

Analysis of groundwater from deep boreholes in Kamlunge

S Laurent Swedish Environmental Research Institute

Stockholm, Sweden May 1983

ANALYSIS OF GROUNDWATER FROM DEEP BOREHOLES
1N KAMLUNGE

Sif Laurent

IVL, Swedish Environmental Research Institute Stockholm, Sweden 1983-08-29

This report concerns a study which was conducted for SKBF/KBS. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

A list of other reports published in this series during 1983 is attached at the end of this report. Information on KBS technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17) and 1982 (TR 82-28) is available through SKBF/KBS.

ANALYSIS OF GROUNDWATER FROM DEEP BOREHOLES IN KAMLUNGE

Sif Laurent IVL, Swedish Environmental Research Institute Stockholm, 1983-08-29 Groundwater from four boreholes in granitic rock at an investigation site in Kamlunge has been sampled and analysed. This is part of a larger program of geological, geophysical and hydrogeological investigations aimed at finding a suitable site for a high level radioactive waste repository.

One to four water-bearing levels in each borehole between a depth of 100 and 600 m were selected. Prior to sampling, the water-bearing level is isolated between packer sleeves. The water is then pumped to the surface where sensitive parameters such as redox potential, pH, sulphide and oxygen content are measured electrochemically on the flowing water in a system isolated from the air. Water, filter and gas samples are sent to several laboratories for further analysis.

The present report is a presentation of the results of the groundwater analyses. The reliability of the results is discussed but there is no evaluation in relation to geology and hydrogeology. This report presents the basic results from the groundwater analyses to be further evaluated by experts in different fields.

CONTENTS

1	INTRODUCTION	4
2	SAMPLING	5
2.1	Drilling water	5
2.2	Sampling equipment	6
2.3	Water flow during sampling	7
3	FIELD MEASUREMENTS	8
3.1	Calibrations	8
3.2	Measurement results	9
3.3	Temperature measurement	10
3.4	Measurement of pH, Eh and pS	10
3.5	Oxygen measurement with probe	10
3.6	Measurement of conductivity	11
4	MAIN COMPONENTS OF THE WATER	11
4.1	Sampling	12
4.1.1	Unpreserved samples	12
4.1.2	Preserved samples	12
4.1.3	Filtration	13
4.2	Transport of samples	13
4.3	Sampling levels	13
4.4	РH	14
4.5	Conductivity	14
4.6	Organic carbon (TOC)	14
4.7	Negative ions	14
4.8	Positive ions	15

5	PARTICULATE MATTER	15
5.1	Chemical composition	15
5.2	Turbidity	15
5.3	Particle distribution	16
5.4	Humic and fulvic acids	16
6	ISOTOPE ANALYSIS	16
6.1	Carbon isotopes	17
6.1.1	Sample preparation	17
6.1.2	Groundwater age	17
6.2	Oxygen-18	18
6.3	Tritium	18
6.4	Uranium, thorium, radium and radon	20
7	GAS ANALYSIS	21

1 INTRODUCTION

Groundwater from four boreholes in Kamlunge has been sampled and analyzed. Boreholes KM3, KM8 and KM13 are core boreholes and KM20 (also called HB20) is a percussion-drilled borehole. The sampling levels were chosen on the basis of hydrological measurements in the boreholes. Sampling was carried out by Sveriges Geologiska AB. Personnel from IPK and VIAK performed the field measurements and sampling. Several laboratories participated in the water analysis (see below).

The boreholes were pumped out with a gas lift prior to the hydrological investigation and immediately before the equipment for water sampling was lowered to the first sampling level. On the latter occasion, three such gas lift pumpings — called mammoth pumpings — were performed in a row. Iodide (NaI, 0.01 mmol/1) was added to the drilling water during drilling to enable any residual drilling water to be traced in the groundwater. The selected fracture zones were sealed off by packers spaced at a distance of 2.7 m.

Sampling was carried out in KM3 (2 levels) from December 1982 to February 1983, in KM8 (1 level) during May-June 1983, in KM13 (4 levels) in March-June 1983 and in KM20 (1 level) during April 1983. Depth is given both as vertical depth (depth) and/or borehole length (length). It is always vertical depth that is given, unless otherwise specified in the table heading.

The work was carried out in periods of 14 days - 4 days off while the sampling pump works and 9 days field measurement and water sampling. The sampling took place in two consecutive work periods at all levels except KM13, 197 and 564 m, which were only sampled during one period. Lowering to a new level is done on the last day of a work period.

The present report consists primarily of a presentation of the results of the groundwater analyses. The reliability of the results is subjected to some scrutiny. There is, however, no further evaluation in relation to geology or hydrogeology. The material in this report will be further analyzed by experts in different fields.

The geology and hydrogeology of the study area are described in KBS TR 83-55.

A general description of the chemistry of groundwater from great depths in granite and gneiss has previously been published by G Jacks (KBS TR 88). The same author has also described the chemistry of groundwater in Blekinge (KBS TR 79-07), where Sternö is situated. The results of analyses of the groundwater from the Finnsjö, Gideå, Fjällveden and Svartboberget areas are presented in KBS TR 82-23, 83-17, 83-19 and 83-41, respectively. A summary

and description of the groundwater chemistry in these areas has been published by Bert Allard et al (KBS TR 83-59). A geochemical evaluation of fracture minerals and the relation between fracture minerals and groundwater composition in Finnsjön has been published by E-L Tullborg and co-workers in KBS TR 82-20. The relationship between pH and carbonate content in deep groundwaters has been discussed by Bert Allard in KBS TR 82-25. The expected groundwater composition and its importance for the final storage of radioactive waste have been discussed in KBS TR 90 and the final report KBS-2 Volume 2 (Handling and Final Storage of Unreprocessed Spent Nuclear Fuel, Technical Volume). Hydrology and groundwater age are also taken up in the latter report. The sampling equipment is described in KBS TR 83-44.

2 SAMPLING

2.1 Drilling water

Some of the drilling water that is used in the core drilling of the sampling holes can penetrate into fractures and contaminate the groundwater there. In order to get rid of the drilling water to as great an extent as possible prior to sampling, three mammoth pumpings (using nitrogen gas) are performed immediately prior to installation of the sampling equipment.

The sampling equipment (2.2) is lowered to the chosen level and allowed to work for 3-4 days before sampling begins. Periodic sampling during a period of 8-9 days makes it possible to follow changes in the composition of the water that might derive from drilling water or some other source of contamination. The changes may also be due to the incursion of water from different aquifers.

Water from percussion-drilled boreholes has been used as drilling water. The drilling water was filtered through mechanical filters of cellulose (18 CMC 3-2), which are supposed to retain particles with diameters larger than 5 μ m. The filtered drilling water was then analyzed. The results of the drilling water analyses from the entire Kamlunge area are presented in table 10. The borehole and its length at the time of sampling are given in the table. The results for the water to KM13 are also given at the bottom of tables 6-9b.

Before the drilling water was used, it was "marked" by the addition of 0.01 mmol/1 (1.3 mg/1) sodium iodide in order to make it possible to trace any drilling water that may have contaminated the sampled water. Unfortunately, it has been found that both the drilling water and sampled groundwater can sometimes have

considerable contents of natural iodide (KBS TR 83-17). 3 x 10^{-4} mg iodide per mg chloride has been observed in Stripa.

The drilling water for KM3 was taken from a percussion-drilled borehole only about 10 m from the core borehole. According to the iodide analysis of the water from the percussion-drilled borehole, drilling water intruded into this borehole to such an extent that up to 40% of the drilling water may have been recirculated. Iodide contents of up to 2.0 mg/l have therefore been found in the drilling water at KM3.

The analyzed drilling waters are presented in table 10. As can be seen, all iodide concentrations are low compared to the concentrations measured in the sample waters (table 9). For this sample material, the iodide concentration should therefore provide a good picture of the contamination of the sampled waters with drilling water, especially since the sampled waters all have a low chloride content. It should be noted, however, that the iodide content in KM20, which is a low-lying percussion-drilled borehole, is unexpectedly high. Since no drilling water has been used, this must be a naturally high concentration or a very massive contamination from core boreholes within the area. The total water flow at KM20 was 30-50 1/min (2.2).

2.2 Sampling equipment

Core boreholes KM3, KM8 and KM13 are drilled with a diameter of 56 mm. The 2.7 m long sampling zone is sealed off by rubber packers that are expanded to a pressure that is 0.8-1 MPa above the groundwater pressure. The KM13, 564 m zone is sealed off by one packer, and sampling has taken place between this packer and the bottom at about 580 m. The sampling pump is positioned immediately above the sealed-off zone. The intake is from the upper part of the zone. The pump, which is made of steel and furnished with teflon seals, has a capacity of 0.12 1/stroke and pumps 300-390 1/d. The water flow at some levels is lower due to the fact that the flow of water in the rock is lower than the capacity of the pump. A schematic illustration of the sampling pump and packers is shown in Fig. 1.

Sampling at the percussion-drilled borehole was done in the same manner within a 3 m long zone sealed off by packers. The water flow rate was, however, so great (30-50 l/min) that only a portion of the water was conducted via the test chamber. The flow given in the table (2.3) pertains solely to the flow through the test chamber. It has not been possible to calculate the total flow.

The water is pumped up through polyethylene-lined iron pipes to a test chamber of stainless steel on the ground surface. The

test chamber is equipped with electrodes and measuring cells for recording pH, Eh (glassy carbon), Eh (platinum), pS, oxygen content and conductivity. The test chamber is also equipped with valves for the extraction of water samples.

The equipment has been augmented with an extra measuring chamber of glass, which is positioned between the borehole and the test chamber as described above. It is equipped with 2 Eh electrodes of the same kind as those in the test chamber (glassy carbon and platinum). In order to give these electrodes plenty of time to stabilize, they are not calibrated and they are only cleaned when the level is changed. The measurement results are given under "ex" in tables 1-4.

2.3 Water flow during sampling

The water flow at different levels is shown in the table below. The approximate pumped—up water volume has also been calculated—"F l" is the quantity of water before and "P l" during the first period, "F 2" is the quantity of water between the periods and "P 2" during the second period. The mean flow and the total quantity of water during the entire measuring period have also been calculated. Disturbances in the work at the boreholes are described in the notes to the table.

вн	Depth m	Mean flow 1/d	F 1 m3	P 1 m ³	F 2	P 2	Total m ³	Notes
KM3	106	325	1.9	2.2	1.9	2.9	8.9	
	376	315	-	2.5	4.1	2.6	>9	1
км8	198	365	-	3.1	1.8	3.1	>8	2
KM13	197	125	_	1.4	_	_	>1	3
	432	165	2.3	1.5	-	1.1	>5	4
	556	160	-	1.0	0.9	1.5	>3	5
	564	250	-	1.8	-	-	>2	
KM20	146	320						6

Note 1 The high value of F2 is due to the fact that the pump ran during a long leave period at Christmastime. A problem occurred with a non-return valve on day 50-7, which caused pressure variations in the test chamber.

Note 2 A problem with the generator caused two-hour long pump stoppages on day 20-6.

On day 20-7, the pressure in the packers was adjusted from 400 to 700 kPa.

Note 3 Power outage for 2.5 h on day 24-5.

Note 4 There was no pressure in the packers on the morning of day 18-1.

The pump stopped during the work pause between the sampling periods. The disturbances continued through day 20-4.

Pump stoppage again on the night before 20-6.

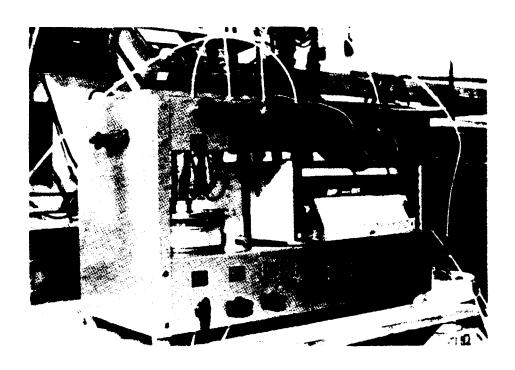
Note 5 The pump worked poorly. No continuous pumping until day 12-3.

Note 6 Power outage on night before 15-6.

The packer pressure was increased on day 16-3 from 770 to 1020 kPa.

Pump stoppages of 30 minutes or less are not noted. Such short stoppages are usually due to oil changes or other routine measures on the generator.

3 FIELD MEASUREMENTS


The field measurements are recorded in tables 1-4, the $E^{\rm O}$ values obtained from the field calculations in table 5 and the field values obtained during water sampling in table 6.

The photograph below shows the field equipment with test chamber, measuring equipment and valves for water sampling.

3.1 Calibrations

Each calibration has been assigned a calibration number. Measurements made after the calibration have the same number. All calibration solutions are freshly prepared from concentrate and deserated distilled water, except the one used for calibration of the conductivity cell. During calibration, the solutions are circulated through the test chamber.

Three buffer solutions with pH 4, 7 and 10 are used for calibration of the pH electrode. Quinhydrone is added to the buffer solutions with pH 4 and 7 for simultaneous calibration of the Eh

electrodes. Concentrate diluted to solutions that are 0.01 and 0.05 moler with respect to sulphide ion is used for calibration of the sulphide electrode. The $E^{\rm O}$ values obtained are presented in table 5.

If a calibration shows that the electrodes have to be cleaned, the reading before the cleaning is normally also noted in order to document the condition of the electrodes immediately prior to the calibration. For the same purpose, the work on a level is usually concluded with a calibration without cleaning of the electrodes. Such calibrations are marked with an asterisk after the calibration number in table 5.

The oxygen probe is calibrated against air-saturated distilled water and the conductivity cell against 0.01 and 0.1 mol/1 KCl.

3.2 Measurement results

Each measuring occasion is identified with a calibration number, borehole designation, length of borehole (core length) as well as day and time. The vertical depths corresponding to the borehole lengths are shown in the table below. The percussion-drilled borehole KM20 is vertical.

Bore- hole	Length m	Depth m	Bore- hole	Length m	Depth m	
кмз	123	106	KM13	230	197	
	445	376		514	432	
				670	556	
KM8	238	198		680	564	

Owing to the fact that it takes some time after each calibration before the water in the test chamber is representative of the borehole water and before the Eh and pS values have stabilized, no measurement results have been included until at least 24 hours after the calibration — in general, from and including the second day after calibration. Nor are values included that have been obtained from obviously unsuccessful measurements owing to problems encountered in the field.

3.3 Temperature measurement

The temperature is measured in the test chamber to permit calibration and calculation of the electrode potentials.

Owing to the relatively slow rate of water turnover in the test chamber, the temperature measured is not representative of the groundwater. It is therefore not reported.

3.4 Measurement of pH, Eh and pS

The system often seems to need to remain undisturbed for at least a week before the Eh and pS values are more or less stable. The pH value normally stabilizes much faster.

The calibrations show that the electrodes must be cleaned relatively frequently. Normally, they are cleaned when they are lowered to a new level. The electrodes were also cleaned immediately after the calibrations marked with an asterisk in table 5.

3.5 Oxygen measurement with probe

It would appear that the oxygen probe has to be calibrated more frequently than is possible with a view towards the other electrodes. The condition of the probe prior to a new calibration was checked by making a reading in air-saturated water prior to cleaning and membrane change, if any. If the error was greater than 20%, the values obtained prior to the calibration were omitted.

3.6 Measurement of conductivity

The conductivity measurements were consistently stable. Calibration was done at the beginning of each level.

4 MAIN COMPONENTS OF THE WATER

Each sampling occasion has been assigned a unique sampling number which is the same for all samples taken on the same occasion ("No." in the tables).

The main components were analyzed by SGAB's water laboratory in Uppsala and by Hydroconsult in Stockholm. The TOC analyses were mainly done at IVL in Stockholm and the filters were analyzed at SGAB in Luleå. The analysis results are reported in tables 5-8. Drilling water (table 10) was analyzed by SGAB in Uppsala.

The following analysis methods were used in the water analysis:

pH, conductivity and turbidity (Hydroconsult), conventionally according to Swedish Standard (SS).

Sulphide (Hydroconsult), colorimetrically on Zn-preserved specimen (SS).

Sodium and potassium (Hydroconsult), emission with flame.

Iron(II) (SGAB), colorimetrically with o-phenanthroline.

Other metals in water (SGAB), optical emission with ICP.

Iron, aluminium and sulphur on filter (SGAB), X-ray fluores-cence.

Nutrient salts (Hydroconsult), colorimetrically according to SS.

Bicarbonate, chloride and fluoride (Hydroconsult), titrimetrically according to SS.

Sulphate (Hydroconsult), gravimetrically (>100 mg/1) or turbidimetrically.

TOC, carbon analyzer (Astro at IVL, Carlo Erba at SGAB).

Silicon dioxide, colorimetrically with methylene blue-

Iodide, potentiometrically or colorimetrically ($\langle 5 \text{ g/1} \rangle$).

In addition to the date of the sampling and of the arrival of the sample at the laboratory, the field values obtained simultaneously with the water sampling and the laboratory analyses of the same parameters are presented in table 6. Note that the field values, which are measured during water sampling, are often not representative of the borehole. Sampling may, for example, have been done immediately after a calibration.

All determinations of metals are presented in table 7. Parameters that contain nitrogen are compiled in table 8 and other anions as well as TOC, turbidity and silicic acid are presented in table 9.

4.1 Sampling

The water samples were taken through a valve immediately after the test chamber. On each sampling occ. sion, a new tube, kept well protected from dust, was attached to the valve. The free and untouched end of the tube was inserted down to the bottom of the sample bottle. At least two bottle volumes of sample water were allowed to run over before the bottle was sealed, without any air having been trapped inside. The samples were kept in a refrigerator awaiting transport (4.2).

4.1.1 Unpreserved samples

Unpreserved samples for analysis of negative ions etc. were taken in bottles of borosilicate glass (1 litre) with a ground, filled stopper held in place with a steel clip. The bottles were stored and transported upside-down. In this manner, the moisture in the pores in the ground surface was preserved, preventing air from leaking into the sample.

4.1.2 Preserved samples

Preserved samples for analysis of metal ions were taken in acid-washed polyethylene bottles (250 ml).

The samples were preserved with 2.5 ml of concentrated hydrochloric acid (super-pure). The acid was added through a dispenser below the sample surface immediately before the sample bottle was sealed. Hydrochloric acid was chosen as a preservative because iron(II) was to be determined.

Only occasionally are the analysis results specified to more than two decimal places. No adjustment has therefore been made for dilution of the samples with acid.

4.1.3 Filtration

Filtration through a Nuclepore membrane filter with a pore diameter of $0.4~\mu m$ was done on each sampling occasion. The filter was thereby attached immediately after the test chamber. The total quantity of filtrate was measured and recorded. The volume varied between 200 and 2300 ml.

The first water that passed the filter was discarded, after which a 250 ml polyethylene bottle containing 2.5 ml concentrated hydrochloric acid was filled (if possible) with filtrate. Iron(II and total) was determined in the filtrate. The total quantity of aluminium, iron and sulphur was determined on the filter and the concentration in the water was calculated (table 7).

A millipore filter (0.45 μ m) was used at KM13, 556 m and for sample Nos. 344-348 and 441-44.

4.2 Transport of samples

The samples were packed in specially-made insulated boxes with frozen cooler blocks. The boxes were mailed "express" on the afternoon of the sampling day and delivered to the laboratory the following morning. No water sampling took place on Fridays and Saturdays, since the samples could then not be taken care of by the laboratory until Monday or Tuesday. The Sunday samples were sent together with the Monday samples.

4.3 Sampling levels

The concentrations within the levels are generally more or less consistent. More or less pronounced trends can frequently be seen. The concentrations at all levels in KM13 change, for example, with the pumping time.

The change in the two uppermost levels in KM13 is particularly marked, where all concentrations except manganese and bicarbonate increase - the concentrations doubled during the pumping period at 432 m. The concentrations of calcium and sulphate are unusually high at these levels, while the concentrations of sodium and chloride are low in the entire borehole. Strangely enough, iodide exhibits the sharpest concentration change, with an increase in concentration by more than 3-5 times. This would correspond to an increase of drilling water contamination from 3 to 15% at the 197 m level and from 4.5 to 12% at the 432 m level, which is certainly not noticeable in other parameters.

At KM13 556 m, a marked anomaly occurs between sample Nos. 354 and 355, i.e. during the period of leave b ween the sampling pe-

riods. The potential changes from negative to positive and several parameters reach extreme values in samples 355 and 356.

KM3, 376 m shows an unusually large and somewhat remarkable scatter in several parameters (see e.g. 4.7), and the first two samples in KM13, 564 m fall "outside the trend".

4.4 pH

pH was determined directly in the field and at a laboratory (table 6). The scatter of the field values in KM8 and KM13 is significantly greater than that of the laboratory values. The field values are systematically around 0.2 pH units higher than the laboratory values. Approximately the same difference has been found in many groundwater studies.

The most alkaline water with pH (lab) 7.7-8.6 is in KM3 and the most acid with pH (lab) 6.0-6.2 in KM8. KM13, 556 m and KM20 also have pH values that do not exceed 6.7.

4.5 Conductivity

Conductivity was determined both in the field and in the laboratory. The laboratory values have a greater scatter within the levels than the field values. This is particularly marked at KM20, where the standard variation for the laboratory values is 37%, while it is only 0.7% for the field values. The standard variation for the bicarbonate analyses is also large (18%) - in both cases, the last two samples have the highest values.

4.6 Organic carbon (TOC)

The concentrations are low (usually 1.5-3 mg/l), except in KM13, where the concentrations are consistently high, which is probably due to the fact that diesel oil was spilled in the borehole during the work phase prior to sampling. During the work to save an umbilical hose unit, soft soap was also introduced into the borehole. Strangely enough, however, the highest concentrations are found at the lowermost level, which was sampled after the 432 m and the 556 m levels.

4.7 Negative ions

The negative ions are compiled in tables 7 and 8. The results generally show good consistency within the sample zones, even where trends occur.

Samples 331 and 335 (KM3, 376 m) have exceptionally high concentrations of nitrate, at the same time as the concentration of iron(II) is also exceptionally high. In sample 475 (KM13, 432 m) a slightly elevated nitrate concentration is matched by low concentrations of iron(II).

The nitrate concentration in sample 488 (KM13, 197 m) is five times higher than any other sample within the level. The concentration has been confirmed by the laboratory. However, the possibility of contamination in connection with sampling cannot be excluded.

The greatest scatter in bicarbonate concentration within a level is found in KM20 (see 4.5), where the phosphate content of two samples is also unexpectedly low.

4.8 Positive ions

The positive ions are compiled in table 7. Agreement within the levels is generally good.

Besides the anomalies that have already been mentioned above, it should be pointed out that iron(II and total) in the unfiltered samples from KM13, 197 m, with the exception of No. 489, exhibit the opposite trend to the filtered samples, which is verified by the trend for the particulate iron — where, however, No. 489 falls into the pattern.

5 PARTICULATE MATTER

The particulate matter was subjected to several different types of analyses (5.1-5.5).

5.1 Chemical composition

The water was filtered through a membrane filter (4.1.3). Iron (II and total) was determined in the filtrate and iron, aluminium and sulphur on the membrane. The results are presented in table 7. The concentrations are reported as mg/1 of filtered sample.

5.2 Turbidity

Turbidity (table 8) was determined for all samples except the five that were taken first (KM3, 376 m). With the exception of a few samples from the two deepest levels in KM13, all turbidities

are below 10 NTU. Only in the sample from the 564 m level is the high turbidity matched by an elevated concentration of particulate matter according to 5.1.

5.3 Particle distribution

The particle distribution within the range 2-80 μ m was determined at all levels. The determination was performed by VIAK's water pollution research laboratory in Stockholm. The results are shown by curves in figs. 2-15.

5.4 Humic and fulvic acids

The determination was performed at Batelle, USA, through combined dialysis and gel film chromatography (GFC). The method, which fractionates the sample into humic acids and four molecular weight fractions of fulvic acid, is described by Means et al 1977 (Limnol. Oceanogr., 22, 957-965). Sodium tetraborate (pH 9.1) was used on recommendation by Swift and Posner 1971 (J. Soil Science, 22, 237-249).

The samples were concentrated ten times before analysis. No loss of volatile organic matter was found in connection with the concentration process.

Borehole	Depth m	No.	TOC mg/1	на ^а 7	Molecular weight
KM3	376	335	0.28	80	>700
KM8	198	460	0.42	85	>700

^aHumic acid fraction of TOC content.

According to Means the organic content of the above refered samples from KM3 and KM8 consists mainly of polymeric humic acid substances.

6 ISOTOPE ANALYSIS

Isotope analysis of light substances in the water is done mainly to permit calculations of the age and origin of the water. The heavy radioactive substances are determined primarily because the natural background concentrations are of great interest for the KBS project.

The analyses were carried out at the following laboratories:

Laboratory for Isotope Geology, Stockholm (6.1, 6.3) Mass Spectrometry Laboratory, Uppsala University (6.2) Studsvik Energiteknik, Nyköping, Sweden (6.4)

6.1 Carbon isotopes

The determination was used for dating by means of the carbon 14 method. The water's contents of carbon dioxide and carbonate have to be concentrated before the determination. It is thereby of the utmost importance that the concentrate not be contaminated by carbon-containing chemicals or contact with air.

6.1.1 Sample preparation

Sample preparation is done in the field. A polyethylene barrel holding 130 1 and filled from the beginning with nitrogen is filled with water. Hydrochloric acid is added to disintegrate carbonates present in the water. A nitrogen gas stream is then used to drive the carbon dioxide over to a wash bottle containing carbonate-free sodium hydroxide.

6.1.2 Groundwater age

Groundwater age is presented in the table below as "Age BP" and after correction for C-13 content as "Age BP, corr".

Borehole	Depth m	No.	Age BP	Age BP	C-13 o/oo	
км3	106	343	3535	3575	-22.5	
KM3	106	348	3310	3375	-21.1	Note 1
KM3	376	338	2910	2985	-20.3	Note 2
KM8	198	459	<250	<250	-25.9	
KM13	197	489	7260	7365	-18.3	
KM13	432	474	5755	5925	-14.7	
KM13	432	477	6335	6460	-14.2	
KM13	556	352	835	860	-23.5	
KM13	556	358	975	1015	-22.6	
KM13	564	484	785	800	-24.0	

Note 1 The volume increased in the adsorption bottle during concentration in the field.

Note 2 Bottle damaged during transport. Air in sample.

6.2 Oxygen-18

The analyses can furnish information on the climatic conditions prevailing at the time of infiltration.

The concentrations in the table refer to deviations in per mill from SMOW (Standard Mean Oceanic Water).

Borehole	Depth	Length	No.	0-18
	•	m.		0/00
KM3	106	123	343	-13.66
KM3	106	123	348	-13.76
KM3	376	445	335	-13.78
KM3	376	445	338	-13.76
KM8	198	238	460	-14.57
KM13	197	230	489	-13.72
KM13	432	514	474	-13.49
KM13	432	514	478	-14.17
KM13	556	670	353	-13.61
KM13	556	670	359	-14.90
KM13	564	680	484	-15.04
KM20	146	146	445	-13.64
KM20	146	146	450	-13.72

6.3 Tritium

Owing to its short half-life (about 12 years) tritium is an important isotope in hydrologic studies. The amount of tritium in the atmosphere has increased drastically due to experiments with nuclear fission. The tritium content of rainwater has increased by more than 10 times, which makes it possible to determine whether "young" water is present in a groundwater sample.

The tritium content is given in the tables in the unit TU, which is the number of tritium atoms per 10^{18} hydrogen atoms.

It should be noted that the tritium content at depth is consistently higher than would be expected. The presence of drilling water residues measured by the remaining quantities of the iodine marker does not explain this. One possible explanation is that surface water or young near surface water has infiltrated during the time the borehole have been standing open after drilling and before sampling which is usually 2-3 months. Another possible explanation is that young water standing in the borehole has accidentaly circumvented the packer system and mixed with

The tritium content in the sampled groundwaters:

Borehole	Depth	No.	Tr
	m .		TU
KM3	106	339	36+2
KM3	106	341	48+2
KM3	106	343	49+2
KM3	106	345	35+2
KM3	106	347	49+2
KM3	106	348	39+2
KM3	376	331	51+3
KM3	376	333	37+2
KM3	376	335	5/ <u>+</u> 2 56+3
KM3	376	336	48+2
KM3	376	338	56+3
CMA	376	336	30-3
KM8	198	451	28 <u>+</u> 1
км8	198	454	20 <u>+</u> 1
KM8	198	456	34 <u>+</u> 2
KM8	198	458	24+1
KM8	198	460	30 <u>+</u> 1
KM13	197	485	18+1
KM13	197	487	10+1
Km13	197	489	9+1
KM13	432	360	29 - 1
KM13	432	473	25 + 1
KM13	432	474	28+1
KM13	432	475	21+1
KM13	432	477	26 + 1
KM13	432	479	18+1
KM13	556	349	33+2
KM13	556	351	31+2
KM13	556	354	43+2
KM13	556	355	40+2
KM13	556	357	3 7+ 2
KM13	556	359	39+2
KM13	564	480	29+1
KM13	564	482	30+1
KM13	564	484	25 <u>+</u> 1
KM20	146	442	2 6+ 1
KM20	146	442	20 <u>+</u> 1 22+1
KM20		443 445	22 <u>+</u> 1 28+1
KM20	146 146	445 446	26 <u>+</u> 1 21+1
			_
KM20	146	450	22 <u>+</u> 2

the relevant water from the sampling zone. This latter explanation is supported by the observation in Kamlunge that pumping frequency may affect field parameters like Eh, pS, pO_2 and conductivity.

For KM20 the situation is different. This is a percussion-drilled hole in an area where probably a fairly rapid natural connection with the surface waters exists, which is indicated by the occurrence of ammonium ions (see table 8c) and iodine (see table 9 c). Iodine marked water is not used in this drilling procedure and ammonium concentrations is usually very low at this depth.

The tritium content in all analyzed drilling waters from the area is presented below. Drilling water is taken from percussion-drilled boreholes. The core borehole where the drilling waters are used, as well as the length of the core borehole at the time of sampling, are given.

Borehole	Length	Tr	
	10.	TU	
KM2	106	48+2	
KM2	492	46+2	
кмз	139	48 <u>+</u> 2	
км3	463	51+2	
KM4	509	68 <u>+</u> 3	
км9	0	51 <u>+</u> 2	
KM12	630	52 <u>+</u> 3	
KM13	216	49 <u>+</u> 2	
KM13	500	35 <u>+</u> 2	
KM14	175	38 <u>+</u> 2	
KM14	500	41+2	

6.4 Uranium, thorium, radium and radon

The natural concentration of these elements in the groundwater is of great interest for the project. The following results were obtained:

Bore- hole	Depth m	No.	Th µg/l	U Bq/l	Ra-226 Bq/1	Rn-222 Bq/1
 кмз	106	343	< 1.1 E-1	(3.03+0.08)E-1	(5.9 +0.7)E-3	471+5
KIIJ	100	348	< 5.4 E-2	(3.68+0.09)E-1	(5.6 + 0.6)E-3	469+8
	376	335	< 3.0 E-1	(1.01+0.05)E-1	(1.21+0.34)E-2	837+5
		338	< 3.3 E-2	(1.40+0.06)E-1	(2.03+0.36)E-2	860 <u>+</u> 5
KM8	198	454			(1.76+0.46)E-3	330+5
		460			(7.56+0.36)E-2	262 + 7
KM13	432	474	< 3.2 E-2	(2.90+0.08)E-1	(8.42+0.40)E-2	641 +9
		479		_	(9.53+0.13)E-2	773 + 8
	556	353	< 4.9 E-2	< 4.7 E-3	(4.73 <u>+</u> 0.33)E-2	418 <u>+</u> 6
		359	< 2.8 E-2	(1.53+0.34)E-2	(2.87+0.20)E-2	203+5
	564	484		_	< 5.3 E-3	404 <u>+</u> 7
KM20	146	445	< 3.5 E-2	(8.7 ±3.2)E-3	(2.3 +0.6)E-2	137+5
		450	< 6.7 E-2	(1.58+0.32)E-2	(2.6 + 0.5)E-2	125 + 5

The concentrations for U, Ra and Rn are given in Bq/l. The following relationships apply:

39.4 μ g U per Bq 2.74 x 10^{-5} μ g Ra-226 per Bq 1.76 x 10^{-10} μ g Rn-222 per Bq

7 GAS ANALYSIS

Helium, carbon dioxide and nitrogen were determined in the gas that spontaneously leaves the water on its passage through a Horst bottle. The analyses were carried out by AGA SpecialGas, Lidings.

In the table below, besides the gas phase's percentage content of the analyzed gases, the amount of water that has passed through the Horst bottle and the gas volume obtained are also given. This enables the reader to form his own rough idea of the quantity of dissolved gases in the water. The gas content of the water has not been calculated, since degassing is dependent on a number of uncontrolled parameters. We know, for example, that temperature variations of $>20^{\circ}\text{C}$ occur in the tent where the borehole opens out and the sampling equipment is located.

ВН	Depth	No.	He %	co ₂	N ₂	Water 1	Gas ml	Notes
км3	106	343	.006	.134	96.8	230	120	
км3	376	335	.003			165		1
		338	.004			365	145	
кмя	198	458				395	<1	2
KM13	197	488	.23	.004	92.9	92	75	
KM13	432	474	.115	•036	95.6	50	180	
		479	. 182		96.5	9	45	3
KM13	556	357	.001	.31	96.4	220	73	
KM13	564	483				160	<1	2
KM20	146	445	.025	1.35	94.6	79 0	7 0	

Note 1 Data on gas volume lacking.

Note 2 Gas volume insufficient for analysis.

Note 3 Gas volume was not enough for all analyses.

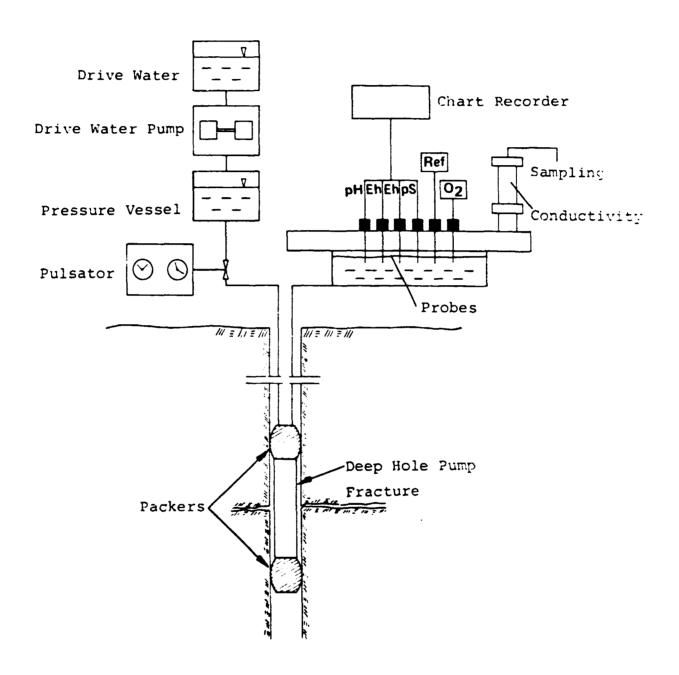


Figure 1. Schematic illustration of sampling equipment

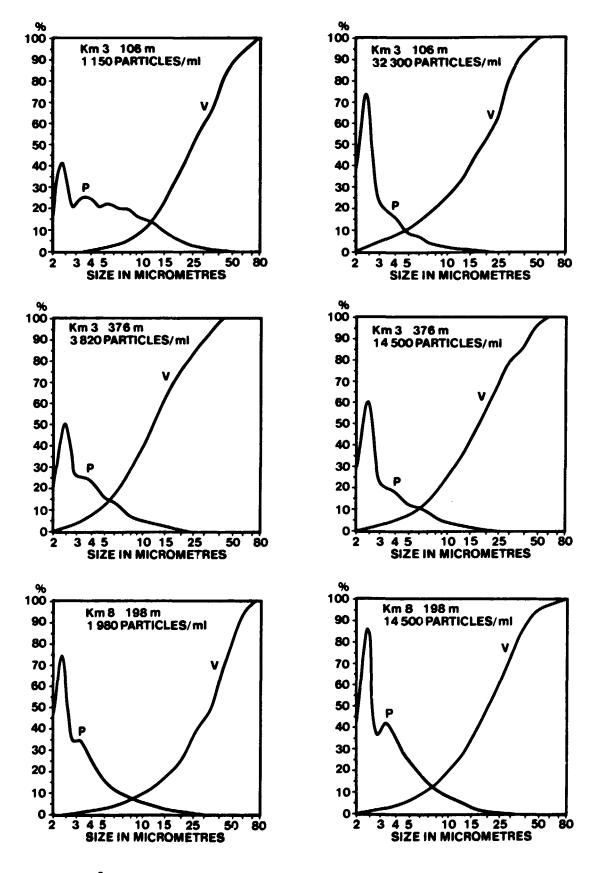


Figure 2. Particle size distribution analysis in the region 2-80 µm. An HIAC PA 500 instrument is used. P represents the percent of the total number of particles with a certain particle size. V represents the percent of the total particle volume less than a certain particle size.

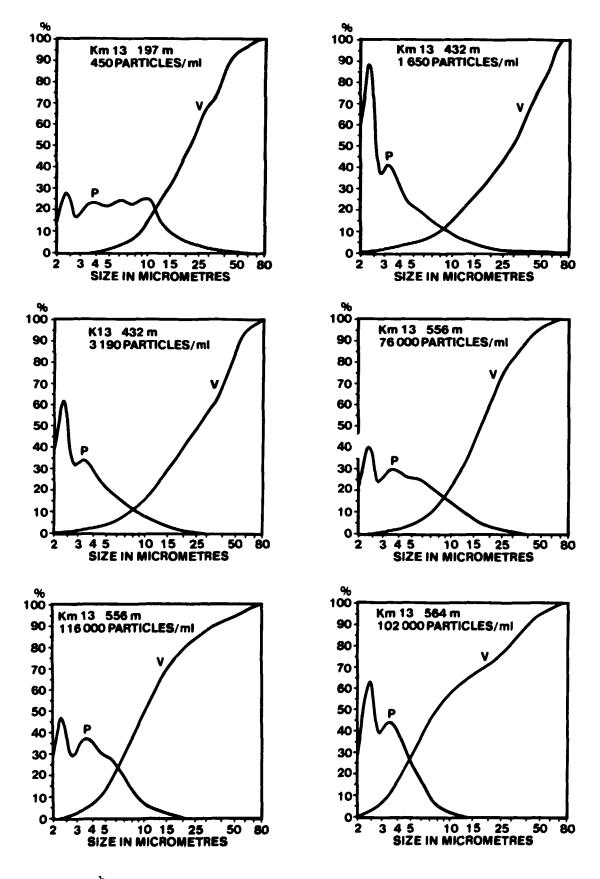
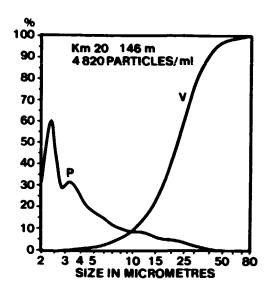



Figure 2^b. Particle size distribution analysis in the region 2-80 µm. An HIAC PA 500 instrument is used. P represents the percent of the total number of particles with a cermin particle size. V represents the percent of the total particle volume less than a certain particle size.

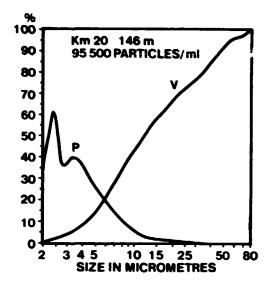


Figure 2. Particle size distribution analysis in the region 2-80 µm. An HIAC PA 500 instrument is used. P represents the percent of the total number of particles with a certain particle size. V represents the percent of the total particle volume less than a certain particle size.

NAMLUNGE - Field measurements

\(\) II \(00 00 10 10 10 10 10 10 20 20 20 20 90 90 90 90 90 11 11 11 11 11 11 11 11 11 11 11 11 11	55 41 55 42 55 42 55 42 55 88 55 88 55 88 55 86 56 25 56 25 57 57 54 54 54 64 54 64 54 54 64 54 54 64 54 54 54 54 54 54 54 54 54 54 54 54 54	26 26 26 26 26 26 26 26 26 26 46 47 49 49 49 49 49 49 49 49 49 49 49 49 49	86 65 87 27 74 52 78 68 68 68 68 68 68 68 68 68 68 68 68 68	89 14 24 25 25 26 27 29 29 29 29 29 29 29 29 29 29 29 29 29	28 68 68 68 78 78 88 26 76 26 26 76 86 96 96 96	76	0012 0022 0022 0022 0022 0023 0024 0024 002	E-90 E-90 Z-90 Z-90 Z-90 I-90 I-90 I-90 I-90 I-90 I-90 I-90 I			
8 11	so ·	S#131	4 51	111	9 71	601	∠9 ′ ∠	1950	* ~\$0	901	EMA	019
8 II 8 II	60 60 80	54 32 54 33 54 44	251 151 +61	111 111	941 E41 441	901 901 9 01	28 Z 98 Z 98 Z	1140	*-50 *-50 *-50			
8 11	12	54 26	125	SII	89 î	401	78.7	01/0	*-50			
8 II 2 II	. 50 55	52 41 52 40	151 6 7 1	153 153	⊅ ∠1 0∠1	115 115	98 Z 88 Z	1912 1520	6-60 6-60			
2 11 8 11	53	52 49 52 25	8 † I 6 † I	154	691 141	115 115	88 Z	0011	6-20 6-3			
8 11	. 24	25 54	671	154	691	115	78 T	S+40	E-20			
										901	EMA	809
15 5	40 '	\$3:33	159	113	201	801	18 4	1440	1-60			
15 5	25	53 33	:52	115	132	801	29 Z	1340	1-50	701	EMA	۷09
1 7 -	SS '	56.14	£9	158	16	011	79.7	0060	2-00			
1 2	09	3 9 15	29	158	06	60 T	96 L	SE40	04-5			
1 21	69 ' 66 '	52 43 52 11	89 69	152 152	68 18	901 201	96 L	1230	I-#0			
1 21	09	32 25	SS	153	84	501	76 L	1330	1-40			
121	S+ 30	52 31 52 58	08 29	911 511	101	101	7. 92 7. 91	0540	I-#0			
151	C≯ ·	25 08	99	EII	48	66	*8 7	0E70	1-10			
121	SS T	52 86	29 E9	155 154	68 18	100	06 Z	1230	∠-€0 ∠-€0			
1 21	29 .	56 10 56 50	86	061	28	211	86 Z	1530	2-€0 4-€0			
151	SS	56.26	09	156	18	111 111	86 7	1152	4-50			
151	69 0B	28 22 28 18	6 9 19	iei iei	+8 ∠8	801	66 'L	0250 0720	∠-€0 ∠-€0			
15 1	69	25 62	09	135	28	* 11	B6 4	1200	9-E0			
15 1	69 69	87 25 25 95	09 95	135	29 24	†11 E11	66 Z 46 Z	1300 1032	9-60 9-60			
15 5	SS	72 Y4	19	128	68	115	79.7	0160	9-20			
121	SS	52 15 59 15	19 66	133 133	62 62	111 611	96 °C	\$1∠0 0091	9-E0 S- E0			
121	SZ	3P 3P	09	134	83	611	10 8	0660	6-60			
15.1	SO I	59 10 59 18	6 5	135 131	6 <u>L</u>	114 511	8 05	0570 5551	\$-60			
15 1	1. 20	26.17	20	121	44	PII	B. 02	1400	9 -€0			
121	1 10	56 16 56 23	∠¥ B¥	161 061	94 54	114 511	8 03	1500 0420	9-€0			
15 0	00 T	59 St	67	OEI	94	#11	EO B	S#40	♦-E0			
15.0	1 30	59° 30 59° 39	*S 15	158 158	62 64	* 1 1 **	+0 B	1220 1400	E-E0			
15.0	OB I	5 7 38	8+	121	LL	Ell	CO B	1542	6-60			
15.0	3 B0	59° 15	9 > 66	135 130	€∠ 98	511 511	90 B 80 8	0670 0730	6-60 6-60			
				<i></i>		,	JJ	JULU		901	EMM	909
15.0		26 62 23 65	∠s 85	761 751	84 08	112	86 Z	1430 1352	03-1 03-1	109	киз	5 09
u/5m	1 / 6w		Vm	Vm	Vm	Vm			p-mm	_		חר
הקוגאון בסטקחכן	ua6 _fixo	54	76 4d (43	-7, EP' bf	Eh. C	EP' C	Hq	∌w≀1	Date	.treV ntqeb	-aroB sion	mostens

KAMLUNCE - Field measurements

Cali- bration or	Bore- hale	Vert. depth	Date ww-d	Time	рН	Eh. C	Eh.C ex eV	Eh.Pt	Eh.Pt ex mV	pS	Diy— gen mg/l	Conduc- tivity mS/m
			-									
6C1	KM3	376										
			50-3	0815	9. 07	-165	- 71	-421	- 91	13.62	09	13 8
			50-3	1015	9. 12	-160	- 67	-417	- 87	14. 26	96	13 8
			50-3 50-3	1220 0015	9. 13 4. 60	-1 5 9 -1 4 6	- 64 - 35	-413 -400	- 87 - 50	13. 50 13. 67	. 06 . 06	13.9 14.1
			50-3	1700	9. 13	-151	- 47	-39 7	- 73	13. 35	. 05	14 1
			50-4	0855	9. 07	-150	- 58	-416	- 90	12.59	. 05	14.1
			50-4	1130	9 09	-147	- 54	-412	- B6	12 56	. 05	14 1
			50-4	1415	9. 05	-148	- 54	-406	- 68	12 39	05	14.1
			50-4	1615	9. 04	-143	- 45	-389	- 79	12. 35	. 05	14 1
			51-1	0900	8. 70	-118	-118	-147	- 37	15 86	. 04	12 3
			51-1	1210	8.69	-120	-121	-157	- 45	15. 53	03	12. 5
			51-1	1510	8. 67	-122	-122	-162	- 46	15.32	04	12.3
			51-1 51-1	1810 2000	8. 66 8. 65	-124	-119 -107	-166 -168	- 49	15. 12	04	12 3
			51-1 51-1	2200	8. 65	-124 -124	-107 - 9 7	-169 -172	- 51 - 52	15. Q1 14. 88	. 05 . 05	12 5 12 5
			51-2	0820	8. 61	-127	- 8 1	-183	- 52 - 57	14 31	. 05	12.5
			51-2	1000	8.62	-120	- 77	-181	- 55	14. 34	.02	12 3
602	KM3	376										
			01-1	1530	8. 70	-192	-178	-196	-210	13.00		12 9
			01-1	1730	8. 73	-186	-111	-191	-137	13.01		12 9
±00	2 M 2	274										
603	ЕМЯ	376	01-3	0745	8.38	-100	- 94	-118	-101	14. 64		12. 9
			01-3	0930	8.38	- 99	- 97	-117	-113	14 59		12.9
			01.3	1140	8.38	- 99	- 96	-118	-114	14. 51		12.9
			01-3	1400	8. 42	- 99	- 93	-118	-110	14. 42		12 9
			01-3	1540	8. 38	- 99	- 96	-117	-113	14. 46		12.9
			01-4	0730	B. 30	-104	-106	-124	-121	13. 95		12 9
			01-4	1135	8. 39	-102	-102	-122	-119	14.08		12.9
			01-4	1330	8. 39	-100	-102	-121	-117	14. OB		12 9
			01-4	1535	8. 38	-100	-102	-121	-118	14. 04		12 9
			01-5 01-5	0730 0845	8. 35 8. 38	-100 -100	-105 -104	-123 -123	-119	13.84		13.0 13.0
			01-5	1125	8. 38	- 99	-102	-123	-118 -119	13. 87 13. 82		13.0
			01-5	1330	8.38	- 99	-105	-123	-118	13.82		13.0
			01-5	1530	8. 37	- 99	-106	-123	-120	13. 80		13 0
			01-6	0730	8.36	-100	-107	-126	-120	13. 66		13 0
			01-6	0930	8. 36	- 99	-105	-126	-120	13.65		13 G
			01-6	1205	8.36	- 99	-107	-126	-120	13 65		13.0
			01-6	1400	8. 37	- 99	-106	-127	-119	13. 64		13 0
			01-6	1550	8.36	-100	-107	-127	-120	13 61		13.0
			01-7 01-7	0735 0 9 35	8. 36 8. 37	-102	-10 9	-131 -133	-122	13. 53		13 0
			01-7	1145	8. 37	-102 -102	-109 -109	-132 -133	-122 -122	13. 53 13. 53		13.0 13.0
			01-7	1405	8. 37	-102	-109	-133	-123	13. 52		13 0
			01-7	1545	8.38	-105	-111	-135	-123	13.50		13 0
			02-1	0730	8. 37	-111	-119	-143	-131	13.30		13.0
			02-1	0925	8. 39	-111	-116	-143	-130	13 34		13 0
			02-1	1130	8. 37	-112	-126	-143	-131	15. 95		13 0
			02-1	1350	8. 38	-113	-119	-144	-131	13. 32		13 0
			02-1	1705	8. 37	-114	-120	-145	-132	13. 31		13 0

!" *LUNGE - Field measurements

Jali- tration	Bore- hole	Vert depth	Dete	Time	рН	Eh. C	Eh. C	En. Pt	Eh. Pt	øS	Ozy-	Conduc-
nr		•	ww-d			mV	mV.	m V	aV		mg/l	mS/m
652	кма	198										
			20-4	0815	7. 20	310	371	289	369	28.83	2 00	4 3
			20-4	1015	7 22	309	367	289	364	28. 82	2 00	4 3
			20-4	1200	7. 23	308	355	287	346	28. 91	1. 95	4 3
			20-4	1545	7. 25	307	305	286	315	28 90	1.90	4 2
			20-5	0900	7. 32	302	365	287	340	28 86	1.65	4. 2
65 3	KM8	198										
633	AT IO	170	21-1	C830	6. 27	303	293	292	286	27 91	1.10	3 9
			21-1	1030	6. 26	303	327	292	320	27 89	1.11	3 9
				1240		300	332	291	343	27.89	1.11	3 9
			21-1		6. 26	299		291	_	27. 83		3.9
			21-1	1440	6. 23		362		360		1.11	3. 9
			21-1	1700	6. 24	298	363	291	362	27 86	1 08	
•			21-2	0750	6. 26	300	359	289	356	27.96	1.06	38
			21-2	1000	6. 25	301	360	289	354	28.04	1.06	3 8
			21-2	1210	6. 24	300	340	289	331	27. 99	1.06	38
			21-2	1450	6. 26	300	335	289	306	28.02	1.05	3.8
			21-2	1920	6. 26	300	322	298	308	28. 05	1.05	3. 8
			21-3	0840	6. 25	299	321	286	305	28 03	1.04	38
			21-3	0940	6. 26	298	324	285	309	28. 04	1.04	3 8
657	KM8	198										
			22-3	1035	6. 79	257	268	20 0	218	25. 34	1.36	4. 2
			22-3	1310	6. 79	257	296	203	232	25.46	. 95	4 2
			22-3	1510	6. 78	254	283	197	231	25.33	1. 21	4.2
			22-3	1620	6. 79	254	116	195	63	25. 33	1. 21	4. 2
			22-4	0840	6. 85	249	363	186	320	25. 58	1.28	4. 1
			22-4	1040	6. 83	247	328	186	284	25. 55	1. 27	4. 1
			22-4	1240	6. 83	249	79	184	25	25 56	1. 27	4. 1
			22-4	1440	6. 82	249	- 10	184	- 55	25. 56	1. 27	4 1
			22-4	1530	6.81	250	- 61	184	-107	25. 60	1. 28	4. 1
			22-5	0830	6. B6	249	226	180	173	25. 97	1. 24	4. O
			22-5	1030	6. 85	247	238	177	184	25.87	1. 26	4. 1
			22-5	1230	6. B4	246	246	174	191	25.84	1.22	4.0
			22-5	1430	6 83	244	250	172	196	25. 77	1. 22	4 1
			22-5	1650	6. 95	244	256	169	199	25.81	1.17	4. 1
			55-9	0835	6.88	246	272	161	214	25.97	1. 19	4 0
			22-6	1135	6.87	246	270	159	210	25.95	1. 18	4.0
			55-9	1335	6. 87	246	270	157	208	25.93	1.16	4.0
			22. b	1550	6. 87	245	270	155	208	25. 92	1. 15	4.0
			22-7	0750	6. 88	249	276	147	209	26.07	1.13	4.0
			22-7	0950	6. 87	246	273	145	203	26.00	1. 11	3 0
			22-7	1150	6.86	245	269	142	201	25. 89	1. 11	4. 0
			22-7	1350	6.87	244	269	140	198	25.89	1. 10	4.0
			22-7	1510	6. 87	244	269	138	198	25. 88	1. 10	4 0
			23-1	0825	6.88	246	273	120	199	25. 93	1.08	4.0
			23-1	1025	6. 88	245	270	118	195	25. 88	1 10	4. 0
			23-1	1715	6. 89	244	231	107	153	25. 82	1. 05	4 0
			23-2	0840	6. 91	249	258	86	173	25. 96	. 94	4 0
			23-2	1020	6. 90	248	256	87	174	25. 93	. 9 7	4. 0

MAMLUNGE - Field measurements

Cali- bration nr	Bore- hole	Vert depth m	Date	Time	pH	Eh. C	Eh. C e1 eV	Eh. Pt	Eh.Pt ez mY	pS	Ozy- gen mg/l	Conduc- tivity mS/m
530	KM13	197	24-1 24-1 24-1	0830 1800 2000	7 22 7. 17 7. 31	67 56 47	- 84 - 28 -119	48 29 21	- 59 - 47 - 90	24 06 22, 56 22, 46	30 16 15	35 5 38 2 36 6
631	KM13	197	24-3 24-3 24-3 24-4 24-4 24-4 24-5 24-6 24-6 24-6 24-7 24-7 24-7 24-7 24-7 25-1 25-1 25-1 25-1 25-2	0815 1000 1130 1445 1645 0800 1030 1430 1600 0810 1610 0815 1030 1230 1500 1630 0810 1030 1330 1615 1830 0750 1030 1400 1715 2030 2115 0740 0945	7. 71 7. 68 7. 62 7. 66 7. 71 7. 78 7. 70 7. 77 8. 13 8. 03 8. 15 8. 14 8. 14 8. 20 8. 24 8. 39 8. 40 8. 40 8. 57 8. 57 8. 53 8. 60 8. 62 8. 69	45 46 48 45 42 33 33 32 29 16 15 4 - 1 - 4 - 19 - 24 - 29 - 27 - 35 - 36 - 36 - 38 - 41	- 90 - 88 - 91 - 96 - 99 -112 -115 -126 -125 -139 -142 -158 -131 -157 -195 -196 -203 -205 -206 -207 -211 -214 -215 -214 -215 -214 -215 -214	42 46 46 43 42 34 33 31 29 21 28 11 7 3 - 3 - 20 - 24 - 30 - 35 - 39 - 51 - 52 - 55 - 56 - 58 - 58 - 63 - 64	- 45 - 50 - 54 - 65 - 70 - 95 - 99 -111 -128 -133 -151 -189 -190 -190 -201 -202 -206 -207 -210 -212 -212 -210 -209 -211 -209 -214	23 76 23 69 23 69 23 43 23 39 22 83 22 73 22 30 22 10 21 95 20 79 20 36 19 98 19 71 19 67 18 59 17 58 17 58 17 58 17 58 16 80 16 64 16 69 16 70 16 70 16 50		45 4 5 1 5 6 0 1 4 4 9 2 5 7 0 0 5 6 0 1 2 0 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
624	KM13	432	18-4 18-4 18-4 18-4 18-5 18-5 18-5 18-6 18-7 18-7 18-7 19-1 19-1 19-1 19-2 19-2 19-2 19-2	0805 1005 1205 1405 1605 0805 10:0 1610 0805 1100 1410 1625 0820 1440 1640 1925 0805 1020 1420 1520 0008 1005 1205 1435 1750 2030	8. 27 8. 29 8. 31 8. 33 8. 39 8. 43 8. 23 8. 24 8. 19 8. 17 8. 17 8. 17 8. 16 8. 17 8. 16 8. 21 8. 10 8. 12 8. 10 8. 12 8. 10 8. 12 8. 10 8. 12 8. 10 8. 12 8. 10 8. 12 8. 10 8.	- 4 - 7 - 6 - 3 - 11 - 16 - 18 - 28 - 25 - 27 - 24 - 24 - 31 - 34 - 36 - 45 - 50 - 50 - 54 - 52 - 54 - 67 - 67 - 67	106 111 107 103 99 82 81 125 89 84 79 76 38 11 11 28 6 4 - 4 - 13 - 37 - 26 - 23 - 36 - 39 - 41	- 8 - 11 - 10 - 15 - 19 - 18 - 21 - 29 - 27 - 29 - 27 - 33 - 36 - 38 - 47 - 52 - 57 - 65 - 69 - 77	55 61 60 55 49 30 26 112 63 53 25 45 8 - 23 - 15 27 - 29 - 40 - 45 - 57 - 59 - 64 - 67 - 69	24. 74 24. 59 24. 63 24. 67 24. 47 24. 20 24. 18 24. 06 23. 26 23. 26 23. 26 23. 26 23. 27 22. 51 22. 51 22. 51 22. 51 22. 51 22. 51 22. 51 22. 51 22. 51 23. 26 23. 27 21. 63 20. 29 19. 62 19. 62 19. 32 19. 32 19		61 1 8 2 5 7 2 3 8 1 5 3 7 0 2 6 5 9 3 6 8 4 8 2 6 2 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
527	KM13	432	20-6 20-6 20-6 20-7 20-7 20-7 21-1 21-1 21-1 21-1 21-1 21-2 21-2 21	1015 1230 1515 1640 0830 0930 1130 1650 0830 1045 1315 1500 1645 0745 1000 1140 1400	8 67 8 70 8 70 8 72 8 70 8 69 8 64 8 64 8 64 8 64 8 64 8 65	-112 -119 -120 -120 -113 -114 -115 -115 -115 -116 -116 -116 -116 -116	- 20 28 28 25 25 23 27 23 25 30 27 31 35 34 33 34	-120 -123 -125 -126 -128 -129 -130 -130 -130 -132 -132 -132 -132 -132 -132	- 43 - 52 - 52 - 49 - 55 - 55 - 66 - 66 - 66 - 76 - 85 - 89 - 88	16 72 16 39 16 19 16 07 15 36 15 28 15 21 14 71 14 43 14 37 13 98 13 96 13 93 13 88		98 4 96 8 100 0 100 0 102 2 102 6 100 5 103 6 105 6 106 0 106 2 107 0 108 2 108 3 108 8

Cali- bration pr	Bore- hole	Vert depth	Date w-d	Time	pH	Eh.C	Eh. C es ev	Eh. Pt	Eh. Pt ez av	øs	Ory- gen mg/l	Conductivity mS/m
621	СТНИ	556	12-5 12-5 12-5 12-5 12-6 12-6 12-7 12-7 12-7 13-1 13-1 13-1 13-2 13-2 13-2 13-3 13-3	0750 1000 1240 1450 1900 0900 1100 1645 0830 1130 1650 0730 0930 1535 1810 1045 1130 1620 1850 0905 1400 1615 1715	7 62 7 59 7 59 7 62 7 69 7 55 7 55 7 55 7 55 7 55 7 55 7 55 7 5	- 51 - 52 - 54 - 54 - 54 - 36 - 39 - 40 - 42 - 41 - 51 - 54 - 61 - 63 - 82 - 88 - 99 - 119 - 119 - 118 - 120 - 168 - 173	75 78 97 94 86 56 56 56 - 13 - 63 - 85 - 86 - 121 - 121 - 121 - 111 - 120 - 139 - 141 - 144 - 235 - 236 - 240	- 70 - 72 - 75 - 76 - 73 - 67 - 71 - 73 - 76 - 79 - 79 - 79 - 108 -111 -133 -135 -140 -151 -154 -153 -159 -160 -173 -160 -173 -160 -173 -176	78 78 78 78 79 64 66 35 26 15 - 21 - 25 - 27 - 28 - 72 - 76 - 92 - 95 -121 -124 -116 -125 -142 -145 -147 -249 -252	18 75 18 50 18 39 10 36 10 50 18 86 10 59 10 40 10 14 10 06 10 13 17 71 17 43 17 30 17 22 16 43 16 39 16 39 16 39 15 54 15 79 15 56 13 51 13 23 13 12	11 11 10 10 10 10 10 11 12 14 15 12 12 12 13 12 13 12 15 15 12 12 13 12 13 14 14	777777777777777777888008811888888888888
622	EIMA	554	14-4 14-4 14-4 14-5 14-5 14-5 14-5 14-6 14-6 14-7 15-1 15-1 15-2 15-2 15-3 15-3 15-3 15-3 15-4 15-4	0825 1030 1235 1430 1625 0825 1035 1230 1500 0810 1010 1310 1310 1310 1410 1610 0845 1245 1245 1545 1645 0820 1020 1215 1700 1700 1700 1700 1700 1700 1700 17	6. 89 6. 85 6. 86 6. 89 6. 92 6. 92 6. 92 6. 93 6. 93 6. 93 6. 93 6. 99 7. 00 7. 00 7. 00 6. 93 6. 97 7. 00 6. 93 6. 97 7. 00 7. 00	104 101 98 96 92 90 91 91 91 92 104 105 107 108 109 104 17 105 107 105 107 107 107 107 107 107	78 67 68 65 62 39 61 60 48 50 48 46 42 40 38 34 32 22 17 12 15 14 6 6 7 17	103 99 97 97 94 89 87 66 89 94 95 105 105 107 110 108 109 108 104 101 106 106 107 105 107 107 108 109 109 109 109 109 109 109 109 109 109	68 60 61 58 58 47 59 55 60 44 45 46 37 41 40 38 22 29 29 29 16 10 12 10 7 4 4 7 2 11 - 2 - 11 - 3 - 23 - 23 - 24	24 82 24 64 24 39 24 38 24 38 27 23 89 23 88 23 88 23 88 23 88 24 28 24 23 24 28 24 23 24 29 24 13 24 16 23 71 23 70 23 70 23 70 23 70 23 70 23 80 23 80 24 28 24 28 25 28 26 28 27 28 2	35 35 36 37 30 22 20 19 20 15 14 16 09 08 07 06 06 07 06 06 07 06 06 07 06 06 07 06 06 07 06 06 07 06 07 06 07 07 06 07 07 08 07 07 07 07 07 07 07 07 07 07 07 07 07	159016026666666666666666666666666666666666
629	киз	364	22-4 22-4 22-4 22-4 22-9 22-9 22-9 22-6 22-6 22-7 22-7 22-7 22-7 22-7 22-7	0830 1030 1230 1430 1545 0830 1030 1230 1710 0830 1025 1230 1730 0735 0740 1130 1330 1445 0820 1035 1210 1410 1710 0655 0855 11230 1415 1030	6. 81 6. 76 6. 76 6. 76 6. 89 6. 81 6. 81 6. 81 6. 91 6. 93 6. 93 6. 94 7. 02 7. 01 7. 00 7. 00 7. 01 7. 07 7. 05 7. 12 7. 13 7. 14 7. 13 7. 11 7. 54	133 132 130 131 135 128 125 124 122 122 114 112 107 107 98 94 91 87 77 72 72 68 68 68 68	241 233 227 238 246 221 228 223 239 180 163 186 110 107 111 110 102 79 25 77 64 94 50 22 270	129 128 125 128 118 114 112 112 112 99 90 76 73 71 68 68 57 57 59 49 42 42 41 40 40 70	129 120 117 114 126 142 130 124 137 115 94 119 103 83 78 80 74 47 44 48 36 28 35 37	25 69 25 45 25 26 25 26 25 26 24 96 24 81 24 72 24 69 23 95 23 74 24 69 23 95 22 97 22 97 22 97 22 97 22 72 22 70 22 22 22 00 21 71 21 72 21 72 21 72 21 72 21 63 13 33	35 35 37 35 20 20 20 20 12 13 12 10 11 11 11 10 10 10 10	2222222222233335556666777772

MAMLUNGE - Field measurements

MASCO 146 146 146 146 167 168 169 168 169 168 169 16	Cali- bration pr	Bore- hale	Vert depth m	Date	Time	рН	Eh. C	Eh,C ex mV	Eh, Pt	Eh.Pt es ev	pS	Oly- gen mg/l	Conduc- tivity mS/m
14-4 0805 6 87 185 235 133 177 25 06 01 16 8 14-4 11-40 11-40 1020 6 83 179 229 148 169 24 62 10 17 0 14-4 11-45 6 88 181 232 150 170 24 71 07 16 9 14-5 0820 6 86 183 248 155 180 24 86 00 16 8 14-5 016 6 89 182 245 154 175 24 80 04 16 8 14-5 016 6 89 182 245 154 175 24 80 01 17 0 14-6 0750 6 88 178 241 154 165 24 64 00 16 8 14-6 1350 6 88 173 237 152 152 24 44 00 16 8 14-6 1350 6 88 173 237 152 152 24 44 00 16 8 14-7 1420 6 89 173 224 154 165 24 64 00 16 8 14-7 1420 6 89 173 225 159 152 24 54 00 16 8 14-7 1520 6 90 172 226 160 152 24 54 00 16 8 15-1 1300 6 88 173 227 153 154 24 67 00 16 8 15-1 1300 6 88 173 227 165 140 24 78 00 16 8 15-1 1300 6 88 173 227 165 140 24 78 00 16 8 15-2 0830 6 90 173 224 160 24 78 00 16 8 15-3 0830 6 92 158 215 132 121 23 96 04 16 8 15-3 1300 6 70 173 234 162 145 24 85 00 16 8 15-3 1300 6 70 173 234 162 121 23 96 04 16 8 15-3 1300 6 70 173 224 126 119 23 67 06 16 8 15-3 1200 6 70 158 226 128 130 23 78 05 16 8 444 MH2O 146 15-4 160 160 160 160 160 160 160 15-3 160 6 70 174 226 132 175 24 10 05 16 7 15-7 0830 6 70 132 214 126 117 23 98 05 16 8 546 MH2O 146 15-4 160 6 75 176 270 151 277 279 130 171 23 98 05 16 7 16-1 1645 6 75 186 279 133 171 23 98 05 16 7 16-6 1300 6 75 146 247 147 226 227 270 16 16 16-6 1300 6 75 146 247 147 226 227 270 16 16 16-6 1300 6 75 146 247 147 222 277 05 16 7 16-6 1300 6 75 146 247 147 180 222												=	
14-4 1020 6 83 179 229 148 169 24 62 10 17 16 9 14-4 1145 6 88 181 232 130 170 24 71 07 16 9 14-5 0820 6 86 183 248 135 180 24 86 00 16 8 14-5 1300 6 86 183 230 135 179 24 80 04 16 8 14-5 0016 6 88 182 245 134 175 24 80 01 17 01 14-6 0750 6 88 173 237 132 161 24 49 00 16 8 14-6 1300 6 88 173 234 132 137 24 40 00 16 8 14-6 1350 6 88 173 234 132 137 24 44 00 16 8 14-7 1220 6 84 146 219 134 162 24 24 00 16 8 14-7 1220 6 89 170 225 139 1462 24 36 00 16 8 14-7 1220 6 89 170 225 139 1462 24 36 00 16 8 14-7 1220 6 89 170 225 139 1462 24 36 00 16 8 14-7 1220 6 89 170 225 160 136 24 37 00 16 8 14-7 1220 6 89 170 225 160 136 24 37 00 16 8 13-1 1100 6 80 170 225 160 136 24 37 00 16 8 13-1 1300 6 89 173 227 155 140 24 47 00 16 8 13-1 1300 6 89 173 227 155 140 24 47 00 16 8 13-2 1300 6 89 173 227 155 140 24 47 00 16 8 13-2 1300 6 89 173 227 159 136 24 72 01 16 8 13-3 1300 6 89 173 224 14 12 23 89 00 16 8 13-3 1300 6 89 131 202 124 114 23 39 05 16 8 15-3 1300 6 89 131 202 124 114 23 39 05 16 8 15-3 1300 6 89 131 202 124 114 23 39 05 16 8 15-3 1300 6 89 131 202 124 114 23 39 05 16 8 16-1 1200 6 674 189 227 133 132 226 24 89 50 16 8 16-1 1200 6 674 189 227 133 171 23 87 50 16 8 16-1 1200 6 674 189 227 133 127 22 6 2 4 9 9 0 16 8 16-1 16-5 16-1 16-5 170 200 16 8 16-7 16-6 1300 6 75 186 227 133 129 22 6 2 4 9 9 0 16 8 16-7 16-6 1300 6 75 186 227 130 130 229 22 6 2 9 9 10 16 6 16-5 16-6 1300 6 75 16 6 18 27 130 130 120 12	542	MMZO	146	14-4	0005	4 07	105	226			25.04		
14-4 1145 6.88 181 232 150 170 24 71 07 16 7 16 7 14-5 0820 6.86 183 248 155 180 24 86 00 16 8 14-5 1530 6.85 183 248 155 179 24 80 04 16 8 14-5 1500 6.89 182 245 154 175 24 80 01 17 0 14-6 0750 6.88 178 241 154 165 24 64 00 16 8 14-6 1150 6.88 178 241 154 165 24 64 00 16 8 14-6 1150 6.88 173 237 152 161 24 49 00 16 8 14-6 1350 6.88 173 234 132 137 24 44 00 16 8 14-7 120 6.89 173 234 132 137 24 44 00 16 8 14-7 120 6.89 173 224 132 137 24 44 00 16 8 14-7 120 6.89 173 224 132 137 24 44 00 16 8 13-1 130 6.88 172 228 140 136 24 57 00 16 8 13-1 130 6.88 172 228 140 136 24 57 00 16 8 13-1 130 6.88 172 228 140 136 24 69 00 16 8 13-1 130 6.88 172 228 140 140 24 69 00 16 8 13-2 0830 6.90 173 234 142 145 24 85 00 16 8 13-2 0830 6.90 173 234 142 145 24 85 00 16 8 13-3 1030 6.90 173 234 142 145 24 85 00 16 8 13-3 1030 6.90 173 227 159 136 23 27 00 04 16 8 13-3 1300 6.90 135 22 14 124 119 23 67 06 16 8 13-3 1300 6.90 132 214 124 119 23 67 06 16 8 13-7 1200 6.90 132 214 124 119 23 67 06 16 8 13-7 1200 6.90 132 214 124 119 23 67 06 16 8 13-7 1400 6.90 135 22 124 124 119 23 67 06 16 8 13-7 1400 6.90 132 214 132 121 23 98 03 16 8 13-7 1400 6.90 132 23 132 121 23 98 03 16 8 13-7 1400 6.90 132 23 132 132 24 85 00 16 8 13-7 1400 6.90 132 23 132 132 24 85 00 16 8 13-7 1400 6.90 132 23 132 132 24 85 00 16 8 13-7 1300 6.90 132 23 132 132 24 85 00 16 8 13-7 1300 6.90 132 133 132 132 24 85 00 16 8 13-7 1300 6.90 1									-			-	
14-5 0820 6.86 183 248 155 180 248 6.00 16 8													
14-5 1030 6.85 183 250 155 179 24 80 04 16 8													
14-5 0016 6 88 182 245 154 175 24 90 01 17 0													
14-6 1150 6 88 175 237 152 161 24 49 00 16 8 14-6 1350 6 68 173 234 152 157 24 44 00 16 8 14-7 1220 6 84 148 219 154 162 24 24 26 00 16 8 14-7 1520 6 99 170 225 159 162 24 56 00 16 8 14-7 1520 6 90 172 226 160 158 24 69 00 16 8 15-1 1130 6 68 172 228 153 158 24 69 00 16 8 15-1 1130 6 88 173 227 165 140 24 69 00 16 8 15-1 1130 6 88 173 227 165 140 24 69 00 16 8 15-2 1030 6 90 173 234 162 145 24 85 00 16 8 15-2 1030 6 90 171 227 159 136 24 72 01 16 8 15-3 1030 6 90 171 227 159 136 24 72 01 16 8 15-3 1030 6 90 155 226 128 136 23 78 05 17 6 15-3 1230 6 90 155 226 128 136 23 78 05 17 6 15-3 1230 6 90 155 226 128 136 23 78 05 17 6 15-3 1230 6 90 155 226 128 136 23 78 05 17 6 15-3 1230 6 90 155 226 128 136 23 78 05 16 8 15-3 1300 6 97 151 202 124 126 119 23 67 06 16 8 15-3 1230 6 97 151 202 124 126 119 23 67 06 16 8 15-3 1230 6 97 151 202 124 126 119 23 67 06 16 8 15-3 1300 6 97 151 202 124 126 119 23 67 06 16 7 15-7 1400 6 04 179 228 152 176 24 07 10 16 5 16-1 1200 6 04 179 228 152 176 24 07 10 16 5 16-1 1645 6 73 179 227 153 74 24 05 05 16 7 16-1 1645 6 73 179 227 153 171 23 98 05 16 7 16-1 1645 6 73 179 227 153 171 23 98 05 16 7 16-1 1645 6 73 179 227 153 171 23 98 05 16 7 16-6 1445 6 74 1445 6 74 1445 6 74 1445 73 22 22 22 23 24 24 24 2				14-5	0016	6. 88						. 01	
14-6				14-6	0950	6. 98	178	241	154	165	24.64	. 00	16.8
14-7 1220 6.94 148 219 154 162 24.24 0.0 16.8 14-7 1420 6.99 170 225 159 162 24.56 00 16.8 14-7 1520 6.90 172 226 160 158 24.67 00 16.8 15-1 1130 6.98 172 228 164 140 24.67 00 16.8 15-1 1130 6.98 173 227 165 140 24.78 00 16.8 15-2 0930 6.90 173 224 162 145 24.78 00 16.8 15-2 1030 6.90 173 224 162 145 24.78 00 16.8 15-3 1030 6.90 173 224 162 145 24.78 00 16.8 15-3 1030 6.90 173 224 162 145 24.70 01 16.8 15-3 1230 6.90 156 226 228 134 22.78 05 17.6 15-3 1230 6.90 152 214 126 119 23.67 06 16.8 15-3 1230 6.90 152 214 126 119 23.67 06 16.8 15-3 1230 6.90 152 214 126 119 23.67 06 16.8 15-3 1230 6.90 152 224 126 119 23.67 05 16.8 15-7 0830 6.71 185 223 151 175 24.11 05 16.7 15-7 1400 6.07 184 226 132 176 24.07 05 16.7 15-7 1400 6.07 184 226 132 176 24.07 05 16.7 15-7 1400 6.07 184 226 132 176 24.07 05 16.7 15-7 1400 6.07 184 226 132 176 24.07 05 16.7 15-7 1400 6.07 184 226 132 176 24.07 05 16.7 15-7 15-7 16-1 1645 6.73 179 227 153 171 23.98 05 16.8 16-1 1545 6.76 189 272 133 279 22.65 16.8 16-1 1545 6.76 184 275 133 229 22.63 19 16.6 16-4 1235 6.76 184 275 133 229 22.63 19 16.6 16-5 1110 6.75 176 200 144 195 22.27 05 16.7 16-6 1445 6.75 184 275 133 219 22.67 16 16.6 16-7 1445 6.80 166 257 147 182 22.27 05 16.7 16-6 1300 6.76 167 242 144 177 22.27 05 16.7 16-6 1300 6.75 164 241 145 192 22.27 05 16.7 16-6 1300 6.76 164 255 144 213 22.44 02.16 71-6 17-1 1345 6.64													
14-7 1420 6.89 170 225 159 162 24.56 00 16.8 14-7 1520 6.90 172 226 150 158 24.67 00 16.8 15-1 0930 6.92 170 223 152 136 24.57 00 16.8 15-1 1130 6.88 173 227 165 140 24.67 00 16.8 15-2 0830 6.90 173 224 162 145 24.85 00 16.8 15-2 1030 6.90 171 227 159 136 24.72 01 16.8 15-3 1030 6.90 171 227 159 136 24.72 01 16.8 15-3 1030 6.90 171 227 159 136 23.78 05 17.6 15-3 1230 6.90 156 226 128 136 23.78 05 17.6 15-3 1230 6.90 152 214 126 119 23.67 06.16 8 15-3 1330 6.97 151 202 124 114 23.59 05 16.8 644													
14-7 1920 6 90 172 226 160 158 24 67 00 16 8 15-1 1930 6 92 170 223 132 136 24 57 00 16 8 15-1 1130 6 88 172 228 164 140 24 69 00 16 8 15-2 1630 6 88 173 227 165 140 24 78 00 16 8 15-2 1630 6 90 173 224 162 145 24 85 00 16 8 15-2 1630 6 90 171 227 159 136 24 72 01 16 8 15-3 1630 6 90 171 227 159 136 24 72 01 16 8 15-3 1630 6 90 156 226 128 136 23 78 05 17 6 15-3 1230 6 90 156 226 128 136 23 78 05 17 6 16 8 15-3 1330 6 89 151 202 124 114 23 59 05 16 8 15-3 1330 6 89 151 202 124 114 23 59 05 16 8 15-3 1330 6 89 151 202 124 114 23 59 05 16 8 15-3 1330 6 89 151 202 124 114 23 59 05 16 8 15-3 15-3 1705 6 58 240 271 159 185 22 26 45 16 9 15-7 1600 6 07 184 226 152 176 24 11 05 16 7 15-7 1600 6 07 184 226 152 176 24 09 10 16 5 16-1 1200 6 04 179 228 152 172 24 05 05 16 6 16-1 1545 6 74 180 229 153 74 24 05 05 16 7 16-1 16-1 1645 6 73 179 227 153 274 24 05 05 16 8 16-4 1235 6 76 186 272 153 229 22 63 179 16 6 16-4 1235 6 76 186 272 153 229 22 63 179 16 6 16-5 1110 6 779 176 271 151 207 22 73 08 16 6 16-5 1410 6 779 176 271 151 207 22 73 08 16 6 16-5 1410 6 779 176 271 151 207 22 73 05 16 7 16-6 1300 6 76 167 242 144 172 22 37 05 16 7 16-6 1300 6 78 166 237 147 182 22 48 03 16 6 16-7 1645 6 80 166 237 147 182 22 48 03 16 6 16-7 16-6 1300 6 78 166 237 247 145 182 22 27 05 16 7 16-6 1300 6 78 166 237 247 145 182 22 27 07 16 6 16-7 16-6 1300 6 78 166 237 247 145 182 22 27 07 16 6 16-7 16-6 1300 6 78 166 237													
15-1 0930 6 92 170 223 152 136 24 57 00 16 8													
15-1 1130 6 88 172 228 164 140 24 69 00 16 8 15-2 0830 6 89 173 224 165 140 24 78 00 16 8 15-2 0830 6 90 173 224 162 145 24 85 00 16 8 15-2 1030 6 90 171 227 159 136 24 72 01 16 8 15-3 1030 6 90 156 226 128 136 23 78 05 17 6 15-3 1230 6 90 156 226 128 136 23 78 05 17 6 15-3 1230 6 90 152 214 126 119 23 67 06 16 8 15-3 1330 6 89 151 202 124 114 23 59 05 16 8 15-3 1330 6 89 151 202 124 114 23 59 05 16 8 15-7 1800 6 71 185 223 151 175 24 11 05 16 7 15-7 1400 6 07 184 226 152 176 24 09 10 16 5 16-1 1200 6 04 179 228 152 176 24 09 10 16 5 16-1 1245 6 73 179 227 153 171 23 78 05 16 8 16-1 1245 6 73 179 227 153 171 23 78 05 16 8 16-4 1235 6 76 186 292 153 74 24 05 05 16 8 16-4 1235 6 76 186 292 153 24 25 25 25 3 19 16 6 16-5 1110 6 77 176 300 152 22 26 22 49 22 16 8 16-4 1235 6 76 186 292 153 217 22 23 3 19 16 6 16-5 1110 6 79 176 291 151 225 22 31 19 16 6 16-5 1110 6 79 176 291 151 225 22 31 10 16 7 16-5 1110 6 79 176 291 151 225 22 31 06 16 7 16-6 1145 6 76 164 241 143 173 22 31 06 16 7 16-6 1145 6 76 164 231 244 145 182 22 25 05 16 7 16-6 1145 6 76 164 237 244 145 182 22 25 05 16 7 17-1 1265 6 78 200 287 168 288 23 33 10 16 6 16-7 1145 6 76 164 231 244 145 182 22 25 05 16 7 17-1 1265 6 78 200 287 166 288 23 23 31 10 16 6 17-2 1255 6 76 190 287 287 169 280 29 10 16 7 17-2 1255 6													
15-1 1330 6. 88 173 227 165 140 24 78 000 16 8 15-2 0830 6. 90 173 224 162 145 24. 85 000 16 8 15-3 0830 6. 90 171 227 159 136 24 72 01 16 8 15-3 0830 6. 90 156 226 128 134 23. 78 0.05 17 6 15-3 1230 6. 90 156 226 128 134 23. 78 0.05 17 6 15-3 1230 6. 90 152 214 126 119 23. 67 0.06 16 8 15-3 1330 6. 89 151 202 124 114 23. 59 0.5 16 8 15-3 1330 6. 89 151 202 124 114 23. 59 0.5 16 8 15-3 1330 6. 89 151 202 124 114 23. 59 0.5 16 8 15-3 1330 6. 89 151 202 124 114 23. 59 0.5 16 8 15-3 1300 6. 67 185 223 151 175 24. 11 0.5 16 7 15-7 1400 6. 07 184 226 152 176 24. 09 10 16. 5 16-1 1200 6. 04 179 228 152 172 24. 05 0.5 16 7 16-1 1645 6. 73 179 227 153 171 23. 99 0.5 16 8 16-1 2000 6. 51 252 384 163 173 24. 85 50 16 8 16-4 1035 6. 76 186 292 153 229 22. 63 19 16 6 16-4 1445 6. 75 184 275 153 219 22. 67 16 16 6 16-5 1110 6. 75 176 291 151 207 22. 73 0.8 16 6 16-5 1110 6. 75 176 291 151 207 22. 73 0.8 16 6 16-5 1110 6. 75 176 291 151 225 22. 81 0.6 16 7 16-6 1300 6. 75 164 235 244 143 173 22 31 0.6 16 7 16-6 1300 6. 75 164 235 244 143 173 22 37 0.5 16 7 16-6 1300 6. 75 164 235 244 143 173 22 37 0.5 16 7 16-7 1455 6. 76 164 235 244 143 173 22 37 0.5 16 7 16-6 1300 6. 75 164 235 244 143 173 22 31 0.6 16 7 16-7 1455 6. 76 164 235 244 143 173 22 37 0.5 16 7 16-7 1455 6. 76 164 235 244 143 173 22 31 0.6 16 7 16-7 1455 6. 76 164 235 244 143 173 22 37 0.5 16 7 16-7 1455 6. 76 164 235 244 145 182 22 25 0.5 16 7 16-7 1455										_			
15-2 0830													
15-2 1030 6. 90 171 227 159 136 24 72 01 16 8 15-3 1030 6. 90 156 226 128 136 23 78 05 17 6 15-3 1230 6. 90 156 226 128 136 23 78 05 17 6 15-3 1230 6. 97 151 202 124 114 23 57 05 16 8 15-3 1330 6. 87 151 202 124 114 23 57 05 16 8 15-3 1330 6. 87 151 202 124 114 23 57 05 16 8 15-7 15-7 1600 6. 71 185 223 151 175 24 11 05 16 7 15-7 1400 6. 07 184 226 152 176 24 07 10 16 5 16 7 15-7 1400 6. 07 184 226 152 176 24 07 10 16 5 16 1 1200 6. 04 179 228 152 176 24 05 05 16 6 16-1 1200 6. 04 179 228 152 172 24 05 05 16 6 16-1 1200 6. 04 179 228 152 172 24 05 05 16 7 16-1 1645 6. 73 179 227 153 71 23 .98 05 16 8 16-4 1235 6. 76 189 272 152 226 22 49 22 16 8 16-4 1235 6. 76 186 272 153 229 22 .63 17 16 6 16-4 1235 6. 76 186 272 153 229 22 .63 17 16 6 16-5 0910 6. 75 176 291 151 225 22. 81 06 16 7 16-5 110 6. 75 176 291 151 225 22. 81 06 16 7 16-6 1300 6. 75 176 291 151 225 22. 81 06 16 7 16-6 1300 6. 75 176 291 151 225 22. 81 06 16 7 16-6 1300 6. 75 176 291 151 225 22. 81 06 16 7 16-6 1300 6. 75 176 291 151 225 22. 81 06 16 7 16-6 1300 6. 75 166 295 144 175 22 22 27 0 5 16 7 16-6 1300 6. 75 166 295 144 175 22 22 27 0 5 16 7 16-6 1300 6. 75 166 295 144 175 22 22 27 0 5 16 7 16-6 1300 6. 68 239 263 160 201 24 42 23 16 8 17-1 1345 6. 64 239 245 145 182 22 25 05 16 7 17-2 1255 6. 76 190 241 165 248 23 31 10 16 6 17-2 1255 6. 76 190 241 165 194 22 97 10 16 6 17-2 1255 6. 76 190 241 165 194 22 97 10 16 6 17-2 1255 6. 76 190 241													
15-3 1030 6.90 156 226 128 136 23.78 05 17 6 15-3 1230 6.90 151 202 124 119 23.67 06 16 8 15-3 1330 6.89 151 202 124 114 23.59 05 16 8 8 6.44 MH20 146 15-3 1300 6.89 151 202 124 114 23.59 05 16 8 16 8 15-3 1300 6.89 151 202 124 114 23.59 05 16 8 16 9 15-7 0830 6.71 185 223 151 175 24.11 05 16 7 15-7 1400 6.07 184 226 152 176 24.09 10 16.5 16-1 1200 6.04 179 228 152 176 24.09 10 16.5 16-1 1200 6.04 179 228 152 172 24 05 05 16 6 16-1 1545 6.73 179 227 153 171 23.98 05 16 8 16-1 16-1 1645 6.73 179 227 153 171 23.98 05 16 8 16-4 1035 6.76 189 272 152 226 22.49 22 16 8 16-4 1035 6.76 189 272 152 226 22.49 22 16 8 16-4 1235 6.76 189 272 153 219 22.67 16 16 16-5 0910 6.75 184 275 153 219 22.67 16 16 16-5 0910 6.75 184 275 153 219 22.67 16 16 16 16-5 1410 6.79 176 270 151 207 22.73 08 16 6 16-5 1410 6.79 176 270 151 207 22.73 08 16 6 16-5 1410 6.79 176 291 151 225 22.81 06 16 7 16-6 1300 6.75 166 291 151 225 22.81 06 16 7 16-6 1300 6.75 166 291 151 225 22.81 06 16 7 16-6 1300 6.75 166 291 151 225 22.81 06 16 7 16-6 1300 6.75 166 291 151 225 22.81 06 16 7 16-6 1300 6.75 166 241 143 173 22 37 05 16 7 16-6 1300 6.75 166 241 143 173 22 37 05 16 7 16-6 1300 6.75 166 241 143 173 22 37 05 16 7 16-7 16-6 1300 6.75 166 241 143 173 22 37 05 16 7 16-7 16-6 1300 6.75 166 241 143 173 22 37 05 16 7 16-7 16-6 1300 6.75 166 241 143 173 22 37 05 16 7 16-7 16-6 1300 6.75 166 241 143 173 22 37 05 16 7 16-7 16-6 1300 6.75 166 241 143 173 22 37 05 16 7 16-7 16-7 1830 6.81 165 285 144 213 22.44 02 16 7 17-1 1300 6.88 239 298 163 200 25 42 33 10 16 6 16 7 17-2 1055 6.74 191 265 164 218 23 01 10 16 7 17-2 1055 6.74 191 265 164 218 23 01 10 16 7 17-2 1055 6.74 191 266 165 218 22 99 10 16 7 17-2 1055 6.76 190 241 165 194 22 99 10 16 6 17-2 1055 6.76 190 246 165 218 22 99 10 16 6 17-2 1055 6.76 190 246 165 218 22 99 10 16 6 17-2 1055 6.76 190 246 165 218 22 99 10 16 6 17-2 1055 6.76 190 246 165 218 22 99 10 16 6 17-2 1055 6.76 190 246 165 218 22 99 10 16 6 17-2 1055 6.76 190 246 165 218 22 99 10 16 6 17-2 1055 6.76 190 246 165 218 22 99 10 16 6						_							
15-3 1230 6.90 152 214 126 119 23.67 06 16 8 644 MM20 146 654 MM20 146 655 MM20 146 665 MM20 146 666 MM20 146 666 MM20 146 667 MM20 146 667 MM20 146 668 MM20 146 668 MM20 146 668 MM20 146 669 MM20 146 660 MM20 MM20 MM20 MM20 MM20 MM20 MM20 M				15-3	0830	6. 92	158	215	132	121	23. 96	. 04	16.8
15-3 1330 6.87 151 202 124 114 23.57 .05 16.8							156		128	136	23. 79		17 6
644 MM20 146 15-3 1705 6.58 240 271 159 185 22.26 45 16 9 15-7 0830 6.71 185 223 151 175 24.11 05 16 7 15-7 1400 6.07 184 226 152 176 24.09 10 16.5 16-1 1200 6.04 179 228 152 172 24.05 05 16.6 16-1 1545 6.74 180 229 153 74 24.05 05 16.7 16-1 1645 6.73 179 227 153 171 23.98 05 16.8 646													
15-3 1705 6. 58 240 271 159 185 22. 26 45 16. 9 15-7 1800 6. 71 185 223 151 175 24. 11 05 16. 7 15-7 1400 6. 04 179 228 152 176 24. 09 10 16. 5 16-1 1200 6. 04 179 228 152 172 24. 05 05 16. 6 16-1 1645 6. 74 180 229 153 74 24. 05 05 16. 6 16-1 1645 6. 73 179 227 153 171 23. 98 05 16. 8 16-1 2000 6. 51 252 384 16.3 173 24. 85 50 16. 8 16-4 1235 6. 76 189 272 152 226 22. 49 22 16. 8 16-4 1235 6. 76 186 272 153 219 22. 63 19 16. 6 16-4 1445 6. 75 184 275 153 219 22. 67 16 16. 6 16-5 1110 6. 79 176 291 151 225 22. 81 06 16. 7 16-6 1140 6. 75 176 300 152 251 22. 70 10 16. 7 16-6 1300 6. 75 164 241 143 173 22. 31 06 16. 7 16-6 1300 6. 75 164 241 143 173 22. 32 05 16. 7 16-7 1145 6. 76 164 254 145 182 22. 25 05 16. 7 16-7 1645 6. 80 166 257 147 182 22. 28 03 16. 6 16-7 1645 6. 80 166 257 147 182 22. 48 03 16. 6 16-7 1645 6. 80 166 257 147 182 22. 24 03 16. 6 17-2 0655 6. 78 200 287 168 268 23. 33 10 16. 6 17-2 0655 6. 78 190 241 165 194 22. 97 10 16. 7 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255				15-3	1330	6. 89	151	202	124	114	23. 59	. 05	168
15-3 1705 6. 58 240 271 159 185 22. 26 45 16. 9 15-7 1800 6. 71 185 223 151 175 24. 11 05 16. 7 15-7 1400 6. 04 179 228 152 176 24. 09 10 16. 5 16-1 1200 6. 04 179 228 152 172 24. 05 05 16. 6 16-1 1645 6. 74 180 229 153 74 24. 05 05 16. 6 16-1 1645 6. 73 179 227 153 171 23. 98 05 16. 8 16-1 2000 6. 51 252 384 16.3 173 24. 85 50 16. 8 16-4 1235 6. 76 189 272 152 226 22. 49 22 16. 8 16-4 1235 6. 76 186 272 153 219 22. 63 19 16. 6 16-4 1445 6. 75 184 275 153 219 22. 67 16 16. 6 16-5 1110 6. 79 176 291 151 225 22. 81 06 16. 7 16-6 1140 6. 75 176 300 152 251 22. 70 10 16. 7 16-6 1300 6. 75 164 241 143 173 22. 31 06 16. 7 16-6 1300 6. 75 164 241 143 173 22. 32 05 16. 7 16-7 1145 6. 76 164 254 145 182 22. 25 05 16. 7 16-7 1645 6. 80 166 257 147 182 22. 28 03 16. 6 16-7 1645 6. 80 166 257 147 182 22. 48 03 16. 6 16-7 1645 6. 80 166 257 147 182 22. 24 03 16. 6 17-2 0655 6. 78 200 287 168 268 23. 33 10 16. 6 17-2 0655 6. 78 190 241 165 194 22. 97 10 16. 7 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255 6. 76 190 241 165 194 22. 97 10 16. 6 17-2 1255	400	"M33	1.44										
15-7 0830 6.71 185 223 151 175 24.11 05 16.7 15-7 1400 6.07 184 226 152 176 24.09 10 16.5 16-1 1200 6.04 179 228 152 172 24.05 05 16.6 16-1 1545 6.74 180 229 153 74 24.05 05 16.7 16-1 1645 6.73 179 227 153 171 23.98 05 16.8 16-1 1645 6.73 179 227 153 171 23.98 05 16.8 16-1 1645 6.73 179 227 153 171 23.98 05 16.8 16-4 1035 6.76 189 272 152 226 22.49 22 16.8 16-4 1235 6.76 186 292 153 229 22.63 19 16.6 16-4 1235 6.76 186 292 153 229 22.63 19 16.6 16-5 0910 6.76 176 270 151 207 22.73 08 16.6 16-5 1110 6.79 176 291 151 225 22.81 06 16.7 16-6 1145 6.74 167 260 144 195 22.32 05 16.7 16-6 1300 6.75 166 241 143 173 22.31 06 16.7 16-7 1145 6.76 164 254 145 182 22.25 05 16.7 16-7 1145 6.76 164 254 145 182 22.25 05 16.7 16-7 1145 6.76 164 254 145 182 22.25 05 16.7 17-1 1345 6.64 253 298 163 200 25.42 35 16.8 17-1 1345 6.64 253 298 163 200 25.42 35 16.8 17-2 0855 6.76 190 241 165 194 22.99 10 16.6 17-2 1055 6.76 190 241 165 194 22.99 10 16.6 17-2 1255 6.76 190 241 165 194 22.99 10 16.7 17-3 0850 6.81 181 239 159 187 23.00 02 16.6	074	KIIZU	1.70	15-3	1705	A 58	240	271	159	185	22 26	45	16.9
15-7 1400 6. 07 184 226 152 176 24 09 10 16. 5 16-1 1200 6. 04 179 228 152 172 24 05 05 16 6 16-1 1545 6. 74 180 229 153 74 24. 05 05 16 7 16-1 1645 6. 73 179 227 153 171 23.98 05 16.8 646 KM20 146													
16-1 1200 6. 04 179 228 152 172 24 05 05 16 6 16-1 1545 6. 74 180 229 153 74 24 05 05 16 7 16-1 1645 6. 73 179 227 153 171 23.98 05 16.8 646 MM20 146													
16-1 1645 6.73 179 227 153 171 23.98 .05 16.8 16-1 2000 6.51 252 384 163 173 24.85 50 16.8 16-4 1035 6.76 186 292 152 226 22.49 22 16.8 16-4 1235 6.76 186 292 153 229 22.63 19 16.6 16-4 1445 6.75 184 275 153 219 22.67 16. 16.6 16-5 0910 6.76 176 270 151 207 22.73 0.8 16.6 16-5 1110 6.79 176 291 151 225 22.81 06 16.7 16-5 1410 6.75 176 300 152 251 22.70 10 16.7 16-6 1300 6.75 166 241 143 173 22.31 06 16.7 16-6 1300 6.75 166 241 143 173 22.31 06 16.7 16-6 1500 6.76 167 242 144 172 22.37 05 16.7 16-7 1645 6.80 166 257 147 182 22.25 05 16.7 16-7 1645 6.80 166 257 147 182 22.25 05 16.7 16-7 1345 6.64 253 298 163 200 25.42 35 16.8 17-1 1345 6.68 239 263 160 201 24.42 30 16.7 17-2 0855 6.78 200 287 168 268 23.33 10 16.6 17-2 1255 6.76 190 241 165 194 22.99 10 16.7 17-2 1255 6.76 190 241 165 194 22.99 10 16.7 17-2 1355 6.76 190 241 165 194 22.99 10 16.7 17-3 3850 6.81 181 239 159 187 23.02 02 16.6													
16-1 2000 6. 51 252 384 163 173 24. 85 50 16 8 16-4 1035 6. 76 189 272 152 226 22. 49 22 16 8 16-4 1235 6. 76 186 272 153 229 22. 63 19 16 6 16-4 1445 6. 75 184 275 153 219 22. 67 16 16 6 16-5 0910 6. 76 176 270 151 207 22. 73 08 16 6 16-5 1110 6. 79 176 291 151 225 22. 81 06 16 7 16-5 1410 6. 75 176 300 152 251 22. 70 10 16 7 16-6 1145 6. 74 167 260 144 195 22. 32 05 16 7 16-6 1300 6. 75 166 241 143 173 22 31 06 16 7 16-6 1500 6. 76 164 254 145 182 22. 25 05 16 7 16-7 1645 6. 80 166 257 147 182 22. 28 03 16 6 16-7 16-7 1645 6. 80 166 257 147 182 22. 24 03 16 6 16-7 16-7 1645 6. 80 166 257 147 182 22. 48 03 16 6 16-7 1830 6. 81 165 285 146 213 22. 44 02 16 7 17-1 1345 6. 64 253 298 163 200 25 42 35 16 8 17-1 1500 6. 68 239 263 160 201 24. 42 30 16 7 17-2 0655 6. 78 200 287 168 268 23 33 10 16 6 17-2 1055 6. 74 191 246 163 200 22. 92 14 16 7 17-2 1055 6. 74 191 246 163 200 22. 92 14 16 7 17-2 1055 6. 76 190 261 165 194 22. 99 10 16 7 17-2 1255 6. 76 190 261 165 218 22. 99 10 16 7 17-2 1355 6. 76 190 261 165 218 22. 99 10 16 7 17-2 1355 6. 76 190 261 165 218 22. 99 10 16 7 17-2 1355 6. 76 190 261 165 218 22. 99 10 16 7 17-2 1355 6. 76 190 261 165 218 22. 99 10 16 7 17-2 1355 6. 76 190 261 165 218 22. 99 10 16 7 17-3 0850 6. 81 181 239 159 187 23.02 02 16 6				16-1	1545	6. 74	180	229	153	74	24. 05	. 05	16 7
16-1 2000 6. 51 252 384 163 173 24. 85 50 16 8 16-4 1035 6. 76 189 272 152 226 22. 49 22 16 8 16-4 1235 6. 76 186 292 153 229 22. 63 19 16 6 16-4 1445 6. 75 184 275 153 219 22. 67 16 16 6 16-5 0910 6. 76 176 270 151 207 22. 73 08 16 6 16-5 1110 6. 79 176 291 151 225 22. 81 06 16 7 16-5 1410 6. 75 176 300 152 251 22. 70 10 16 7 16-6 1145 6. 74 167 260 144 195 22. 32 05 16. 7 16-6 1300 6. 75 166 241 143 173 22. 31 06 16. 7 16-6 1500 6. 76 167 242 144 172 22. 37 05 16. 7 16-7 16-6 1500 6. 76 167 242 144 172 22. 37 05 16. 7 16-7 1645 6. 80 166 257 147 182 22. 48 03 16 6 16-7 16-7 1645 6. 80 166 257 147 182 22. 48 03 16 6 16-7 17-1 1345 6. 64 253 298 163 200 25. 42 35 16. 8 17-1 1500 6. 68 239 263 160 201 24. 42 30 16. 7 17-2 0655 6. 78 200 287 168 268 23. 33 10 16. 6 17-2 0655 6. 75 194 265 164 218 23. 01 10 16. 7 17-2 1055 6. 74 191 246 163 200 22. 92 14 16. 7 17-2 1055 6. 74 191 246 163 200 22. 92 14 16. 7 17-2 1255 6. 76 190 241 165 194 22. 99 10 16. 7 17-2 1255 6. 76 190 241 165 194 22. 99 10 16. 7 17-2 1255 6. 76 190 241 165 194 22. 99 10 16. 7 17-2 1255 6. 76 190 241 165 194 22. 99 10 16. 6 17-2 1355 6. 76 190 241				16-1	1645	6. 73	179	227	153	171	23. 98	. 05	16. 8
16-1 2000 6. 51 252 384 163 173 24. 85 50 16 8 16-4 1035 6. 76 189 272 152 226 22. 49 22 16 8 16-4 1235 6. 76 186 292 153 229 22. 63 19 16 6 16-4 1445 6. 75 184 275 153 219 22. 67 16 16 6 16-5 0910 6. 76 176 270 151 207 22. 73 08 16 6 16-5 1110 6. 79 176 291 151 225 22. 81 06 16 7 16-5 1410 6. 75 176 300 152 251 22. 70 10 16 7 16-6 1145 6. 74 167 260 144 195 22. 32 05 16. 7 16-6 1300 6. 75 166 241 143 173 22. 31 06 16. 7 16-6 1500 6. 76 167 242 144 172 22. 37 05 16. 7 16-7 16-6 1500 6. 76 167 242 144 172 22. 37 05 16. 7 16-7 1645 6. 80 166 257 147 182 22. 48 03 16 6 16-7 16-7 1645 6. 80 166 257 147 182 22. 48 03 16 6 16-7 17-1 1345 6. 64 253 298 163 200 25. 42 35 16. 8 17-1 1500 6. 68 239 263 160 201 24. 42 30 16. 7 17-2 0655 6. 78 200 287 168 268 23. 33 10 16. 6 17-2 0655 6. 75 194 265 164 218 23. 01 10 16. 7 17-2 1055 6. 74 191 246 163 200 22. 92 14 16. 7 17-2 1055 6. 74 191 246 163 200 22. 92 14 16. 7 17-2 1255 6. 76 190 241 165 194 22. 99 10 16. 7 17-2 1255 6. 76 190 241 165 194 22. 99 10 16. 7 17-2 1255 6. 76 190 241 165 194 22. 99 10 16. 7 17-2 1255 6. 76 190 241 165 194 22. 99 10 16. 6 17-2 1355 6. 76 190 241	4.84	4 M30	1.64										
16-4 1035 6. 76 189 272 152 226 22. 49 22 16 8 16-4 1235 6. 76 186 292 153 229 22. 63 19 16 6 16-4 1445 6. 75 184 275 153 219 22. 67 16 16 6 16-5 0910 6. 76 176 270 151 207 22. 73 08 16 6 16-5 1110 6. 79 176 291 151 225 22. 81 06 16 7 16-5 1410 6. 75 176 300 152 251 22. 70 10 16 7 16-6 1145 6. 74 167 260 144 195 22. 32 05 16 7 16-6 1300 6. 75 166 241 143 173 22 31 06 16 7 16-6 1500 6. 76 167 242 144 172 22. 37 05 16 7 16-7 1645 6. 80 164 254 145 182 22. 48 03 16 6 16-7 1645 6. 80 164 257 147 182<	5-6	P. FIED	140	16-1	2000	6 51	252	384	163	173	24 85	50	16.8
16-4 1235 6. 76 186 292 153 229 22. 63 19 16. 6 16-4 1445 6. 75 184 275 153 219 22. 67 16 16. 6 16-5 0910 6. 76 176 270 151 207 22. 73 08 16. 6 16-5 1110 6. 77 176 291 151 225 22. 81 06 16. 7 16-5 1410 6. 75 176 300 152 251 22. 70 10 16. 7 16-6 1145 6. 74 167 260 144 195 22. 32 05 16. 7 16-6 1300 6. 75 166 241 143 173 22. 31 06 16. 7 16-7 1645 167 242 144 172 22. 37 05 16. 7 16-7 1145 6. 76 164 254 145 182 22. 24 05 16. 7 16-7 1645 6. 80 164 257													
16-5 0910 6. 76 176 270 151 207 22. 73 08 16. 6 16-5 1110 6. 79 176 291 151 225 22. 81 06 16. 7 16-5 1410 6. 75 176 300 152 251 22. 70 10 16. 7 16-6 1145 6. 74 167 260 144 195 22. 32 05 16. 7 16-6 1300 6. 75 166 241 143 173 22. 31 06 16. 7 16-6 1500 6. 76 167 242 144 172 22. 37 05 16. 7 16-7 145 6. 76 164 254 145 182 22. 25 05 16. 7 16-7 1645 6. 80 166 257 147 182 22. 24 03 16. 6 17-1 1345 6. 64 253 298 163 200 25. 42 35 16. 7 17-1 1500 6. 68 23													
16-5 1110 6. 79 176 291 151 225 22. 81 06 16. 7 16-5 1410 6. 75 176 300 152 251 22. 70 10 16. 7 16-6 1145 6. 74 167 260 144 195 22. 32 05 16. 7 16-6 1300 6. 75 166 241 143 173 22. 31 06 16. 7 16-6 1500 6. 76 167 242 144 172 22. 37 05 16. 7 16-7 1145 6. 76 164 254 145 182 22. 25 05 16. 7 16-7 1645 6. 80 166 257 147 182 22. 48 03 16. 6 16-7 1830 6. 81 165 285 146 213 22. 44 02 16. 7 17-1 1345 6. 64 253 278 163 200 25. 42 35 16. 8 17-1 1345 6. 64 253 278 163 200 25. 42 35 16. 8 17-1 1345 6. 64 253 278 160				16-4	1445	6. 75	184	275	153	219	22. 67	. 16	16 6
16-5 1410 6. 75 176 300 152 251 22. 70 10 16. 7 16-6 1145 6. 74 167 260 144 195 22. 32 05 16. 7 16-6 1300 6. 75 166 241 143 173 22. 31 06 16. 7 16-6 1500 6. 76 167 242 144 172 22. 37 05 16. 7 16-7 1145 6. 76 164 254 145 182 22. 25 05 16. 7 16-7 1645 6. 80 166 257 147 182 22. 48 03 16. 6 16-7 1830 6. 81 165 285 146 213 22. 44 02 16. 7 17-1 1345 6. 64 253 298 163 200 25. 42 35 16. 8 17-1 1345 6. 64 253 298 163 200 25. 42 35 16. 8 17-1 1345 6. 64 253 298 163 200 25. 42 35 16. 8 17-2 0655 6. 78 200 287 168					0910		176	270	151		22. 73	. 08	16.6
16-6 1145 6. 74 167 260 144 195 22. 32 05 16. 7 16-6 1300 6. 75 166 241 143 173 22. 31 06 16. 7 16-6 1500 6. 76 167 242 144 172 22. 37 05 16. 7 16-7 1145 6. 76 164 254 145 182 22. 25 05 16. 7 16-7 1645 6. 80 166 257 147 182 22. 48 03 16. 6 16-7 1830 6. 81 165 285 146 213 22. 44 02 16. 7 17-1 1345 6. 64 253 298 163 200 25. 42 35 16. 8 17-1 1500 6. 68 239 263 160 201 24. 42 30 16. 7 17-2 0655 6. 78 200 287 168 268 23. 33 10 16. 6 17-2 1055 6. 74 191 246 163 200 22. 92 14 16. 7 17-2 1255 6. 76 190 241 165													
16-6 1300 6. 75 166 241 143 173 22 31 06 16. 7 16-6 1500 6. 76 167 242 144 172 22 37 05 16. 7 16-7 1145 6. 76 164 254 145 182 22 25 05 16. 7 16-7 1645 6. 80 166 257 147 182 22 48 03 16 6 16-7 1830 6. 81 165 285 146 213 22 44 02 16. 7 17-1 1345 6. 64 253 298 163 200 25. 42 35 16. 8 17-1 1500 6. 68 239 263 160 201 24. 42 30 16. 7 17-2 0655 6. 78 200 287 168 268 23. 33 10 16. 6 17-2 0655 6. 75 194 265 164 218 23. 01 10 16. 7 17-2 1055 6. 74 191 246 163 200 22. 92 14 16. 7 17-2 1255 6. 76 190 241 165 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
16-6 1500 6. 76 167 242 144 172 22. 37 05 16. 7 16-7 1145 6. 76 164 254 145 182 22. 25 05 16. 7 16-7 1645 6. 80 166 257 147 182 22. 48 03 16. 6 16-7 1830 6. 81 165 285 146 213 22. 44 02 16. 7 17-1 1345 6. 64 253 298 163 200 25. 42 35 16. 8 17-1 1500 6. 68 239 263 160 201 24. 42 30 16. 7 17-2 0655 6. 78 200 287 168 268 23. 33 10 16. 6 17-2 0855 6. 75 194 265 164 218 23. 01 10 16. 7 17-2 1055 6. 74 191 246 163 200 22. 92 14 16. 7 17-2 1255 6. 76 190 241 165 194 22. 99 10 16. 6 17-3 0850 6. 81 181 239 159													
16-7 1145 6. 76 164 254 145 182 22. 25 05 16. 7 16-7 1645 6. 80 166 257 147 182 22. 48 03 16 6 16-7 1830 6. 81 165 285 146 213 22. 44 02 16. 7 17-1 1345 6. 64 253 278 163 200 25. 42 35 16. 8 17-1 1500 6. 68 239 263 160 201 24. 42 30 16. 7 17-2 0655 6. 78 200 287 168 268 23. 33 10 16. 6 17-2 0855 6. 75 194 265 164 218 23. 01 10 16. 7 17-2 1055 6. 74 191 246 163 200 22. 92 14 16. 7 17-2 1255 6. 76 190 241 165 194 22. 99 10 16. 6 17-3 0850 6. 81 181 239 159 187 23. 02 02 16. 6										_			
16-7 1645 6.80 166 257 147 182 22.48 03 16 6 16-7 1830 6.81 165 285 146 213 22.44 02 16.7 17-1 1345 6.64 253 298 163 200 25.42 35 16.8 17-1 1500 6.68 239 263 160 201 24.42 30 16.7 17-2 0655 6.78 200 287 168 268 23.33 10 16.6 17-2 1055 6.75 194 265 164 218 23.01 10 16.7 17-2 1055 6.74 191 246 163 200 22.92 14 16.7 17-2 1255 6.76 190 241 165 194 22.99 10 16.6 17-2 1355 6.76 190 266 165 218 22.99 10 16.7 17-3 0850 6.81 181 239 159 187 23.02 02 16.6						_							
16-7 1830 6.81 165 285 146 213 22.44 02 16.7 17-1 1345 6.64 253 298 163 200 25.42 35 16.8 17-1 1500 6.68 239 263 160 201 24.42 30 16.7 17-2 0655 6.78 200 287 168 268 23.33 10 16.6 17-2 0855 6.75 194 265 164 218 23.01 10 16.7 17-2 1055 6.74 191 246 163 200 22.92 14 16.7 17-2 1255 6.76 190 241 165 194 22.99 10 16.6 17-2 1355 6.76 190 266 165 218 22.99 10 16.7 17-3 0850 6.81 181 239 159 187 23.02 02 16.6													
17-1 1345 6.64 253 278 163 200 25.42 35 16.8 17-1 1500 6.68 239 263 160 201 24.42 30 16.7 17-2 0655 6.78 200 287 168 268 23.33 10 16.6 17-2 0855 6.75 174 265 164 218 23.01 10 16.7 17-2 1055 6.74 171 246 163 200 22.72 14 16.7 17-2 1255 6.76 170 241 165 174 22.79 10 16.6 17-2 1355 6.76 170 266 165 218 22.79 10 16.7 17-3 0850 6.81 181 239 159 187 23.02 02 16.6													
17-1 1500 6.68 239 263 160 201 24.42 30 16.7 17-2 0655 6.78 200 287 168 268 23.33 10 16.6 17-2 0855 6.75 194 265 164 218 23.01 10 16.7 17-2 1055 6.74 191 246 163 200 22.92 14 16.7 17-2 1255 6.76 190 241 165 194 22.99 10 16.6 17-2 1355 6.76 190 266 165 218 22.99 10 16.6 17-3 0850 6.81 181 239 159 187 23.02 02 16.6													
17-2 0655 6. 78 200 287 168 268 23. 33 10 16. 6 17-2 0855 6. 75 194 265 164 218 23. 01 10 16. 7 17-2 1055 6. 74 191 246 163 200 22. 92 14 16. 7 17-2 1255 6. 76 190 241 165 194 22. 99 10 16. 6 17-2 1355 6. 76 190 266 165 218 22. 99 10 16. 7 17-3 0850 6. 81 181 239 159 187 23. 02 02 16. 6										_			_
17-2 0855 6.75 194 265 164 218 23.01 10 16.7 17-2 1055 6.74 191 246 163 200 22.92 14 16.7 17-2 1255 6.76 190 241 165 194 22.99 10 16.6 17-2 1355 6.76 190 266 165 218 22.99 10 16.7 17-3 0850 6.81 181 239 159 187 23.02 02 16.6													
17-2 1255 6.76 190 241 165 194 22.99 10 16.6 17-2 1355 6.76 190 266 165 218 22.99 .10 16.7 17-3 0850 6.81 181 239 159 187 23.02 .02 16.6							194		164	218		. 10	16 7
17-2 1355 6.76 190 266 165 218 22.99 .10 16 7 17-3 0850 6.81 181 239 159 187 23.02 02 16 6							_						
17-3 0850 6.81 181 239 159 187 23.02 02 16.6							_						
						_							
17-5 U75U 6. BU 179 241 138 184 22. Y1 . U3 16. 6													_
				1/-3	U7 7U	O. BU	1/4	∠ → 1	176	184	∠∠. 71	. U3	10.0

KAMLUNGE - EQ-values (field)

Eare-	Length m	Kai nr	£0,pH4 #V	EQ.pH7	EO.pH10	E0,C4	£0,C7	EO, Pt4	E0.Pt7	E0,51	£0.55
KM3 KM3	123	695 606	374 7 378 3	375 9 378 1	379 4 384 8	250.0 241.4	240 2 259 5	255 1 240 1	256 0 256 5	-629 6 -835 1	-828 7 -827 5
KM3	123	607	376 5	377.4	380.2	248.0	240.4	241.9	256 I	-614 1	-822 0
Krt3	123	.08	378.2	377.9	379 0	271.5	258 1	257.6	250 8	-82: 5	-822 9
KM3	123	:07 *	379.7	379.6	380 5	248.8	258.0	254.6	252 0		
KM3	123	610	377.5	380.4	••••	259.0	254.7	254.7	255 7	-771 3	-835 2
KM3	123	611 *	372.9	374.9	378.4	244.5	241.2	240.4	259.5	-852 8	-848.6
		•••	• • • • • • • • • • • • • • • • • • • •								
KM3	445	4 0 t	374.6	364.3	383 5	247.8	254 1	240.8	254.9	-869 7	-845.4
KM3	445	602	381.1	384.1	384.7	255.1	253 7	254.0	253.7	-853.2	-837 0
KM3	445	603	370 9	372.5	379 0	271.2	245.8	243.2	291.0	-857.8	-827.3
KM3	445	404 *	373.6			276.8		242.0			
KM13	230	630	344.9	354.4	342.5	271.8	279.3	290.4	279.1	-845.7	-855 4
EIMX	230	431	340 3	345 5	366.3	277.0	273.4	278.2	273.5	-834.0	-844 2
KM:3	230	432 *	347.3	357.0	340.3	343 6	391.4	325.8	293 4	-832 3	-837.3
KM: 3	514	624	388.9	347.7	370.4	273.2	249 1	273 8	245.8	-820 4	-854.8
EM13	514	6 2 5	378 7	377.3	378.4	279.4	275.5	284.8	274.4	-835.3	-844.1
EM13	514	626 *	403.7			361 0		302.1			
KM13	514	627	407.4	414 1	415.1	272.4	271.0	274.7	245.3	-882.8	-877 0
KM:3	514	628 +	417.4	422.2	423.2	280.7	249.8	299.0	278.3	-838.0	-055.5
RM13	670	621	344.5	347.9	372.6	271.4	267.7	266.1	244.1	-840 8	-835.7
KM: 3	€70	622	372 1	374.3	374.8	248.1	265.9	247.7	245.8	-834 7	-839 3
EMI3	670	623	354.0	357 4	345.4	274.8	248.7	247.4	248.1	-795 3	-828 4
KM13	o 8 0	629	361.1	361.4	342.3	277 . 3	247.3	248.2	249 0	-846.0	-853 0
KM20	146	641 *	402.8	400.4		242.2	233.9	244.4	245.4		
KM20	:46	6 4 2	378 5	399.2	399.0	259.7	247.1	244.3	247.9	-778 3	-788 7
KM20	146	643 *	382.4	387,1		289.5	252.5	259.2	254.0		
MMC G	146	644	389.0	387.1	389.2	257.8	254.5	251.3	253.2	-742 3	-773 4
KM2 3	146	645 *	390 2			381.8		250.4			- 44.7
KM20	146	646	390 2	388.5	391.0	254 4	255.4	249.9	253.1	-739 6	-743.4
KM20	146	647 *	379 0	376.6	383 3	297.1	252.2	273.8	271.9	-720.B	-737.6
KME	238	650	214.2	452.5	447.7	501.3	255.0	501.3	254.2	-161.3	- 42.4
KM8	2 1 8	651 *	439 7	487 1		249.3	222.1	258.2	253.5		
K.M.S	238	652	452.4	455.3	545.4	255.7	254.4	252.0	249.7	-763.2	-777.8
KM8	238	653	395.5	404.0	402.7	241.3	249.4	254.1	249.1		
1.M8	238	654 *	282.3			272.9		257.8			
KM8	238	655	339.2	483.4	700.2	258.4	254.3	256.4	255.4	-742.4	-734 9
KM8	238	656 *	392.8			282.9		254.1			
KM8	238	657	394.0	393.7	393. <i>1</i>	240.9	240.9	254.2	254,5	-708.5	-721.2
KME	238	658 *	387.4	387.8		249.2	249.3	259.9	259.5	_	
KM8	238	659	386.2	387.9	388.4	241,6	258.5	258.4	259.7	-771.3	-776.8

MAMLUNGE - Field measurements and corresponding laboratory values

Inter-	ಫಿ೯೬೯೧ ಇ	hoie- length m	No	Date sampling yy-ww-d		pH field		Eh.C field mV	Eh,C ex mV	Eh.Pt field mV	Eh.Pt e= mV	pS field	S2- mg/1	Cond field m5/m	iab	Cauger Freld mg/l
A 10 T	.0=	123														
			339	83-03-2	03-3	8 1	79	110	92	128	68	27 0	< 01	12 0	11 5	5 00
			340	83-03-3	03-4	8.0	78	114	79	128	51	26. 4	< 01	12.0	11 5	1 30
			341	83-03-4	03-5	8.0	7. 8	114	76	131	48	26 2	< 01	12 1	11 5	1 15
			342	83-03-7	04-2	7. 9	7. 8	112	83	126	60	26 1	< G1	12 1	11 5	5 55
			343	83-04-1	04-2	7. 9	7.8	104	85	120	65	25 4	< 01	12 1	12 0	94
			344	83-05-2	05-3	79		121	173	140	156	26 3	< 01	118		50
			345	83-05-3	05-4	7. 9	7. 6	113	173	125	151	25 5	< G1	11 7	11 5	25
			346	83-05-4	05-5	7. 9	7. 7	108	174	114	152	24 4	< 01	11.6	1: 5	10
			347	83-05-7	06-5	79		96	26	94	61	24.6	< 01	11 8		13
			346	83-06-1	04-5	7. 9	7. 6	95	68	90	36	23 4	< C1	11 7	12 0	32
293	37=	445														
			331	B2-50-2	50-3	8. 9	8 6	218	230	209	225	29 0	~ 01	13 5	12 0	15
			332	82-50-3	50-4	9. 1	8.6	-159	- 64	-413	~ 87	13.5	< 01	13 8	13 9	6 Co
			333	B2~50-4	50-5	9. 1	8.4	-148	- 54	-406	- 88	12 4	< 01	14 1	13 0	25
			334	82-50-7	51-3	87	8 1	- 43	79	- 49	72	21.6	< 01	12 3	11 5	5 07
			335	82-51-1	51-3	8.7	9.0	-120	-121	-157	- 45	15.5	< 01	12 5	12 0	: 03
			336	83-01-2	01-3	8. 4	7. 7	- 96	- 84	-113	-107	15 1	S 01	12 9	12 0	o:
			337	83~01-7	02-2	8.4	7.8	-102	-109	-133	-122	13 5	< G1	13 0	12 0	90
			338	83-02-1	02-2	8. 4	7.8	-112	-121	-143	-131	13.3	< G1	13 0	12 0	
2M3																
			910	SEPT-82	139		7. 4								12 0)
			911	OKT-82	463		7. 6								12 3	•

WAMLUNGE - Field measurements and corresponding laboratory values

j s−y− nile	[#c	mile- langth m	No	Date sampling gy-ww-d		pH field	p∺ lab	En.C field mV	Eh,C es mV	Eh.Pt field mV	Eh.Pt ex mV	p5 field	-	Cand field mS/m	iab	Oxygen field mg/l
			485	83-24-2	24-3	76	7 3	76	- 66	60	8	24 3	Ù1	42 4	÷1	75
			490	63-24-3	24-4	76	7.4	48	- 91	46	- 54	23 6	02	46 6	45	35
			487	83-24-4	24-5	78	7 4	33	-115	33	- 99	22 7	02	50 C	÷€	13
			439	83-24-7	25-3	8 4	7 4	- 15	-205	- 24	-201	18 3	0.3	56 6	52	9 7
			485	83-25-1	25-3	8 6	75	- 27	-215	- 52	-213	16 8	02	58 1	55	ರಿಕ
×~:3	43.7	514														
* • • • •	٠	• -	360	83-18-2	19-4	8 2	7 7	78	45	58	30	24.4	< G1	58 9	59	1 73
				83-18-3	18-4	8 2	7 8	12	119	6		25 1	< 01	60.5		1 42
				83-18-4	18-5	83	78	- '6	107	- 10		24 6	< 01	61 7		18
			_	83-18-7	16-4	8 1	7 9	- 34	11	- 36	- 15	22.5	< 01	70 G		ŝŦ
				83-19-1	18-4	8:	7 9	- 50	4	- 52		20 0	< 01	72 9	_	Ĵ5
			475	83-20-2	20-4	8 6	79	- 61	121	10	115	22 8	< 01	85 G	85	35
				83-20-4	20-5	8 7	78	-107	- 20	-101	- 35	18 1	< 01	99 8		1:
			477	83-20-7	21-3	87	77	-115	- 23	-119	- 58	15 3	G1	100	99	cc
			478	83-21-1	21-3	8.7	77	-114	- 25	-130	- 59	14 6	02	106	98	10
			479	83-21-2	21-3	8.6	7. 7	-116	- 34	-132	- 85	14 0	02	106	102	16
**13	55=	670														
• • •		J. J	344	83-12-2	12-4	66	6.7	148	182	152	173	25 1	< 01	6 6	5	5 : 20
				83-12-3	12-4	67	6.7		98	111	96	25 8	< 01	7 2		
				83-12-4	12-5	7 4	6 6	- 28	113	- 41	98	19 8	< 01	7.6		
				83-12-7	13-3	7 5	66	- 42	- 6	- 79		18.1	< 01	7.8		
				83-13-1	13-3	7.6	6 5	- 54	- 68	- 98	- 76	17.6	< 01	8 0		
					13-3	7.6	6.5	- 86	-116	-136	-120	16.4	< 01	8 1		
			355	83-14-3	14-4	6.7	6.3	113	86	106	79	24 6	< 01	15 6	_	
			356	83-14-4	14-5	6 9	66	98	68	97	60	24 4	< 01	16 0	13	5 34
			357	83-14-7	15-2	70	63	107	42	107	40	24 3	< 01	8 9	6	5 07
			358	83-15-1	15-2	70	6 3	109	36	109	30	24 2	< G1	7 1	5	೦ ೦೯
			359	83-15-2	15~3	6 9	6 4	105	15	105	10	23 7	< 01	6 4	5	0 ⊙⊋
w#12	ts-	180														
• •			480	83-22-2	18-1	8 1	7 1	78	205	68	166	25 2	< 01	10 8	11	0 72
				83-22-3	19-1	6.7	6 6	129	280	128		25 6	< 01	5 5		
				83-22-4	18~2	6 B	6.7		227	125		25 3	< 01	5 2		7 37
				83-22-7	23-2	7.0	6.6		111	71		22.8	< 01	5 5		
				E3-23-1	23~2	7. 0	6 5		73	_	_	55 0	< 01	5 6		
MM13																
			923	ES-MAL			7 0									a
				FEBR-83			7. 1								7	

MAMLUNGE - Field measurements and corresponding laboratory values

3:*e= ::1e	Deptr	Holer lampth	No	Date sampling yy-ww-d	Date lab ww-d	pH field	рН lab	Eh.C field mV	Eh,C ex mV	Eh.Pt field mV	Eh.Pt es mV	pS field	S2- mg/1	Cond field m5/m	l ab	Oxygen field mg l
> 4 Z C		145														
			441	83-14-3	14-4	68	65	198	217	150	173	25 5	~ 01	16 9	15 5	20
			442	83-14-4	14-5	68	66	179	529	148	169	24 6	< 01	17 G	15 5	: 3
			443	83-14-7	15-2	68	66	1 68	219	154	162	24 2	< G1	16 B	13 5	99
			444	83-15-1	15-2	69	6 5	172	228	164	140	24.7	< 01	16 8	13 0	0.0
			445	03-15-2	15-3	69	66	171	227	159	136	24 7	< 01	168	13 0	0 :
			440	83-16-2	16-3	67	67	199	309	155	249	23 3	< 01	168	15 5	16
			447	83-16-3	16-4	67	66	178	358	145	295	22 5	< 01	16 9	15 5	12
			448	83-16-4	16-5	68	67	186	292	153	229	22.6	< 01	166	14 0	1 =
			447	83-16-7	17-2	68	66	166	241	143	173	22 3	< 01	16 7	16 5	ପ୍ରଚ
			450	83-17-2	17-3	6. 7	6 . 7	191	246	163	500	22 9	< 01	16 7	17 0	14
v4€	,4 <u>+</u>	238														
-		200	451	83-20-3	20-4	7.4	62	299	320	283	337	28 0	< 01	4.4	4 1	2 50
				83-20-4	20-5	7 2	62	308	355	287	346	28 8	4 01	4 3	4 :	1 95
				83-20-7	21-3	6.3	6 1	299	129	288	348	28 3	< 01	4.0	3 8	
				83-21-1	21-3	63	6.2		327	287	339	28 6	< 01	3 9	3 8	
				83-21-2	21-3	63	6 1	296	355	285		28 8	< 01	3.8	3 4	
				83-22-2	18-1	6 7	6.0	_	312	213	268	25 3	< 01	4 1	3 9	
				83-22-3	18-1	6.8	6.2		283	197	231	25.3	< 01	4.2	4 1	
			_	83-22-4	18-2	6.8	6.1	249		184		25. 6	< 01	4. 1	4 1	
				83-22-7	23-2	6.9	6.3		269			25 9	< 01	4 0	4 0	
				83-23-1	23-2	6.9	6. 2		270		195	25. 9	< 01	4.0	4.1	_

KAMLUNGE - Metal 10ns

÷	. T			~=		31	****				. 47	r w		~ .	-
. е		tot	tot	tot	tot	tot	tot	tet	tet	tot	C. 4um	<. 4um). 4um	>. 4um	25. 4 or
	.=	mg/I	mg 'l	mg /1	mg/l	mg/l	mg/ 1	mg/l	mg/1	mg /1	mg/l	mg/l	æg/1	mg/l	mg/l
y 14 1	175														
	339	5 4	1 5	13	2.8	10	04	C 01	24	35	07	13	32	015	0017
	340	5 6	1 4	13	28	10	04 <	C 01	. 19	33	04	12	27	020	0022
	341	5 8	1 4	13	28	10	04 <	C 01	06	33	04	09	29	031	6027
	342	58	1 2	13	28	10	04	. 025	06	. 31	05	13	23	026	0057
	343	57	1 2	13	28	11	04	. 025	. 04	. 28	. 07	12	. 22	628	C056
	345	60	1 3	13	27	10	03	027	. 09	. 27	04	10	. 16	623	COZI
	346	62	1 3	13	28	11	02	. 025	. 14	. 29	. 08	15	13	026	0023
	347	56	1 2								14	19	26	040	0057
	348	6 1	1 3	13	2 7	. 11	02	. 028	. 18	27	. 12	15	15	026	6029
× 45	3°:														
	331	5 7	1 5	16	26	12	06	. 014	. 90	. 90	. 11	. 11	1 13	200	0044
	332	5 9	16	15	26	12	06	016	. 68	. 90	. 12	27	70	166	0040
	333	60	12	15	25	. 12	06 4	01	. 76	. 96	. 50		57	102	0021
	334	5 4	16	13	3 1	11		01	. 86	1.0	. 55	56	. 73	211	0022
	335	4 8	18	13	3.1	095	12	016	1. 3	1 3	. 90		61	293	0049
	336	5 4	1.8	13	3.0	. 095	. 14	4.01	. 75	1.0	. 65	1 4	63	656	0016
	337	50	19	13	33	. 090	. 15	. 026	. 90	2.2	. 65	1.4	1 07	05:	0027
	338	5 0	18	13	3. 2	. 089	. 15	. 022	. 86	18	. 67	1 4	61	029	0012
. ** 3															
-	910	4 8	2.7	13	4 4		. 03			1.8					
	911	4 8	1 5	13	3 9		< 01			. 28					

2e-	Cesti	1.5	Na		ĸ.		Ca		g	St	Mn	Al	Fe		F		Fe2+	Fe	Fe	A1	S
· :e	_		tot mg/		tot		tot mg/l	to	τ /1	tot mg/l	tot mg/]	tot mg/l	to		to		<.4∪m mg/l	<.4um mg/l	>.4um ma/l	⊃.4um ຕຊ/1	>. 4um
			mg,		mg/		mg/I	mg	′ 1	mg / I	mg / I	mg/I	mg	, 1	mg	/ 1	mg/1	m d / T	mg / I	wg / 1	mg/l
×M13	10-																				
		495	13		1 6	5	68		8	. 30	. 11	<. 01		73		B 0	. 63	. 61	. 14	0009	G11
		450	15		1.6	5	76		. 9	. 34	. 09	<. 01		68		68	. 62	. 56	. 08	0009	010
		4=-	15		1 6	5	81		7	. 40	. 07	< 01		63		61	. 58	. 56	. 07	. 0004	. 669
		48E	18		1 6		99		. 6	. 47	. 04	< 01		51		48	. 42	. 41	. 05	0013	. C 10
		425	18		1.6	5	106		. 6	. 49	. 05	<. 01		89	1.	20	. 48	. 41	. 04	0004	. 0 07
r10.3	27																				
F::: . 3	2.5	350	14		5 (2	99	4	. 4	20	. 21	<. 01		49		81	. 43	. 48	. 45	. 0016	022
		471	14		5 2		104		1. 1	21	18	₹.01		56		7B	42		44	0018	. 025
		472	15		5. 3		108		. 4	21	18	< 01		55		78	. 32	33	51	0013	026
		473	18		5 6		132		. 6	25	17	€ 01		53		76	. 40	48	. 34	0012	019
		474	19		5 6		145		. 9	27	. 18	< 01		55		78	. 47	. 63	. 22	0005	010
		475	17		6 2	2	151	3	. 7	. 35	. 17	<. 01		31		58	. 20	. 31	28	. 0027	063
		47E	20		5	7	156		. 4	. 35	. 13	< 01		53		65					
		477	23		6 8	2	190	3	. 2	. 38	. 12	< 01		67		63	. 70	. 77	01	0013	009
		478	23		6 8	2	192	3	. 2	36	. 12	< 01		73		83	. 72	. 76	01	0009	009
		479	23		6. 7	2	232	3	. 3	. 40	. 11	<. 01		72		83	. 79	. 79	01	. 0010	014
411 -	75.																				
		349	2 :	2	1 2		5.2		. 8	. 025	. 33		_	_							
		350	2		1 2		5.5		. 8	. 026	. 34	. 01 . 01 4	3 5.		4. 5.		5. 5	5. 3	. 20	0005	004
		351	2.		1 1		5.6		. 8	. 026	. 35	. 026	7.		5. 6.		6. 9	62	. 20	. 0003	013
		352	1		1		5.4		. 8	. 027	33	< 01	7.		7.		8.1	7.5	. 16	0013	003
		353	1.4		1.6		5.4		. 8	. 027	. 33	. 01	é.		é		8. 2	8 0	. 10	. 0005	003
		354	1		1.0		5.4	1	ō	027	35	. 01	8.		8.		9. 6	8.5	. 09	. 0005	
		355	ź.		1 6		8.1		. 2	. 052	. 56	. 49	18.		20	•	19.8	19	63	. 0653	
		356	2.0		1		8.2		5	. 053	. 55	. 71	18		21		19.4	19	. 94	1733	
		357	1		1. 0		5. 2		9	. 027	37	14	10.		12		11.7	ii	1 33	0356	016
		358	1.		-	7	4.1		9	020	33	13	6.		10		7.6	9.8	1.34	0237	010
		359	1.		(3.5		. 6		. 33	. 06	6.		8.	1	7.1	7. 3	. 76	0118	005
KM13	5 5 4	490	2.	_	. (_	13.6			. 031	. 20	.03		42	1.	_					
			1 3			7	3.9		. 4	. 015	. 31	. 03	4.		6.		4. 2	5. 5		. 0276	008
		40. 482	1	_		5	3.4		3	. 013	31	. 03	4.		6		4.6	5. 7	. 94 . 49		003
		463	1 (7	3.4		. 4	. 013	. 31	. 01		9	7.		7. 2	5. / 6. 9	44	0100	
		484	1.			7	3.0		. 5	. 012	. 30	< 01	6 8.		7.	_	7.7	0. 7 7 8	. 32	0088	003
		707	4. (•		•	3.0			. 012	. 30	~. UI	ð.	~	7.	,	<i>, , ,</i>	, 0	. 32	. 0088	002
EIMK																					
		923	4 (1.4		6. 2		1. 1		. 02					49					
		92e	3.	5	1.4	4	5. 6	2	1. 1		01					13					

KAMLUNGE - Metal ions

Bar e − hole	Dept.r	Νg	Na tot mg/l	K tot mg/I	Ca tot mg/l	Mg tot Mg/1	Sr tot mg/l	Mn tot mg/l	Al tot mg/l	Fe2+ tot mg/l	tot	Fe2+ <. 4um mg/l	Fe <.4um mg/l	Fe >.4um mg/l	Al >.4um mg/l	5 D. 4um mg/1
⊬M20																
		441	90	1 7	10	2.6	064	25	<. 01	13. 2	16	15.5	16	014	<. 0007	< 0007
		44£	9 8	16	10	25	. 066	. 26	<. 01	14. 2	16	15.7	16		< 0004	0013
		440	87	18	11	26	064	. 25	<. 01	13.8	16	16.0	17	. 026	< 0004	< 0004
		444	8 9	2.0	11	2.5	. 063	. 24	<. 01	14.8	16	17. 4	17	. 011	< 0004	< 0CG4
		445	B 7	16	11	2.4	062	. 26	<. 01	16.3	16	16.2	17	009	. 0004	< C004
		46-	8 2	18	11	26	. 064	26	< 01	15.1	16	15.3	16	. 008	< 0004	< 0004
		447	8.2	18	11	2 4	. 064	. 25	< 01	14. 9	16	15 1	16	. 007	<. 0004	< 0004
		448	7 9	1.6	11	2.4	. 065	. 25	< 01	14.8	16	15.0	16	. 011	<. 0004	< 0004
		447	8 3	1.8	10	25	. 064	26	< 01	15.2	16	15.0	16	. 009	< 0004	< 0004
		450	8 1	1. 7	11	2. 6	. 043	. 25	<. 01	16 7	16	16. 2	16	. 014	< 0009	< 0004
MMB	195															
		451	9	2	2. 3	. 5	<.01	. 15	. 01	4. 5		4 2	5	. 176	0165	0033
		452		. 1	2.3	. 8	< 01	. 16	. 01	4, 4	5	4. 0	4	125	0113	0013
		403	8	1	2.2	. 5	<. 01	. 18	. 01	3.0	4	30	4	129	0074	0012
		474	. 8	1	2. 1	. 7	<. 01	18	. 01	2.8	4	2.7	4	150	.0086	0013
		455	8	. 1	2. 1	. 6	< 01	. 19	. 01	3. 1	4	2.6	4	. 167	. 0078	0011
		455	1 0	. 2	2. 2	. 6	< 01	. 2	. 01	2.9	5	2.9	4	. 530	. 0070	. 0020
		457	1 0	. 2	2 2	. 6	< 01	. 21	. 01	4. 3		3.6	5	. 378	0056	0055
		45a	8	1	2. 2	. 7	<. 01	. 21	<. 01	3. 8		3.3	5	. 556	0056	0022
		459	. 8	. 2	1. 9	. 4	<. 01	. 26	<. 01	4. 0		3.5	4	. 438	0038	0013
		440	8	. 2	2.0	. 6	4. 01	. 21	<. 01	4.0	4	5. 1	3	350	. 0038	9039

KAMLUNGE - Nitrogen containing ions

Pore-	Depth	Length	No	NO2	NO3	NH4	NO2-N NO3-N NH4 N SUR	:-14
hole	m	rr T		mg/l	mg/l	mg/l	mg/1 mg/1 mg/1 mg/	' l
× M∃	106	123						
			339	< 002	035	010	< 001 00B 003 0	016
			340	< .002	035	. 010	< 001 008 003 0	016
			341	< 002	035	. 010	<.001 .008 .008	116
			342	005	030	020	.002 .007 .016	24
			343	005	. 025	. 020	002 006 016	23
			345	< .002	035	010	< 001 008 009	216
			346	< 002	045	015	< .001 .010 .012	022
			348	< 005	045	. 010	<.001 .010 .003	19
KMB	376	445						
			331	. 010	. 070	. 030	.003 .016 .023 .0	045
			332	<. 002	. 035	. 010	< 001 008 008 0	016
			333	. 007	. 020	. 010	. 002 . 005 . 003 (014
			334	<. 002	035	. 015	< 001 008 012	020
			335	<. 002	. 050	015	< 001 011 012	024
			336	< 002	. 035	010	< 001 008 C08	016
			337	<. 002	. 030	. 015	< .001 .007 .012 (019
			338	< 002	030	015	<.001 .007 012 .0	019

KAMLUNGE - Nitrogen containing ions

Bore-	Depth	Length	No	N02	NO3	NH4	NO2-	N-CON N	NH4-N	Sum-N
hole	m	m		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
mM13	197	230					ć a.a.			077
			485	< 002	025	020	< 00			022
			486	<. 002	030	015	< 00			019
			487	< 002	. 020	015	< 00			017
			488	< 002	180	. 020	< 00			057
			489	4. 002	030	. 015	<. 00	1 007	. 012	. 019
hmi3	432	514								
*:1123	702	011	360	< .002	. 050	015	< 00	1 011	. 012	. 024
			471	< 002	050	. 015	<. 00	1 .011	. 012	024
			472	4,002	040	020	<. 00	1 . 009	. 016	. 025
			473	< 002	040	020	<. 00			025
			474	< 002	020	020	< 00			. 021
			475	. 003	040	015	. 00			. 022
			476	< 002	020	020	< 00			. 021
			477	4,002	010	015	< 00			. 015
			478	< 002	015	. 015	< 00			016
			479	< .002	. 040	010	<.00			. 017
_										
₩M13	556	670					0.0	- 003		. 025
			349	. 010	030	020	. 00			
			350	. 007	. 055	020	. 00			030
			351	. 005	. 055	020	.00			
			352	<. 002	. 075	. 015	<. 00			029
			353	. 003	. 025	. 025	. 00			026
			354	E00	. 030	010	. 00			. 015
			355	<. 002	. 045	040	<.00			042
			356	<. 002	040	. 015	<. <u>00</u>			021
			357	. 003	. 040	015	. 00			055
			358	. 002	. 040	015	. 00			. 021
			359	. 002	025	015	. 00	1 .006	. 012	. 018
MM13	564	680								
			480	. 005	040	. 020	. 00	2 .009	7 . 016	026
			481	005	030	020	. 00			. 024
			482	< 002	030	025	<. 00	1 . 007	7 . 019	. 027
			483	< 002	030	015	<. 00			. 019
			484	. 003	025	015	. 00	_		. 018
				. 300			,			

KAMLUNGE - Nitrogen containing ions

Bo-e-	Depth	Length	No	NO2	NO3	NH4	N02-N	N03-N	NH4-N	Sum-N
hole	m	m		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
MMZ]		146								
			441	< 005	085	375	< 001	019	. 291	311
			442	< .002	050	. 385	<. 001	. 011	299	311
			443	. 002	025	. 380	. 001	. 006	. 295	301
			444	005	. 040	350	. 001	. 009	272	. 281
			445	. 003	. 035	. 380	. 001	. 008	295	334
			446	. 005	. 055	. 350	. 002	. 012	. 272	286
			447	005	. 035	. 390	. 002	. 008	. 303	. 312
			448	. 020	. 050	390	. 006	. 011	. 303	320
			449	<. 002	. 045	380	<. 001	. 010	. 295	. 306
			450	. 003	. 030	. 385	. 001	007	. 259	. 337
MME	198	238							040	004
			451	. 003	. 050	015	. 001	. 011	. 012	024
			452	< 002	035	. 020	< 001	. 008	. 016	024
			453	<. 002	. 025	. 010	< 001	. 006	. 008	014
			454	< 005	. 010	010	< 001	. 002	. 008	011
			455	< .002	. 020	. 015	< 001	. 005	012	. 017
			456	< 002	. 060	. 020	< 001	. 014	. 016	. 036
			457	< . 002	. 070	. 020	< 001	. 016	. 016	. 032
			458	< 002	035	. 015	< 001	008	012	. 020
			459	< 002	050	. 020	< .001	. 011	. 016	. 027
			460	<. 002	. 035	. 015	<. 001	. 008	. 012	. 020

KAMLUNGE - Remaining anions and other parameters

Bore- hole	Depth	Length m	No	HCO3	Cl mg/l	F mg/l	SO4 mg/l	PO4 mg/l	TOC mg/l	Si02	Turb NTU	I mg/l
	404	4.77		-		-	•	•	_	_		-
KM3	106	123			_		_		_			
			339	66	3	14	4	020	2	9. 2	3.2	. 05
			340	66	2	. 12	4	. 020	2	6.5	2 4	. 063
			341	66	2	. 14	4	. 025	2	8.3	2.8	066
			342	65	3	. 15	4	. 020	2	87	35	. 036
			343	65	3	. 15	4	. 025	1	8.7	29	036
			344				3		2			
			345	65	2	. 12	4	. 015	3	7. 8	1.2	. 043
			346	66	3	14	4	. 020	3	7. 7	3.8	036
			347		_	• •	4		3 2	• • •		
			349	65	3	. 13	4	. 020	2	7. 0	2.5	. 035
			3-3	00			•	. 420	-	, . U	2. 3	. 033
mM3	376	445										
	-		331	59	3	. 17	11	. 045	3	4 2		040
			332	62	3	. 19	11	030	3	4. 3		. 05
			333	61	3	21	11	045	3	5 2		. 05
			334	62	3	. 14	•	035	3 3	5. 4		040
			335	62	3	11	6	. 040	3	5 6		05
					3				2	-		
			335	65		20	6	035	~	6.1	5.4	. 037
			337	69	3	. 11	6	. 040	2	6.8	8 5	033
			338	66	3	. 10	6	. 035	2	6. 9	9.8	042
KM3												
			910	68	1	. 13	5			9. 5		
			911	68	1	. 11	4			9.6		

KAMLUNGE - Remaining anions and other parameters

Borer	Depth	Length	No	нс03	C1	F	S04	P04	TOC	5102	Turb	ι
Pols.	m	m		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	NTU	mg/l
h=113	197	230										
	• •		485	16	5	19	160	040	16	5.4	5 0	048
			486	15	5	2 0	180	045	15	5.4	3 6	081
			487	15	5	2 0	200	. 030	19	5 3	37	09
			489	15	5	2 1	230	040	8	5 4	3 6	21
			469	13	6	2 1	240	050	10	5. 4	2 7	. 19
⊬M13	432	514										
			360	23	10	42	240	005	5	3.6	5 7	. 06
			471	23	10	. 45	244	010	5	3.8	83	. 05
			472	24	10	. 49	256	. 015	3	3. 9	7. 1	. 05
			473	23	10	54	290	. 015	3	4. 2	6 2	05
			474	23	11	. 55	300	. 015	9	4. 4	69	066
			475	20	15	. 44	380	. 025	9	3.0	5 0	042
			476	19	15	. 58	420	. 020	18	4. 3	5.0	08
			477	20	19	. 64	480	. 025	10	5. 2	5.0	. 12
			478	19	19	. 67	480	. 030	16	5.3	4 4	. 016
			479	19	20	. 70	520	. 030	21	5. 4	7. 4	. 155
im13	556	670										
			349	20	1	< 1	6	<. 005	11	2 1	25	023
			350	23	2	< 1	8	. 005	11	2. 1	25	. 023
			351	27	2	< 1	8	<. 005	13	2.1	11	024
			352	31	3	<. 1	8	< 005	15	3. 6	12	029
			353	31	2	<. 1	7	< 005	11	3. 6	13	. 029
			354	32	3	4.1	8	< 005	12	3.7	19	028
			355	16	22	< 1	4	010	12	3. 7		016
			356	12	26	< 1	4	020	13	3. 7	3 0	007
			357	12	8	4.1	4	. 015	5	3.5	6. 3	016
			358	12	6	<u>< 1</u>	5	. 005	5	3. 3	6.6	. 019
			359	8	5	S.1	5	. 005	5	3. 2	4 0	. 02
KM13	564	680										
			480	16	3	. 14	27	. 025	42	2.4	72	021
			481	11	1	4. 1	7	< 005	24	3. 4	19	. 014
			482	9	1	4. 1	7	. 045	33	3.4	8.4	014
			483	9	1	4. 1	6	. 055	54	3 4	4 5	014
			484	9	1	< 1	6	. 060	45	3 4	5 C	. 023
EIMN		903										
			923	34	1	04	4			11		. 001
			926	38	1	07	4			11		. 001

MAMLUNGE - Remaining anions and other parameters

Bars- hale	Depth m	Length m	No	н€ОЗ м g/l	C1 mg/1	F mg/l	S04 mg/l	PO4 mg/l	TOC #9/1	SiO2 mg/l	Turb UTM	I mg/l
MM2		146										
			441	72	11	12	3	520	1 4	31		028
			442	63	10	. 13	2	. 515	1.8	29	5 5	040
			443	56	9	. 13	3	580	3 4	29	20	027
			444	55	10	13	3	. 385	2.1	29	4 0	038
			445	59	11	. 13	2	. 435	1. 9	28	1.0	028
			446	54	8	. 14	3	. 560	1. 4	25	13	035
			447	49	10	. 13	3	. 550	1. 4	23	1. 5	030
			448	54	10	. 13	3	. 575	1.3	23	1.6	029
			449	80	9	. 14	3	. 550	1. 7	21	2 6	024
			450	81	9	. 13	3	. 530	1. 7	33	2. 3	029
k MÐ	198	238										
_			451	8	1	<. 1	4	. 015	5. 2	4. 4	39	. 02
			452	8	1	< 1	4	. 015	3 4	4.4	20	018
			453	7	1	< 1	5	. 015	2 1	4 4	6.3	03
			454	7	1	< 1	5	020	2.3	4 3	4.2	038
			455	7	1	< 1	5	. 020	2. 2	4. 4	5 3	031
			456	7	1	< 1	5	030	2.0	5.3	9. G	014
			457	7	1	< 1	5	. 020	1 6	4. 9	67	011
			458	7	1	< 1	5	. 020	1.5	4. 9	9 1	009
			459	8	1	<. 1	5	. 015	1. 4	5.0	7. 0	009
			460	8	1	<. 1	5	. 005	1. 3	5. 1	7.0	012

KAMLUNGE - Drilling waters

Bore- hole	Length m	No	рН	Cond. m5/m	Na mg/l	K mg/l	Ca mg/l	Mg #9/1	Mn mg/l	Fe, tot mg/l	HCO3	C1 mg/l	F mg/l	S04 mg/l	SiO2 mg/l	I mg/l
KM11	67	919	6. 1	8. 7	2	1. 3	8	1. 9	. 01	. 06	5	2 2	. 23	3	5. 9	. 001
KH12	310	920	5. 9	2.7	2	. 5	1	1. 3	. 01	. 01	6	1	. 02	4	5. 3	. 001
KM12	520	925	7. 0	18.0	5	2. 3	19	7. 2	. 8	15	112	1	. 09	2	13	. 001
KM12	630	924	7. 2	7.6	3	1. 5	6	2. 3	. 01	. 01	37	1	. 06	5	9. 6	. 001
KM13	216	923	7. 0	6.8	4	1. 4	6	2. 1	. 02	. 49	34	1	. 04	4	11	. 001
KM13	500	926	7. 1	7.8	4	1. 4	6	2. 1	. 01	. 13	38	1	. 07	4	11	001
KM14	175	922	6. 6	2.5	2	. 9	2	1. 1	. 01	. 03	7	1	. 02	4	5. 6	001
KM14	500	927	7. 1	8.7	5	1. 3	6	2. 1	. 01	. 01	39	1	. 24	5	9.6	. 001
KM2	106	913	6. 9	4.6	3	. 9	4	1. 3	. 01	. 01	19	1	. 08	6	8. 7	. 005
KM2	492	914	6. 9	5. 9	3 4	1. 1	5	1. 9	. 01	. 01	27	1	. 11		9. 1	. 005
EMA	139	910	7. 4	12.0	5	2. 7	13	4. 4	. 03	1. 8	88	1	. 13	5	9. 5	
KM3	463	911	7. 6		5	1. 5	13	3. 9	. 01	. 28	68	1	. 11		9. 6	
KM4	94	915	6. E	6.0	3	1. 5	5	2. 6	. 01	. 03	29	1	. 08	4	12	. 005
KM4	509	916	7. 0	6.1	3	1. 2	4	2. 0	. 01	. 24	31	1	. 10		13	.008
KM9	215	921	7. 0	6.9	3	1. 2	5	2. 2	. 01	. 08	36	1	. 26	4	12	. 001
KM9	408	918	6.6	3.9	2	1.3	3	1. 9	. 01	. 25	17	i	. 15		9. 7	001
KM9	OM	917	6. E		3	1. 2	3	1. 9	. 01	27	23	ī	. 08		13	005

List of KBS's Technical Reports

1977–78 TR 121

KBS Technical Reports 1 – 120.

Summaries. Stockholm, May 1979.

1979 TR 79–28

The KBS Annual Report 1979.

KBS Technical Reports 79-01 - 79-27. Summaries. Stockholm, March 1980.

1980 TR 80-26

The KBS Annual Report 1980.

KBS Technical Reports 80-01 - 80-25. Summaries. Stockholm, March 1981.

1981 TR 81–17

The KBS Annual Report 1981.

KBS Technical Reports 81-01 - 81-16. Summaries. Stockholm, April 1982.

TR 82-28

The KBS Annual Report 1982.

KBS Technical Reports 82-01 - 82-27.

1983 TR 83–01

Radionuclide transport in a single fissure A laboratory study

Trygve E Eriksen
Department of Nuclear Chemistry
The Royal Institute of Technology
Stockholm, Sweden 1983-01-19

TR 83-02

The possible effects of alfa and beta radiolysis on the matrix dissolution of spent nuclear fuel

I Grenthe
I Puigdomènech
J Bruno
Department of Inorganic Chemistry
Royal Institute of Technology
Stockholm, Sweden, January 1983

TR 83-03

Smectite alteration
Proceedings of a colloquium at State
University of New York at Buffalo,

May 26-27, 1982

Compiled by Duwayne M Anderson State University of New York at Buffalo February 15, 1983 TR 83-04

Stability of bentonite gels in crystalline rock – Physical aspects

Roland Pusch

Division Soil Mechanics, University of Luleå Luleå, Sweden, 1983-02-20

TR 83-05

Studies in pitting corrosion on archeological bronzes – Copper

Ake Bresle
Jozef Saers
Birgit Arrhenius
Archaeological Research Laboratory
University of Stockholm
Stockholm, Sweden 1983-01-02

TR 83-06

Investigation of the stress corrosion cracking of pure copper

L A Benjamin
D Hardie
R N Parkins
University of Newcastle upon Tyne
Department of Metallurgy and engineering Materials
Newcastle upon Tyne, Great Britain, April 1983

TR 83-07

Sorption of radionuclides on geologic media – A literature survey.

I: Fission Products

K Andersson B Allard Department of Nuclear Chemistry Chalmers University of Technology Göteborg, Sweden 1983-01-31

TR 83-08

Formation and properties of actinide colloids

Colloids
U Olofsson
B Allard
M Bengtsson
B Torstenfelt
K Andersson
Department of Nu

Department of Nuclear Chemistry Chalmers University of Technology Göteborg, Sweden 1983-01-30

TR 83-09

Complexes of actinides with naturally occurring organic substances — Literature survey

U Olofsson B Allard Department of Nucluear Chemistry Chalmers University of Technology Göteborg, Sweden 1983-02-15

Radilysis in nature:

Evidence from the Okio natural reactors

David B Curtis
Alexander J Gancarz
New Mexico, USA February 1983

TR 83-11

Description of recipient areas related to final storage of unreprocessed spent nuclear fuel

Björn Sundblad Ulla Bergström Studsvik Energiteknik AB Nyköping, Sweden 1983-02-07

TR 83-12

Calculation of activity content and related propeties in PWR and BWR fuel using ORIGEN 2

Ove Edlund Studsvik Energiteknik AB Nyköping, Sweden 1983-03-07

TR 83-13

Sorption and diffusion studies of Cs and I in concrete

K Andersson B Torstenfelt B Allard Department of Nuclear Chemistry Chalmers University of Technology Göteborg, Sweden 1983-01-15

TR 83-14

The complexation of Eu (III) by fulvic acid

J A Marinsky State University of New York at Buffalo Buffalo, NY 1983-03-31

TR 83-15

Diffusion measurements in crystalline rocks

Kristina Skagius Ivars Neretnieks Royal Institute of Technology Stockholm, Sweden 1983-03-11

TR 83-16

Stability of deep-sited smectite minerals in crystalline rock – chemical aspects

Roland Pusch Division of Soil Mechanics, University of Luleå Luleå 1983-03-30

TR 83-17

Analysis of groundwater from deep boreholes in Gideå

Sif Laurent
Swedish Environmental Research Institute
Stockholm, Sweden 1983-03-09

TR 83-18

Migration experiments in Studsvik

O Landström

Studsvik Energiteknik AB

C-E Klockars

O Persson

E-L Tullborg

S A Larson

Swedish Geological

K Andersson

B Allard

B Torstenfelt

Chalmers University of Technology

1983-01-31

TR 83-19

Analysis of groundwater from deep horeholes in Fjällveden

Sif Laurent

Swedish Environmental Research Institute

Stockholm, Sweden 1983-03-29

TR 83-20

Encapsulation and handling of spent nuclear fuel for final disposal

1 Welded copper canisters

2 Pressed copper canisters (HIPOW)

3 BWR Channels in Concrete

B Lönnerbeg, ASEA-ATOM

H Larker, ASEA

L Ageskog, VBB

May 1983

TR 83-21

An analysis of the conditions of gas migration from a low-level radioactive waste repository

C Braester
Israel Institute of Technology, Haifa, Israel
R Thunvik
Royal Institute of Technology
Stockholm, Sweden November 1982

TR 83-22

Calculated temperature field in and around a repository for spent nuclear fuel

Taivo Tarandi, VBB Stockholm, Sweden April 1983

TR 83-23

Preparation of titanates and zeolites and their uses in radioactive waste management, particularly in the treatment of spent resins

A Hultgren, editor C Airola Studsvik Energiteknik AB S Forberg, Royal Institute of Technology L Fälth, University of Lund May 1983

Corrosion resistance of a copper canister for spent nuclear fuel

The Swedish Corrosion Research Institute and its reference group Stockholm, Sweden April 1983

TR 83-25

Feasibility study of electron beam welding of spent nuclear fuel canisters

A Sanderson, TF Szluha, JL Turner, RH Leggatt The Welding Institute Cambridge The United Kingdom April 1983

TR 83-26

The KBS UO, leaching program

Summary Report 1983-02-01 Ronald Forsyth, Studsvik Energiteknik AB Nyköping, Sweden February 1983

TR 83-27

Radiation effects on the chemical environment in a radioactive waste repository

Trygve Eriksen
Royal Institute of Technology, Stockholm
Arvid Jacobsson
University of Luleå
Luleå, Sweden 1983-07-01

TR 83-28

An analysis of selected parameters for the BIOPATH-program

U Bergström A-B Wilkens Studsvik Energiteknik AB Nyköping, Sweden 1983-06-08

TR 83-29

On the environmental impact of a repository for spent nuclear fuel

Otto Brotzen Stockholm, Sweden april 1983

TR 83-30

Encapsulation of spent nucler fuel – Safety Analysis

ES-konsult AB Stockholm, Sweden April 1983

TR 83-31

Final disposal of spent nuclear fuel – Standard programme for site

investigations
Compiled by
Ulf Thoregren
Swedish Geological
April 1983

TR 83-32

Feasibility study of detection of defects in thick welded copper

Tekniska Röntgencentralen AB Stockholm, Sweden April 1983

TR 83-33

The interaction of bentonite and glass with aqueous media

M Mosslehi A Lambrosa J A Marinsky State University of New York Buffalo, NY, USA April 1983

TR 83-34

Radionuclide diffusion and mobilities in compacted bentonite

B Torstenfelt
B Allard
K Andersson
H Kipatsi
L Eliasson
U Olofsson
H Persson
Chalmers University of Technology
Göteborg, Sweden 1983-12-15

TR 83-35

Actinide solution equilibria and solubilities in geologic systems

B Allard Chalmers University of Technology Göteborg, Sweden 1983-04-10

TR 83-36

B Torstenfelt

Iron content and reducing capacity of granites and bentonite

B Allard W Johansson T Ittner Chalmers University of Technology Göteborg, Sweden April 1983

TR 83-37

Surface migration in sorption processes

A Rasmuson I Neretnieks Royal Institute of Technology Stockholm, Sweden March 1983

TR 83-38

Evaluation of some tracer tests in the granitic rock at Finnsjön

L Moreno
I Neretnieks
Royal Institute of Technology, Stockholm
C-E Klockars
Swedish Geological
Uppsala April 1983

Diffusion in the matrix of granitic rock Field test in the Stripa mine. Part 2

L Birgersson I Neretnieks Royal Institute of Technology Stockholm, Sweden March 1983

TR 83-40

Redox conditions in groundwaters from Svartboberget, Gideà, Fjällveden and Kamlunge

P Wikberg I Grenthe K Axelsen Royal Institute of Technology Stockholm, Sweden 1983-05-10

TR 83-41

Analysis of groundwater from deep boreholes in Svartboberget

Sif Laurent Swedish Environmental Research Institute Stockholm, Sweden 1983-06-10

TR 83-42

Final disposal of high-levels waste and spent nuclear fuel – foreign activities

R Gelin Studsvik Energiteknik AB Nyköping, Sweden May 1983

TR 83-43

Final disposal of spent nuclear fuel – geological, hydrogeological and geophysical methods for site characterization

K Ahlbom L Carlsson O Olsson Swedish Geological Sweden May 1983

TR 83-44

Final disposal of spent nuclear fuel – equipment for site characterization

K Almen, K Hansson, B-E Johansson, G Nilsson Swedish Geological O Andersson, IPA-Konsult P Wikberg, Royal Institute of Technology H Ahagen, SKBF/KBS May 1983

TR 83-45

Model calculations of the groundwater flow at Finnsjön, Fjällveden, Gideå and Kamlunge

L Carlsson A Winberg Swedish Geological, Göteborg B Grundfelt Kemakta Consultant Company, Stockholm May 1983

TR 83-46

Use of clays as buffers in radioactive repositories

Roland Pusch University of Luleå Luleå May 25 1983

TR 83-47

Stress/strain/time properties of highly compacted bentonite

Roland Pusch University of Luleå Luleå May 1983

TR 83-48

Model calculations of the migration of radio-nuclides from a respository for spent nuclear fuel

A Bengtsson Kemakta Consultant Company, Stockholm M Magnusson I Neretnieks A Rasmuson Royal Institute of Technology, Stockholm May 1983

TR 83-49

Dose and dose commitment calculations from groundwaterborne radioactive elements released from a repository for spent nuclear fuel

U Bergström Studsvik Energiteknik AB Nyköping, Sweden May 1983

TR 83-50

Calculation of fluxes through a repository caused by a local well

R Thunvik Royal Institute of Technology Stockholm, Sweden May 1983

TR 83-51

GWHRT – A finite element solution to the coupled ground water flow and heat transport problem in three dimensions

B Grundfelt Kemakta Consultant Company Stockholm, Sweden May 1983

TR 83-52

Evaluation of the geological, geophysical and hydrogeological conditions at Fjällveden

K Ahlbom L Carlsson L-E Carlsten O Duran N-À Larsson O Olsson Swedish Geological May 1983

Evaluation of the geological, geophysical and hydrogeological conditions at Gidea

B Albino

L Carisson

G Nilsson

O Olsson

L Stenberg

H Timje

Swedish Geological

May 1983

TR 83-54

Evaluation of the geological, geophysical and hydrogeological conditions at Kamlunge

K Ahlbom

B Albino

L Carisson J Danielsson

G Nilsson

O Olsson

S Sehistedt

V Stejskal

L Stenberg

Swedish Geological

May 1983

TR 83-55

Evaluation of the geological, geophysical and hydrogeological conditions at Svartboberget

K Ahibom

L Carlsson

B Gentzschein

A Jämtlid

O Olsson

S Tirén

Swedish Geological

May 1983

TR 83-56

I: Evaluation of the hydrogeological conditions at Finnsjön

L Carlsson

G Gidlund

II: Supplementary geophysical investigations of the Starnö peninsula

B Hesselström

Swedish Geological

May 1983

TR 83-57

Neotectonics In northern Sweden geophysical investigations

H Henkel

K Hult

L Eriksson

Geological Survey of Sweden

L Johansson

Swedish Geological

May 1963

TR 83-58

Neotectonics in northern Sweden geological investigations

R Lagerbäck

F Witschard

Geological Survey of Sweden

May 1983

TR 83-59

Chemistry of deep groundwaters from granitic bedrock B Allard

Chalmers University of Technology

S À Larson

E-L Tullborg

Swedish Geological

P Wikberg

Royal Institute of Technology

May 1983

TR 83-60

On the solubility of technetium in geochemical systems

B Allard

B Torstenfelt

Chalmers University of Technology

Göteborg, Sweden 1983-05-05

TR 83-61

Sorption behaviour of well-defined oxidation states

B Allard

U Olofsson

B Torstenfelt

H Kipatsi

Chalmers University of Technology Göteborg, Sweden 1983-05-15

The distribution coefficient concept and aspects on experimental distribution studies

B Allard

K Andersson

B Torstenfelt

Chalmers University of Technology Göteborg, Sweden May 1983

TR 83-63

Sorption of radionuclides in geologic systems

K Andersson

B Torstenfelt

B Allard

Chalmers University of Technology Göteborg, Sweden 1983-06-15

lon exchange capacities and surface areas of some major components and common fracture filling materials of igneous rocks

B Allard M Karlsson Chalmers University of Technology E-L Tullborg S A Larson Swedish Geological Göteborg, Sweden May 1983

TR 83-65

Sorption of actinides on uranium dioxide and zirconium dioxide in connection with leaching of uranium dioxide fuel

B Allard
N Berner
K Andersson
U Olofsson
B Torstenfelt
Chalmars University of Technology
R Forsyth
Studsvik Energiteknik AB
May 1983

TR 83-66

The movement of radionuclides past a redox front

I Neretnieks
B A lund
Royal Institute of Technology
Stockholm, Sweden 1983-04-22

TR 83-67

Some notes in connection with the studies of final disposal of spent fuel. Part 2

I Neretnieks
Royal Institute of Technology
Stockholm, Sweden May 1983

TR 83-68

Two dimensional movements of a redox front downstream from a repository for nuclear waste

I Neretnieks B Aslund Royal Institute of Technology Stockholm, Sweden 1983-06-03

TR 83-69

An approach to modelling radionuclide migration in a medium with strongly varying velocity and block sizes along the flow path

I Neretnieks
A Rasmuson
Royal Institute of Technology
Stockholm, Sweden May 1983

TR 83-70

Analysis of groundwater from deep boreholes in Kamlunge

S Laurent Swedish Environmental Research Institute Stockholm, Sweden May 1983

TR 83-71

Gas migration through bentonite clay

Roland Pusch Thomas Forsberg University of Luleå Luleå, Sweden May 31, 1983

TR 83-72

On the thermal conductivity and thermal diffusivity of highly compacted bentonite

Sven Knutsson University of Luleå Luleå, Sweden October 1983

TR 83-73

Uranium, thorium and radium in soil and crops – Calculations of transfer factors

Sverker Evans
Studsvik Energiteknik AB
Åke Eriksson
Swedish University of Agricultural Sciences
Sweden June 1983

TR 83-74

Fissure fillings from Gidea, central Sweden

Eva-Lena Tullborg Swedish Geological Sven Åke Larson Geological Survey of Sweden Gothenburg, Sweden August 1983