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Applied Physics Division
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ABSTRACT

The application of uncertainty covariance ma-

trices in the analysis of robot trajectory errors is

explored. First, relevant statistical concepts are

reviewed briefly. Then, a simple, hypothetical ro-

bot model is considered to illustrate methods for

error propagation and performance test data evalua-

tion. The importance of including error correlations

is emphasized.

INTRODUCTION

In developing technologies there is an ever-pre-

sent need for better reliability. Safety and economics

are the principal motivating factors in the nuclear

industry. The science of Statistics provides elegant,

rigorous methods for addressing this issue, but they

are inadequately exploited in many scientific and

engineering applications. Scientists and engineers

tend to be poorly versed in Statistics. Consequent-

ly, they are prone to either avoid error consider-

ations or to devote only modest attention to the

issue. Some common rules are frequently employed in

estimating errorr, but these are sometimes misused.

Lately, workers in the nuclear data and reactor re-

•earch fields have begun to appreciate the worth of

comprehensive error assessment [1,2]. The literature

on robotics does not seem to reflect as much concern

for this subject even though the related topic of

control methodology is widely researched. Robotics

Is a discipline which is well suited for the appli-

cation of statistical methods. The fundamental

physical processes are surely well understood, and

testing under various conditions is usually possible,

free from arbitrary constreints such as, e.g., the

severe restrictions governing nuclear reactor oper-

ations.

This presentation aims to acquaint the reader

with" certain ideas which are relevant to the con— •

sideration of errors it robotics. Therefore the

discussion emphasizes concepts, simplified to en-

courage their assimilation, instead of dealing

with specific robotic applications. The first

section contains a brief outline of some basic

statistical facts. Next, an hypothetical robot

device Is described. This instrument is sufficient-

ly complex to illustrate several technical features,

yet it is still simple enough so that understanding

it requires no special knowledge. The robot is

used to examine useful procedures such as monte-carlo

simulation, error propagation and performance data

evaluation. Since the formalism incorporates

complete covariance matrices rather than just the

diagonal errors, the crucial but often overlooked

consequences of error correlations evolve in a

natural way.

MATHEMATICAL CONCEPTS

The literature on Statistics and applied sta-

tistical methods is very extensive. Many textbooks

treat the basic concepts adequately for the present

purposes (e.g., Ref. 3 to 5). The challenge is to

properly use the theory in a practical application

such as robotics. A brief review of some important

terms and ideas is in order:

Probability

Probability theory is the foundation of

Statistics. Mathematicians prefer to commence from

a set of axioms, but the more intuitive frequency

definition is useful here. A sampling space (E)

is the entirety of possible outcomes for sequential

experiments or trials. Various subset spaces (A^)

can be defined. The probability of E, namely F(E),

la unity while other probabilities P(Ai) are £ 1. For

a large number of trials n, P(Aj) is approximated by

the ratio n^/n, where nj is the number of trials

.where Aj occurs. Unless n approaches infinity,



is ambiguously defined, a fact which explains the

mathematicians' preference for axlonatic approaches.

P(Aj|Aj) is the coadltlonal probability of

Aj given that A^ has occurred. This is defined as

P(AiAj)/P(Ai), where AJAJ indicates occurrence of both

A^ and Aj. Aj and Aj are said to be independent if

P(AjlAt) - P(Aj), or equivalently if P(A±Aj) is the

product P(A1)P(Aj). Suppose that all the considered A±

are exhaustive, i.e., taken together they form £, and

that furthermore they are mutually exclusive. Then

if B can occur only In combination with one of the A^,

Bayes theorem states that

P(A±|B) - P(Ai)P(BtAi)/Z P(Aj)P(B|Aj) .

This theorem has some important consequences for

da: evaluation and its interpretation is the subject

of much controversy in the field of Statistics.

Kandom Variables and Probability Distributions

For present purposes a random variable is con-

sidered to be a physical parameter, e.g., a robot

degree of freedom, which is governed by the laws of

Physics and statistics. Random variables can

either assume discrete or continuous (emphasized

here) values. A trial is an action which produces

a distinct value for the random variable. Probability

density functions govern the outcome of trials;

e.g., the probability P(x<xa) is given by I** f(x)dx,

where f(x) is the probability density function for x

in the sample space - » < x < + <=. Multivariate dis-

tributions are defined similarly; e.g., the prob-

ability ¥(xi<xai,...,xm<xam) is given by

/Xaldx1.../
Xaradxm f(x1,...,xm). If the x* are

independently distributed then

Another useful fact is that functions of random

variables behave as random variables.

Moments of Probability Distributions

Usually probability density functions are not

explicitly known and cannot be readily deduced.

However, certain useful moments can be realis-

tically estimated from experimentation and their

knowledge is often sufficient. The expectation

value <x> of x, given by / xf(x)dx, is especially

important. The main objective of experimentation is

determination of parameter expected values. Error

assessment, however, requires knowledge of higher—order

aoments. Define the quantity Ujt given by / (x—<x>)*«

f(x)dx as the l t n moment about the mean. Since prob-

ability distributions are normalized, u0 - 1. If

f(x) is symmetric about x, all odd moments vanish.

The second moment u_ is very important. It is known

as the variance in x, var(x). The square root of

the variance Is the standard deviation o, commonly

called the error in x. Higher-order moments provide

further information about distribution shapes.

Moments are also defined for multivariate dis-

tributions. Analogous to the single—variable case,

is given by the formula / dxj.../ dxm

..,x m). From the multitude of possibilities for

higher-order moments, the quantities 5° dx|... /" dx;,,-

(xi~<xi>) (xj-<xj>)f(xi,...,xnj) are of greatest

significance. When i»j, this yields the variances

var(x^), while for i¥j, one obtains the covariances

cov(Xi,Xj). The correlation coefficient cor(x^,xO

is given by cov(Xi,Xj)/[var(xi)var(xj)]1/2-

Gaussian Distributions

Many different types of distributions occur in

Statistics. Often one is interested in the analysis

of physical phenomena which depend in a complex way

on many unexplored fundamental processes. The famous

central limit theorem implies that any parameter

which evolves from such complex origins tends to be-

have according to the Gaussian distribution, given

by f{x)-(2no)-l/2 exp[-(x-<x>)2/2a2] with variance

o2. Therefore, discussion will be limited to

Gaussian functions here, although other distributions

•re not excluded a priori from robotics applications.

The L&w of Error Propagation

Suppose a sequence yi,...,ym of random vari-

ables is derived from a distinct set xi,...,xn ac-

cording to equations of the form yi-yi(xi,...,xn).

Furthermore, suppose that the multivariate distri-

bution function is not explicitly known, but that a

variance-covariance matrix Cx for the xj (de-

signated collectively by x) has been estimated.

It i« obviously necessary to have a method of esti-

mating the variance-covariance (or simply "covariance")

matrix Cy fcr y. It can be shown that if (for



all yi) the terms beyond first order in the Taylors above* An estimator is consistent provided that ita
•*• n

series expansions, yi"yi«x>)+.^1 (
aJri/3xj)j_<,*<>(xj-<Xj» variance approaches zero in the Halt of large saaplei

+ higher-order terms, are negligible, then, in matrix
_ _ _ '

notion ("+" designates transpose), Cy

T is a matrix of partial derivatives

T Cx T •

^/Sxj (evalu-

ated at the mean <x>) commonly called the trans-

formation matrix. If m-n, and the transformation

from x to y represents a change of basla in

n-dlmensional space, then the determinant of f is

called the Jacobian of the transformation. The matrix

formula for Cy in terms of T and Cx is known as the

law of error propagation. It is valid when the

variances of x are not coo large. This rule is

extremely valuable for robotics error analysis. It is

emphasized that error propagation analyses must be

performed utilizing complete variance-covariance

information. In later sections examples will be

given which demonstrate the extent of discrepancy

which can arise if covariances are neglected.

Sampling and Estimators

The preceding discussion provides no clues as to

how one acquires knowledge about the statistical be-

havior of processes of practical interest. In fact,

one rarely has adequate knowledge of the requisite

probability distribution functions in advance. How-

ever, one may for one reason or other have a strong

basis to expect a certain form for a distribution,

e.g., a Poisson distribution for radioactive decay

or a Gaussian distribution for a robot degree of

freedom, etc. Then, the entire distribution can be

deduced provided that the essential parameters can

Another Important estimator is s z » [.£,(xi-x)2l/(n-13

where x is given above. This is an unbiased and

consistent estimator for the population variance. If

the fundamental distribution is Gaussian, knowledge of

the mean and variance uniquely establishes the entire

distribution.

It is desirable to have some way of deducing the

quality of results estimated from a sample. Various

statistical tests on samples exist for this purpose.

The most widely used is the x2 (chi—square) test

commonly associated with Gaussian distributions. If,

e.g., o2 is the population variance and x and s2

are defined as above, then the statistic is21 a2 follows

the integrated distribution function F(x2) -

</X uA-1e-1/2udu)/[2xr(A)], with A-f/2 (f denotes
o

the degrees of freedom) and r being the standard gamma

function found in mathematical tables. Tables of F(x2)

are available. Essentially one evaluates this statistic

and compares the result with F(xz) from a chi-square

table for degrees of freedom f--n-l, where n is the sample

size. The quantity W«l-F(xZ) is a measure of confidence

in the result. W near unity implies high confidence.

In addition to being unbiased and consistent,

good estimators should be "sufficient". Sufficient

estimators are essentially those which have minimum

variance. The generation of sufficient estimators is

a complex area of Statistics. One general method is

the maximization of likelihood functions, but this

topic will not be pursued. Suppose, however, that n

be estimated. The process of estimating such parameters experiments, each with somewhat different accuracy,

yield values xj,...,xn with corresponding variances

o?,...,o2. If each measuremeit is governed by a

Gaussian distribution, then it: is possible to show

that minimization of the statistic J, [(xi-x)2]/o?

yields the maximum-likelihood estimator for x. This

is the basic idea of the common least-squares method.

The Gauss-Markov theorem insures that of all the

possible unbiased estimators, the least-squares

solution has the smallest variance. In very general

terms, the minimization of lx-G(S)J+Cx[x-G(5)]

will lead to the minimum variance solution for a

by experimentation with a finite subset of a larger

(usually assumed infinite) population is known as

sampling. This exercise is at the heart of applied

statistics. The ensemble of random parameters re-

sulting from a finite series of trials is called a

sample. Any functional combination of the com-

ponents of this sample is called a statistic.

Statistics so defined are random variables.

Statistics constructed to provide estimates of cer-

tain parameters are called estimators. For example.

an n-fold sampling of a random variable x produces the
n 4

«et {xj x n}. The statistic 5 defined by (Jij xj)/n parameter set 8 and its covariance matrix

is called the sample mean, and it is an estimator of

the population mean <x>. An estimator is unbiased

if for any sample size n, the expected value of the

estimator equals the expected value of the basic para-

•eter from the population, e.g., <X>-<x> for all n

Ce> given a sampling x with population co-

variance matrix Cx and mean values G. Often this

leads to nonlinear problems where approximation

techniques are required.



Bayes theorem Is the basis for such an approxi-

mation method. One starts with the body of all a

priori information, including covariances. New

sampling results, with covarlance information, are

used in adjusting the prior knowledge by (hopefully)

•stall amounts, thereby conveniently merging old

and new information to provide a revised best esti-

mate. Since small differences are often involved

In this adjustment procedure, expansions can be used

Co linearize the least-squares estimator for more

convenient analysis. This Is discussed In a later

section.

Monte—Carlo Simulation

Knowledge of the behavior of a random variable

is completely embodied in its distribution function,

f(ic). Given f(x), statistical sampling procedures

can be simulated on a computer provided that x it-

self can be sampled randomly. Computer algorithms

which produce series of numbers K in the range (0,1)

with a high degree of randomness are available.

Than, e.g., if x is defined in the range (x£,xn),

random values can be generated by Xi"x^+(xn-xi)Ri,

and the expectation value of h(x) can be calculated,
n

e.g., from the expression (l/n)iI,h(xi)f(x^),

when s. Is suitably large. There are many possible

variations of this so-called monte-carlo method [6],

one of which will be demonstrated for a robotics

application later in this paper.

APPLICATION OF THE CONCEPTS TO AN HYPOTHETICAL ROBOT

Several of the mathematical concepts outlined

In the preceding section will be illustrated in a

robotics context in the present section.

Properties of the Robot

Consider the simple robotic device pictured in

Fig. 1. Five degrees of freedom, which can be re-

presented by the internal parameters of the robot

a-(ai,...,a5), define the spatial motion of the

device. The tip of the robot arm at P possesses no

explicit manipulation device. Therefore, it is

assumed that the robot functions as a stylus, appli-

cator or transporter of a very small quantity of

material (such as a liquid drop). The performance

of the robot Is judged by the accuracy with which it

follows a programmed path and delivers the pointer

to a'designated position in epr.ee, designated by

Cartesian coordinates b"(b},02,03).

a5

9

FIGURE 1: SCHEMATIC DRAWING OF AN HYPOTHETICAL ROBOT
USED TO ILLUSTRATE SOME CONCEPTS OF UNCER-
TAINTY ANALYSIS.

Assume that each a^ is actuated and controlled

independently of the other a-parameters. The time evo-

lution a^(t) from t0 to tf, for each of the five

parameters defining the robot, is governed by mech-

anical equations of motion. Furthermore, it is assumed

that sensors provide feedback to the coordinate actua-

tors so that forces and torques are applied as needed

Co maintain the evolution of each coordinate a^(t)

"reasonably" close to a programmed path defined •,

by a£O(t). Discussion of the methods for achieving

this goal is beyond the scope of this paper. It is

assumed that each aj(t) is normally (Gaussian) distri-

buted about the design expectation aiQ(t), thus p^(aj)-

(2»o a lr
1 / 2 exp[-(ai-alo)2/2a|1J with oal»Oal(t)

denoting the square root of the variance for a^

corresponding to the particular design-path point in-

dicated by the time parameter t. The uncertainty in

the status of a robot parameter at some point (time t)

along the path is probably very likely to behave in a

Gaussian manner because the current position is the

result of numerous corrections initiated by the con-

trol circuitry as well as by perturbations due to play

la linkages, etc. These are exactly the conditions

under which the central limit theorem is expected to

be applicable, thereby indicating near normal behavior



for the a±. The performance measured in Cartesian

space is of greatest interest. A relationship exists

between the bj and the ai, i.e., bj-bj(ai,...,a5>, or

6-b"(a). In particular, from Fig. 1,

bj - g cos »5 ,

D2 - g sin as ,

b3 " al c o a a3~a2 C O B (*4~a5)

g - «1 sin 83+33 sin (34-83) .

To simplify the analysis, it is assumed that all

standard deviations for the aA are tine indepen-

dent. They are arbitrarily assumed to be: oal"

0.5 cm, oa2-0.3 cm, °a3-l°, °a4 "
 i # 5* a n d °a5"°"5<>'

These values are sufficiently small so that the lav

of error propagation defined previously is appli-

cable for present purposes. In practice, the para-

oeter variances for an actual robot would probably

be relatively much smaller. Specific details of the

programmed paths ao^(c) are of little concern for

demonstration purposes, therefore it is assumed that

aioo + (aiof~aioo) (t-to)/(tf-to),

indicating linear progression from initial positions

aioo t o fina^ positions aj_of as t advances from to

to tf. Absolute time is also of little Importance

to the analysis so the diwensionless variable T»(t-to)/

(tf-t0) is substituted to yield

TABLE 1

PRIMARY ROBOT PARAMETERS

75 cm
30 cm
5#

105*
25*

TABLE 2

•iof

127 ca
64 ca
37#

169*
71*

T

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

b10

32
38,
43,
47,
50,
52.
53.
52.
50.
46.
40.

.70

.22

.16

.31

.48

.49

.16

.38

.03
,03
.37

DERIVED

<>20

15.
21.
29.
38.
47.
58.
69.
81.
93.
105.
117.

25
71
33
04
74
29
53
28
30
37
24

ROBOT PARAMETERS

b30

79
87
94
101
108
114
121
127
133
139
144

.92

.01

.11

.16

.11

.90

.46

.73
• 66

.92

.25

4
87.
97.

107.
117.
128.
139.
149.
160.
170.
180.
190.

t
1

69
48
61
98
51
12
71
20
SI
54
22

So"

36
43
52
60
69
78
87
96

.U8

.96

.18

.71

.48

.44

.53

.69
105.86
114
123

.98

.99

a Dimensions in cm.

al0(T) - a l o o + (aiof-aloo)T ,

with 0 <T <1. Values for a.±oo and aiof which

are employed in this analysis appear in Table 1.

Propagation of Errors to the Work Space Reference

Frame

The programmed workspace path bo(T) is readily

evaluated using the preceding formulas. Table 2 ex-

hibits representative values for tht bjo as well as
2 2

for two other derived quantities, co - (bio
 + °20

+ b ^ , ) 1 / 2 and go - (bfo + b20)
1 / 2-

The covariance matrix for bo is derived fron

an application of the law of error piopagatlon, em-

bodied in the matrix formula

where the transformation matrices T a b contain ele-

ments Sb^/Sa^ evaluated along the programmed path

ao. Here Ca is a diagonal, time-independent

matrix since the a^ are assumed to be independent

with fixed variances aai. Similarly,

of - f b c C b fbc" >

<% " Tfcg C b f b g »

where T!)C has elements Sc/Sbj while fbg has elements

3g/3b£. It is instructive to write the formula for

oj? in detail, namely

3 3
o| - | (3c/3bi)2ob| + I (3c/3bi)(3c/3bj)obioycor(bi,bj).

The first sum represents the uncorrelaced contribution

while the second sum contains terms which exist whenever

Cb is not diagonal. Neglect of these terms can lead to

a serious error in obtaining the variance o| for c (or

for g as well). The analysis represented by these for-

aulas is accomplished using a computer. Results for

representative points along the robot path (various T)

appear in Table 3.



TABLE 3

T

0
0.1
0.2
0.3
0.4 ]
0.5 1
0.6 1
0.7 ]
0.8 1
0.9 ]
1 1

°bl
1.31
1.37
1.42
1.46
1.49
1.50
L.49
.47
.44
.40
.37

UNCERTAINTIES

°o2
0.67
0.84
1.02
1.22
1.42
1.63
1.84
2.05
2.26
2.46
2.65

Ob3

1.12
1.25
1.39
1.53
1.68
1.83
1.97
2.12
2.26
2.40
2.54

IN THE

cor(bl..

0.86
0.85
0.84
0.84
0.83
0.81
0.78
0.75
0.70
0.64
0.56

COORDINATES OF

>2) cor(bl,b3) <

-0.59
-0.65
-0.70
-0.74
-0.77
-0.79
-0.80
-0.79
-0.76
-0.71
-0.63

P

or(b2,b3)

-0.54
-0.60
-0.66
-0.72
-0.76
-0.81
-0.84
-0.87
-0.90
-0.92
-0.94

'Dimensions in cm.

Clearly the errors of b* are substantially correl-

ated even though the errors of a are not. These

correlations are obviously of geometric origin.

Their existence may surprise the reader who Hill,

no doubt, recognize that b is an orthogonal repre-

sentation for the robot workspace! More will be

said on this point later in the paper. All the

cor(bj,b2) values are positive. This means that

bj and b2 tend to "wander" together (toward lar-

ger or smaller values). On the other hand cor(bj,b3)

and cor(b2>b3> are negative, Indicating oppo-

site wandering of these respective parameters

(anti-correlation).

The effect of the correlations (or anticorrel-

ations) on other derived parameters, e.g. on c and

g, is governed by magnitudes and signs of the corres-

ponding transformation matrix elements. This is demon-

strated in Table 4. Neglect of correlations leads to

TABLE 4

PNCERTAINTIES IN c AND %

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.82
0.84
0.85
0.85
0.84
0.82
0.79
0.75
0.71
0.66
0.62

(1.13)
(1.25)
(1.37)
(1.49)
(1.62)
(1.75)
(1.89)
(2.04)
(2.20)
(2.37)
(2.54)

1.44
1.56
1.69
1.33
1.96
2.10
2.24
2.38
2.51
2.65
2.78

(1.22)
(1.26)
(1.31)
(1.37)
(1.46)
(1.57)
(1.72)
(1.90)
(2.10)
(2.32)
(2.55)

'Dimensions in en. Values in parentheses result
when off-diagonal elements in Cb are ignored.

ovarestiution of cc while og la analogously under-

•stiaated.

Generation of Probability Profiles

The preceding examination of the robot's work-

space path and associated errors is useful but it

nay not reveal quite as much as might be desired. In

particular,, a "feel" for the "shape" of the region

of uncertainty associated with the trajectory SO(T)

ia missing. However, if the variances for the pri-

aary aj(T) are reasonably well known, and if the fun-

damental probability distributions about ao(T) are

considered to be known, then monte-carlo simulation

can be used to construct probability profiles for any

number of desired spatial "sections". Such analyses

•ay prove to be extremely valuable in robotics appli-

cations for they would allow determination of proba-

bilities for catastrophic scenarios, e.g., collision

of the robot with a barrier. Surely, one does not

wish to exercise the possibilities offered by this

method everywhere along the path (all T). Examina-

tion at a few key positions (selected T) should be

sufficient.

For demonstration purposes the region of work-

space path near T » 0.5 Is selected here. Using a

coaputer with a random number generating routine, a

sample of 400 vectors a^ was generated by sampling

normal distributions about aQ. A corresponding set of

vectors o^ was then generated and difference vectors

Ab^ " Dfe - bo were deduced. In summary, each

oonte-carlo trial produced a triad of values,

(Abi|c,Ab2]c,Ab3|c), and these were plotted by computer,

pairwise. The results appear in Fig. 2. This simu-

lation provides an extremely good picture of what

could be expected from several attempts to position

the lobot pointer at this specific point on the path

(assuming that relative time T is without error).

The density of points is greatest near the pro-

grammed path and tapers off away from it. The dis-

tribution is elongated (like a cigar) and tilted.

This tilt is a characteristic of correlated vari-

ables. Notice in Fig. 2 (a) that most points fall

In the first and third quadrants. This corresponds

to the positive correlation between bj and b2> In

contrast, Figs. 2 (b) and (c) show points primarily

in the second and fourth quadrants. This is charac-

teristic of antlcorrelation, an effect known to

apply for bj and h3 and for b 2 and 03 (Table 3).

If one were to represent a critical barrier for the



robot in terns of a forbidden region projected onto

the section coordinates of Fig. 2, one could readily

deduce the probability for a catastrophic collision

by determining the ratio of the number of trials end-

Ing up in the forbidden region to the total number of

trlali (frequency approach to probability). This pos-

to

-4 1 4b,

x-y plane

to

-14b,

x-z plane

(c)

FIGURE 2:

y-z plane

RESULTS FROM 400 MONTE-CARLO TRAILS TO PLACE
THE ROBOT POINTER AT A DESIRED POSITION IN
SPACE. POINTS ARE PROJECTIONS OF INDIVIDUAL
HISTORY RESULTS ONTO COMPONENT PLANES OF A
CARTESIAN COORDINATE SYSTEM WHICH IS ORIENTED
AS SHOWN IN FIG. 1, BUT IS DISPLACED TO THE
POINT OF REFERENCE. ALL AXES HAVE THE SAME
SCALE. TIC MARKS ALONG EACH AXIS REPRESENT
UNITS OF RESPECTIVE STANDARD DEVIATION.

sibillty will not be pursued further here.

Tine Uncertainty Effects

It is instructive to explore the errors which can

be traced solely to the parameter T. For simplicity we

consider this problem separately from the preceding in-

vestigation, keeping in mind that the true situation in-

volves a combination of these effects.

The aio(T) are assumed to depend linearly on T,

as before. However, the a^(T) are no longer consider-

ed to be independently distributed about the correspond-

ing aio(T) since the source of uncertainty, namely T,

is common to all these robot primary degrees of freedom.

Most likely, the distribution is normal with constant
2

variance oj for T from 0 to 1. However, for present

purposes no knowledge of the T-distribution beyond the

variance is required. The covariance matrix Ca is ob-

tained from the matrix equation

Since Cj is a very simple matrix, namely the constant

Of the matrix Ca is easily calculated. It turns out

to be time independent since the transformation matrix

Ixa is also time independent. The elements of Ca are

given by the formula

The errors l the a± are thus (aiof-aio)ax, and the cor-

relations cor(a^,aj) all equal unity, JS might be ex-

pected.

The error propagation analyses for b, c and g

proceed just as before. The errors in these derived

results are also 100Z correlated since they can all

be traced to the error in the single common parameter

T. For the demonstration robot it is assumed that op-

0.01. Then, cai-0.52 cm, oa2«0.34 cm, aa3«0.32*. oa4»

0.64* and oa5-0.46°. Substitution of these values into

the formulas yields the results presented in Tables 3

and 6. The results obtained when all correlations

are arbitrarily ignored are also presented for com-

parison.

As before, consideration of correlations leads to re-

sults which differ vastly from those vhere correlations

are ignored.



TABLE 5

UNCERTAINTIES IN THE COORDINATES OF P

T

0
0 . 1
0 . 2
0.3
0.4
0.5
0.6
0 . 7

o.e
0 . 9

1

0.57
0.53
0.46
0.37
0.26
0.14
0.004
0.16
0.32
0.48
0.65

(0.53)
(0.55)
(0.58)
(0.61)
(0.65)
(0.70)
(0.75)
(0.80)
(0.87)
(0.93)
(1.00)

0 .
0 .
0 .
0 .
1.
1 .
1 .
1 .
1.
1 .
1 .

59
70
82
92
01
09
15
19
21
20
17

(0.35)
(0.43)
(0.50)
(0.57)
(0.64)
(0.71)
(0.78)
(0.84)
(0.90)
(0.96)
(1.02)

0.71
0.71
0.71
0.70
0.69
0.67
0.64
0.61
0.57
0.53
0.48

< 3

(o.6s;
(0.68)
(0.71)
(0.75)
(0.78)
(0.82)
(0.86)
(0.89)
(0.93)
(0.96)
(0.99)

'Dimensions In cm. Values In parentheses are
obtained If all correlations are ignored for
error propagation calculations.

TABLE 6

UNCERTAINTIES IN c AND g

T

0
0 . 1
0.2
0 . 3
0 . 4
0.5
0.6
0.7
0 . 8
0 . 9
.1

0.96
1.00
1.03
1.05
1.06
1.06
1.05
1.04
1.02
0.99
0.94

o a

c

(0.63)
(0.65)
(0.68)
(0.71)
(0.75)
(0.78)
(0.83)
(0.87)
(0.91)
(0.96)
(1.00)

0.77
0.81
0 84
0.87
0.89
0.90
0.91
0.92
0.91
0.91
0.89

o a

g

(0.50)
(0.52)
(0.55)
(0.60)
(0.65)
(0.70)
(0.77)
(0.83)
(0.89)
(0.96)
(1.01)

'Dimensions in cut. Values in parentheses are
obtained if all correlations are ignored for
error propagation calculations.

Actually, It Is incorrect to treat the errors due

to X separately. Rigorous analysis of the simple robot

problem presented here requires simultaneous considera-

tion of both classes of error discus3ed above. It is

not too hard to show that the correct form for the co-

variance matrix C a which combines both types of error

is

Uiof--!Hoo)|>r(ajof-ajoo>»

with fij.j-1 for 1-j and «ij"0 for i^j. This matrix is

not diagonal, but no correlations will be as large as

100Z. This matter will not be pursued further here.

Some Thoughts Concerning the Analysis of Robot

Test Data

The preceding discussions have all involved error

propagation calculations which required prior know-

ledge of uncertainties associated with the prluary

degrees of freedom a± and the dimensionless "tine"

parameter T. This is certainly a perfectly reasonable

course of action since some information of this sort

will undoubtedly be available as a consequence of de-

sign studies, and perhaps from independent testing of

separate components. Certainly this is not enough. The

fully assembled robot must be tested to see how it per-

forms as a system. Testing for uncertainties is but

one of many aspects of a robot's performance which are

likely to be investigated at this Btage of it's de-

velopment. This subject is a complicated one which

cannot be treated in any detail in the space allotted

here. Much development work is needed and this area

offers interesting possibilities for future robotics

research.

The naivest assumption which could be made is that

no knowledge about the uncertainties is available, and

that one must estimate S0(T) and C(,(T), e.g., from re-

peated measurements of these parameters. Unbiased and

consistent estimators for the bo^ and (Cj,)^ are, re-

spectively,

{boi} - U/n) j^bik,

These estimators are evaluated using sampled values

for all the bj (there are n total samples). Formulas

for the variances of these estimators can be derived,

e.g., var [{boi}] - obi/n and var [{(£5)^}] -

2aDi/(n-l), where o^i is the population variance.

Clearly the uncertainties in these estimated quan-

tities depend on the population variances which are

not considered to be known. This presents the di-

lemma of not knowing how many samplings should 'be

taken to achieve a desired level of confidence for

the test results. For this reason, among others,

this approach is generally of little practical value.

More sophisticated procedures for analyzing teot

data can be derived from least-squares methodology.



Let T represent a set of n measured test results with

corresponding covarlance matrix CT. Designate p as

the o parameters (pj pm) for which one desires the

best-estimate values and their uncertainties (e.g., p

might represent S, or even single parameters such as

c and g). Finally, assume that T and p are linked via

a "design matrix" 5 so T Z Dp. This relationship has

been found to encompass many cases of practical In-

terest. The method is discussed in detail in Refs. 7

and 8. In summary, one solves the problem by minimiz-

ing R2 - (t-Dp)+C^1(T-Dp). R2 follows the chi-square

distribution for (n-m) degrees of freedom (n>m re-

quired), at its minimum. This procedure leads Co the

formulas p - CpD+C"1* and Cp =• (D
+C~15)-1 for the

best-estimate parameters and their covariance matrix.

The minimum value of R2 (usually called x2) indicates

the consistency of the test data. Large x2 (relative

to n-m) might indicate possible errors in the tests.

Also, the variances in the p±, and corresponding

scatter in the T^, could be well beyond the accuracies

of the test measurements-. Very small x2 would indicate

that more accurate tests are needed to adequately char-

acterize the robot.

This method is indeed far advanced beyond the

naive one described earlier. A variety of testing

techniques (with differing accuracies) can be used to

generate the n samples tj,...,Tn. These measure-

ments can be arbitrarily correlated. Furthermore, the

Tjt values need not resemble the p^-parameters one

seeks, so long as a suitable design matrix can be pro-

duced.

This second approach is still limited in that

prior design information is ignored. A more universal

approach is required to merge a priori knowledge with

information garned from tests, thereby generating glo-

bal best-estimate robot parameters and their covarian-

ces. Fortunately, this is not too hard to do provided

thrt one accepts a broad interpretation of Bayes theo-

rem which states that prior knowledge of a system can

be refined by the inclusion of new information which is

assumed to be uncorrelated to the former. This proce-

dure can be repeated ad infinicum. It follows directly

that knowledge of the robot can be improved not only by

laboratory tests on a design protoype but also by data

accumulated later from production models in the field.

This Baysian approach appeals to the pragmatic senses

and is widely used in applied statistics even though

pure,statisticians still argue its validity on phil-

osophical grounds•

Ref. 7 describes one manifestation of the Bayslan

approach to refining prior knowledge with new uncor-

related information. In summary, one assumes that p o

represents the current knowledge of a robot parameter

set with relative (dimensionless) covariances matrix

Co. When new test results are considered, one ob-

tains a revised estimate p with relative covar-

iance matrix Cj. Let xj consist of elements

CPl~Poi)/Poi# Tne test data form a vector % with re-

lative covariance matrix Cg, and D^ is a design matrix

depending on the character of the new information.

Defining y as a vector with elements (Si-?Oi)/£oi

(?0 is the value of £ calculated using the a priori so-

lution p o ) , one ultimately obtains the desired formulas

xj yj and Cj Dj:. This proce-

dure also involves the chi-square test which permits

consistency of prior and new information to be in-

vestigated.

The material in this section is not illustrated

with numerical e: imples owing to space limitation.

However, the monte-carlo method could be used for

simulation purposes. One could alter the distribu-

tion functions at will so they either agree with or

differ noticeably from distributions based on design

information. An exercise of this sort was recently

pursued in some detail in a nuclear data application

(see Ref. 9). There one readily sees the usefulness

of the chi-square test in establishing consistency

or Inconsistency of various data sets considered in

least-squares evaluation procedures.

CONCLUSION

The methods which have been described briefly

In this paper should be more widely applied in the

field of robotics. For example, it would be very

worthwhile to investigate the link between control

methodology and the estimation of probability dis-

tribution moments which are required in order to

employ these statistical techniques. Research into

the utilization of statistical analysis to optimize

robot testing procedures would also be fruitful.

Examination of details far beyond Che scope of this

paper would be required. Hopefully, the present

paper will help to stimulate such efforts.
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