkowski counterpart, let us dwell - although still in a

cursory fashion- with the Newtonian case in a little more

detail. In the Newtonian case, the 4-dimensional space-time

manifold was first introduced by E. Car can2 as an affine

manifold Ei,, consisting of a 3-dimensional space-li>;e hypersurface,

orthogonal to the absolute time axis. This geometry fixes the

group of symmetry

x'° = G* x6 -r k° (1.2)

Here, the matrix (G°) has the (3+1)« (3+1) block form:

) - !6 1°
(1.3)

where G is a (3x3) orthogonal matrix and the (3*1) column vector

v is arbitrary. This geometry (and its related symmetry group)

determines both the absolute kynematical and dynamical entities,

that is, tnose entities whicn are left invariant by the



transformations (1.2).

form

The matrix (G°l can be diagonalized and put in the

GGT

From this, it is seen that the metric (or fundamental) tensor

(n*g -=(n)n g of the affine Newtonian space-time E^ is

singular '**. This fact immediately distinguishes Newtonian

space-time from its special-relativistic counterpart. In fact,

while in this latter case one can introduce dual metric tensors

(r*g and (r*goi, one being the inverse of the other, this

cannot be done in EM, since there the inverse does not exist.

Therefore, it is precisely in E,,, the Newtonian space-time,

where the distinction between covariant and contravariant

4-vectors will be expected to be more fundamental than in the

special relativistic case, where there exists a complete

transposition between contravariant and covariant quantities.

This, of course, should not be taken as meaning that xn the

3-dimensional space-like hipersurface E3 of Eu this raising or

lowering of indices is not fully justified, since that, submanifold

E3 ib Euclidean. This last fact leads to the consideration made

a long time ago by E. Cartan that E,, is not an Euclidean

manifold, but its affine connection, V,, is Euclidean, which

is just another way of seeing that the metric tensor of E4 is

singular.

2. CONTRAVARIANT AND COVARIANT VECTORS

When examining the interconnection between physics



and geometry it is of paramount importance to establish the

essential distinction that exists between contravariant and

covariant entities. A very striking aspect of this distinction
5

was pointed out by M. Schonberg who observed that while the

contravariant vectors are the ones which are more intimately

related with geometry, the covariant vectors are the ones

which are more closely connected with physics. In this regard,

two instances come up immediately to mind: the position vector

x, which is essentially contravariant, and the momentum p, which

is essentially covariant. In this section, we discuss some

aspects which manifest this distinction.

Given the vector affine space E , the linear mapping
u»:E +R of E over R defines a linear form over E . The vectorsn n n

of E are the contravariant vectors x, which, in a given basis

{e.i are written as:

x = 7i1ei (2.1)

The linear forms over E belong to another vector
* • + * *

affine space E , dual of E . The vectors x e E are then n n

jovariant vectors u>(x):

x* - -i(x) = uie^x. i = a ^ 1 (2.2)

where we can consider the a. = u(e.) as the components of the
covariant vector * in the !ual basis ix1} = ie }, i.e., we may

- > • * *write a covariant vector x eE as:
n

x* = xfS (2.3)

with x = a (While the x are considered as vectors components

in E , in the dual space E they are linearly independent one-

forms. )



The geometrical meaning of the contravariant ana

covariant vectors is obtained through the introduction of an

affine space (0,E ) = £, , which is a space of . oints having a

structure of a vector space depending on the point 0, taken as
6

the origin . It should be noticed that neither a metric was

defined in E , nor a distance in £ •n n

The contravariant vector x = x e.eE is represented

geometrically by an oriented line, whereas the covariant vector

x = x.e eE is represented by two parallel hyperplanes, since

we have a family x* = x.e = w(x) =• a.x « k of parallel hyper-

planes, depending on the parameter k. Since the coordinate axes

are intercepted at x = k/a., the components of a contravariant

vector have dimensions of length - an extensive quantity - while

the covariant vector components have dimensions of the inverse

of a length - an intensive quantity.

As appropriate examples, we notice that the position

vector x is essentially contravariant, while the gradient 3*/9x

of a scalar function t(x) of position is essentially covariant.

Recalling that in physics the dynamical quantity momentum p is

defined as <*3*/3x, this definition makes momentum a covariant

vector, and hence it is much more appropriate to write down the

fundamental equation of Newtonian dynamics as f • -dp/dt, then

in the form I = m d2x/dt2.

With contravariant and covariant vectors, many
7

different kinds of algebras can be built . Thus, let the

contravariant vector V » V^1. and the covariant vector U * u.i^

be written in the reciprocal basis I. and I3 of a certain

n-dimensional affine space. The invariant U.V"* is denoted here

by <U,V>. Introducing the symbols (V) and (U) associated to the



vectors V and U by the anticommutation rules

[(V), (V')]+ = 0

[(U), (0')]+ - 0 (2.4)

= <v,u>iG
n

we obtain the Grassmann algebra G (1_ is the unit of G ). This
n G_ nn -*. +i

algebra i s generated by the elements ( I . ) and ( I J ) through

the anticommutation rules:

(2.5)

n

Equations (2.5) show that, although G is an algebra

cf a n-dimensional space, it has the structure of a Clifford

algebra C. of a 2n-dimensional space. The theory of G is,

essentially, that of the spinors of E__. The Grassmann algebra

G , taken over the complex numbers, is equivalent to a n- dimensional

Jordan-Wigner algebra. Taking the adjoint (I3) = (I.) , the

anticommutation rules (2.5) become the n-dimtnsional equivalent

to emission and absorption operators of the second quantization
8

for fermions .

Similarly, one can define an associative algebra L ,

with elements denoted by {V} and (U), satisfying the commutation

rules:
[ { V ' ) j - 0

IÍUM01}] = 0 (.2.6)

}" = <v,3>iT



(.1 being the unit element of L , and the generators of L
i* n n
n

satisfying the commutation rules:

,iii}l = 0 (2.7)

Equations (2.7) provide the Heisenberg commutation rules for

the coordinate Q = Q3q. and momentum operators P = P.p3, the

generators of which are given by q. = {I3} and pJ = i fi'^I3},

where n is Plank's constant. Thus, L over the complex numbers

is equivalent to the Heisenberg algebra for the operators Q and P

of a quantum system with n degrees of freedom. It can also he

shown that quantum kynematics is related to the sympleotia

geometry of the phase space of Hamiltonian classical mechanics

through its symplectic algebra L . Besides, the algebra L over

the complex numbers provides the n-dimensional equivalent to the

Dirac-Jordan-Klein algebra for the emission and absorption

operators of the second quantization for bosons. In 4-dimensional

space, the action algebra, obtained from dV = dp. dx , i=l,2,3,4,

provides a quadratic form in 8 variables. This is the only

instance in which there is a triality: one vector and two half-

9 2 3
spinors, all with 8 components and with similar properties "'

3. BASIC POSTULATES

Having presented the above considerations upon the

different algebraic structures generated by covariant and

contravariant vectors, we may begin to assign c dynamical

meaning to some of these vectors.



As we already said, the usual way of building physical

models and/or theories consists in postulating a given space-

tine manifold, which is almost always metric (it can be shown

that a differentiable manifold always admits a Riemannian

11 12

metric ' ) and where that metric is always fixed ab initio.

This is the fixed space-time framework upon which a certain

theory is built.

Our starting point here is just the opposite: we try

to determine the geometry by means of the introduction of a

certain minimal number of fundamental dynamical objects. This

point of view opposes the usual epistemological stand, which

begins with the notion of space (of Aristotle, Newton, Minkowski,

Riemann, Weyl, etc.) as the basic entity in Nature.

The only way a physicist has of interacting with Nature

is by means of measuring processes (observations transmitted first

to these senses and from those to the brain). The only manner of

an interaction reaching the senses (and thence the brain) is by

means of a signal which transfers information from the system to

the observer. For this, a physical field is needed, to which a

certain energy and momentum densities may be ascribed, and

which are the physical agents for the transmission of the signal.

Therefore, it is only through the transfer of energy and momentum

that a certain knowledge of the World, that is, of natural

phenomena, may be obtained; in particular, a certain knowledge

of its space-time features. In other words, the very notion of

space-time is strictly dependent on the notion of energy-momentum.

In the very cosmological model most widely accepted nowadays -

the big-bang model - the creation (expansion) of space-time is

inextricably associated to the total initial energy-momentum
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density of the universe. That is, the initial dynamical content

is the only determinant on how the geometric structure unfolds.

Thus, let us consider the antisymmetrical bilinear

form dV - dp dxw, built up with the covariant momentum four-

vector p and the contravariant position four-vector xM. The

hypervolume dV (physically, the action) is constant with respect

to a variation of a parameter X(which may be identified with

the cosmological time). The universe's initial conditions were

such that for A-0, the momentum content was extremely high,

whereas the space-time content was extremely low. We have here

the most basic and fundamental observation refered above that

the covariant vectors characterize the dynamical aspects whereas

the contravariant ones characterize the geometrical aspects.

With the aim in mind, then, of trying to determine a

certain geometry (i.e., a certain metric) starting from a minimal

number of dynamical objects, we begin by postulating the existence

of a space-time manifold, the most general possible, with the

least number of predetermined geometrical properties. Next, we

shall populate the naked manifold with certain dynamical objects,

taken as fundamental, trying then to determine what kind of

manifold is compatible with these dynamical objects.

He shall take, then, as basic postulates of all our

future considerations the two following ones.

I. FUNDAMENTAL DYNAMICAL POSTULATE. The covariant 4-vector

momentum p is the fundamental dynamical object.

IX. FUNDAMENTAL GEOMETRICAL POSTULATE. The contravariant 4-vector

position xv is the fundamental geometrical object.

Based on this last one, we further postulate:
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III. EXISTENCE OF A DIFFERENTIABLE MANIFOLD. There is a

4-dimensional differentiable manifold, V\(x v), homogeneous

in the (contravariant) spacer-time coordinates xw, which

constitute a local system of coordinates (a chart). This

parametrization need not cover the whole manifold Vft.

Following our plan, let us start trying to determine

the specific nature of the manifold Vi» by means of the incorporation

of specific dynamical entities> For this, we notice that

Hamiltonian dynamics furnishes a natural way of relating dynamics

and geometry, which is made possible by the fact that it is built

up with the dynamical object p and the geometrical object xu

(leading to an even-dimensional manifold with a symplectic
9

structure on it). In the suggestive words of V.I. Arnold :

"Hamiltonian mechanics is geometry in phase space." This built

in relationship between dynamics and geometry, allowed by the

Hamiltonian description, is fundamental for the establishment

of the foundations of both classical and quantum mechanics, and

recalls to mind the claim made by some people that perhaps the

most important lesson of all from Einstein is that geometry has

its own Hamiltonian.

Before starting, we would like to observe that, in
13

what follows, we take, as Schõnberg does , particle dynamics

as the foundations of the world geometry. However, attention

should be called to a recent paper by V. Kaplunovsky and H.

Weinstein where they formulated a quantum field theory which

"abandons as superfluous the notion of the four-dimensional

space-time continuum." In their own words, they developed

"a framework which allows the treatment of the topology and
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dimension of the space-tine continuum as dynamically generated."

Actually, what they did was to present examples of "quantum systems

which start out with a well-defined notion of time but no notion

of space, and dynamically undergo a transition to a space-time

phase - a phase in which the physics of the low energy degrees

of freedom of the system are best described by an effective

Lagrangian written in terms of conventional relativistic fields.

In this sense, the notion of the four-dimensional space-time

continuum as the arena within which the game cf field theory

is to be played is replaced by the notion of the space-time

continuum as an illusion of low-energy dynamics."

He shall analyse separately the cases of relativistics

mechanics (.both the general and the special theories) and of

Newtonian mechanics.

4. REIATIVISTIC MECHANICS AND RELATED GEOMETRIES

Let us introduce into our "naked"* ' four dimensional

(*) The manifold * 'Vi* is "naked", ab initio, due to the absence
of dynamical quantities besides the momentum p»(Postulate I),
and to the absence of any geometrical structure besides the
existence of coordinates xf(Postulate II).
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differentiable manifold Vi»(xw) a particle of four-momentum

p (the fundamental dynamical object, according to Postulate I),

describing a world-line X characterized by x v (the fundamental

geometrical object).

If we now associate to this particle its Hamiltonian

state function of general relativity, H(p ,x ), this allows the

definition of a contravariant vector p ,

p u = d / 2 ) ^ | - H(pp,x
p) (4.1)

to which no dynamical meaning is assigned a priori. The Hamiltonian

H is the energy function of the particle. Imposing that this

energy is given by the usual square of the four-momentum, this

automatically endows the manifold Vi» with an inner product

P UP
P - p\ - 2H(pp,x

p) (4.-2)

This atribution of an inner product to Vi» is of

course equivalent to this manifold being both:

(a) metric

p w = g M V ( x A ) P v (4.3)

where g w v (x ) is the contravariant metric tensor of V»»,

satisfying the orthogonality conditions g"p g = 6V, and

(b) Riemannian

2H = g M Vp pP v (4.4)

Moreover, since we imposed that the inner product (4.2) or

(4.4) must represent an invariant (the energy scalar function)
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of the general relativistic dynamical group, the metric has to

be indefinite, with signature of absolute value 2; in other

words, the metric of Vi» has to be peeudo-Riemannian.

We conclude, therefore, that resorting to the dynamical

momentum p (Dynamical Postulate I), and ascribing to the dynamical

function H(p ,xp) the meaning of the particle's Hamiltonian state

function of general relativity, it is possible to endow the
(ri 13

manifold V«, with a pseudo Riemannian metric

It should be pointed out that 'more than anything else)

we are really dealing here with an epistemological option (Leibniz

inspired), which involves an opposite reading to the usual one.

Actually, there is nothing remarkable here: we are merely

stressing that the fact of the energy being given by the square

of the 4-momentum may be taken as automatically leading to the

Riemannian character of the manifold.

Next we observe that in (4.1) H was differentiated with

respect to its covariant variables p , defining thus a contra-

variant vector pv. Obviously, the energy function may also be

partially differentiated with respect to its contravariant

variables xv, defining then a covariant vector + :
3H(p .xp)

We recall that from the theory of first order partial

differential equations there is the Cauchy system of ordinary

differential equations for the characteristic lines associated

to such equations. In the case of Eq.(4.2), p p " = p pp -

- 2H(p , x p ) , the Cauchy system is:
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with pu and $ denoting (as already said) partial derivatives

of H, and do denoting the common value of the eight ratios

above. The infinitesimal proper time ds, corresponding to the

infinitesimal displacement dx" on the world-lines of the

C
p)dxpdxv

to the Cauchy system (4.6) may be written as:

particle, is defined as ds2 = g (xp)dxpdxv, which, according

ds2 = g u vpVdo
2 (4.7)

or, by *4.4), as:

ds 2 = 2H da2 (4.8)

Hence, it follows from (4.6) and (4.8) that at any point xv

of a word-line r of the particle, the vector p is tangent

to that world-line: pW = dxVdc - (dxVds) (1//2H) .

Special Relativity. In general relativity, a particle moving

in a given gravitational field is always an inertial system,

that is, it always follows a geodesic of the geometry related

to that gravitational field. In that framework, there are no

external "potentials" acting on the particle (the only

"potentials" present are the metric coefficients 9uv(x) which

determine the geometry in question). The picture is quite

different in special relativity, though. There, we can talk

of forces and of potentials, and, therefore, we can interpret

the 4-vector * , defined in (4.5), as an external potential

function to which a particle may be submitted. In special

relativity, then, a particle in inertial motion may be

characterized as one for which P =0 over all the particle's

world-line r. This corresponds to having H independent of xV
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/*)
over r, that is, to having H=consta.nt=E over r* . Since,

from (4.4). and (4.5), we have that

we see from this equation that if • =0 over the particle's

v

world-line r, then we must have tqpc/ixv=0r that is, g
WV=

constant over r. Since this world-line is arbitrary, this means

that guv must be constant over the manifold Vi,. In summary,

characterizing a particle in inertial motion by the condition

• =0 over any of its world-lines, we conclude that the geometry

of Vi, is flat with signature of absolute value 2. On the

other hand, if we had admitted in our flat manifold that 2H =
II V

= g p p had a positive definite metric, it can be easily
4 15

shown ' that this is equivalent to admit that there is no

upper bound to the velocity: an infinite value for the speed

of particles would be physically realizable. This, in turn,

is equivalent to admit that the space-like and time-like

components of the four-momentum are entirely interchangeable, a

possibility which is completely foreign to our experience. We

must, therefore, impose the dynamical principle that there is

a limiting velocity for the propagation of physical signals.

5. NEWTONIAN MECHANICS AND RELATED GEOMETRY

Here, in the Newtonian case, we shall take Vi»

as our differentiable four-dimensional space-time manifold.

According to Postulate I, let us introduce again into this

(*) This implies that we can define the energy E over all the
manifold, which, in turn is equivalent to stating that
we can now build, in special relativity, a global inertial
frame over all of (r)
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manifold a particle of three-momentun. p., i=l,2,3, which will

once more determine the geometrical features of the manifold.

Let our particle be moving with three-velocity

defined by x = dx /dx", where x are the space variables and

x1* is the time variable. We next associate to •-his moving
16

particle what Poincaré called its mass of Maupertuis , m.

Hence, here in Newtonian physics, we take as one of the

particle's accessory essential dynamical characteristics

(besides the basic property of possessing three-momentum p.),

not its intertial mass, but the mass associated to its state

of motion. With these definitions of mass (of Maupertuis) and

three-velocity we can define the contravariant three-vector

p* H mi1 (5.1)

which, as before in the relativistic case, cannot, a priori,

be related with the covariant fundamental dynamical three-

momentum p.. This identification of p = mx with p, (which,

for instance, enables us the identifloation of the time

derivative of (5.1) - as it is usually done - with the Newtonian

concept of force) is possible if the three-dimensional spatial

hypersurface in)V of the entire space-time manifold (n)V3 is

metric. That is,

p1 = gij(xk,x")pj (5.2)

where g ^(x ,x") is the contravariant metric tensor of V3,

satisfying the orthogonality relation g •* g,. = ; That is,

the identification of the three-momentum p. with the three

contravariant vector p = mx obviously does not make the

entire four-dimensional space-time *n'-Vi, a metric manifold ,
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but only its three-space hypersurface V3. In this three-

space metric manifold we can then define an inner product

and hence the bilinear symmetric form

V-'pjP.j (5-3)

This implies that the metric of *nlV"3 is symmetric, g . = g.±.

Introducing then the energy concept into our three-

dimensional spatial manifold V3 and imposing that the

particle's kynetic energy T be given by:

T B (ZmrV * (2m)"V^jPj (5.4)

We define a free particle as one having for state

function H(p.,x ,x**) its kynetic energy, which obeys the

dynamical equations of motion

" pi * ̂ T (5>5a)

x1 = ff- (5.5b,

From (5.4) and (5.5a) we see tht p. = 0, that is,

the three-momentum of our free particle is a constant of motion.

Hence:
. JIT 1 3 -ilr

that is,

= 0 (5.6)

Moreover, since in Newtonian physics, p = mx is

identified as the force felt by the particle, we must have

£ * constant. Therefore, from (5.5b)
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c o n s t -

and since p. i s a constant of motion, g •* must be time independent:

2- g1 ' = o (5.7)

From (5.6) and (5.7) we conclude that the metric

of the three-dimensional spatial hypersurface ln'V3 is flat:

g ^ » n^ . const. (5.8)

We see, therefore, that endowing our particle with

the concept of mass (of Maupertuis) we are able to introduce

the three contravariant vector p = rax , which can be associated

to the dynamical covariant three-momentum p. only if the three-

spatial manifold (n)V3 is metric, Eq.(5.2). We can then build

the symmetric bilinear form T = (2m) pp. « (2m) g ^PÍPJ*

Imposing that this dynamical function is the free particle's

Hamiltonian state function, we were able to reach the conclusion

that the spatial part of our four-dimensional manifold is flat.

On the other hand, in the basic dynamical equations

which we considered - Hamilton equations of motion (5.5) - the

time coordinate x1» plays the role of an independent parameter

with respect to the space coordinates x . This means that the

time axis has to be orthogonal to the three dimensional spatial

manifold3.

Contrary to the relativistic case, in which for the

determination of the related geometry we resorted to only one

auxiliary dynamical function - the Hamiltonian state function

H(p ,xv) - here in the Newtonian case, we needed to introduce
v
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separately the two concepts of mass and energy. With the aid

of the former, we defined the contravariant quantity p = mx ,

whilst, with the help of the latter, we wrote down the

particle's kynetic energy (its Hamiltonian state function).

6. CONCLUSIONS

Contrary to the costumary way of doing physics, we

were* presently able to show that starting from a few given

dynamical quantities we can arrive at certain specific

geometries. Thus, general relativistic physics implies general

Riemannian geometry (Einstein space-time), while the physics

of the special theory of relativity is tied up with a flat

Riemann manifold (Minkowski space-time). Finally, Newtonian

particle dynamics is bound to Newtonian space-time.

What this clearly seems to indicate is that the

connection between physics and geometry is even more profound

than is commonly considered. By this, we mean that not only

particle dynamics and certain space-tines are closely interconnected,

as stated above, but, also more important, that maybe the point

of view taken here is perhaps the most fundamental. Namely,that

instead of departing from a given postulated space-time and then

infer the associated particle dynamics, we should start by

postulating a certain physics and then try to determine its

related geometry. In other words: geometry should be ccnsidered

as an aspect of dynamics .This point of view reminds us of
17

Leibniz conception of dynamics
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