N

FRFYo 3290

NO] CHARGES RY C

GAU AND HIGGS REP

P.A.Horvathy*

J.H.Rawnuley‘

The topological invariants of monopoles are desc-
ribed for an arbitrary compact gange group G and Higgs
field ® in any representation.The results generalize those
obtained recently for compact and simply connected G and @
in the adjoint representation.The cases when the residual
symmetry group is H~U{(l) or H=U(3) are worked out expli-
citly.This latter is ded to date fractional elec-

tric charge with monopoles having one Dirac unit magnetic
charge.

The general theory is illustrated on the SU(5) mo-
nopole.

N
PACS numbers: 02.40.Tm,11.15.Ex,14.80.%v. -

*Centre de Phyaique Théorique,CNRS,Luminy Case 707 F-13288
Marseille,Cedex 9 (France)

$ Mathematics Institute,University of Warwick,Coventry CV4
7AL (England)

June 1984

CpoRS ~ cepr-sasp.1601.



1. INTRODUCTION

Let us consider a gauge theory with a compact gauge
group G and the Higgs field tranaforming according to an
arbitrary representation of G.The coupled Yang-Mills-Higgs
equations admit monopole solutions (see [14] for a re-
view).Let us consider such a monopole given by the pair
(A4,®),and denote H the residual symmetry group left by the
vacuum expectation value of 9.

In the theory of monopoles a fundamental role is
played by the topological invariants
[2,3,4,8,9,10,15,21].The most important of these invariants
is

(i) The Higge charge [®] € 7,(G/H) defined by the
asymptotic values of the Higgs field.

(il) If ® belongs to the adjoint representation,we
have an other topological invariant - the so-called topo-
logical charge -

(1.1) 1 = _|' Tr(F.9)
a

where F is the gauge field strength.(l.l) appears for
example in the expression given by Bogomolny tozthe lower
bound of the energy.(l.l) has been generalized by Taubes
{2}.In [1) we made one further step and proved that,for any
(n+l)- linear functions f on the integral

(1.2) 100 [ sr,0,.....0
S2 n times

is a topological invariant whenever D, ¢=0.

(iii) 1f the Higgs field generates a U(l) sub-
group,the projection of the Yang-Mills field on the & -
direction can be viewed as an electromagnetic
field.The electric charge is then gquantized {4}.The mono-
pole's magnetic charge is expressed as an invariant
integral of the type (1.2),and the electric-and magnetic
charges satisfy a generalized Dirac condition.

The symmelry breaking mechanism by a Higgs field in
:atho adjoint representation suffers however of a serious




drawback:the residual symmetry group is in general not the
one we would like to have in physics.For G = SU(N) for
instance, the only possibility is [1]

(1.3) H-S{U(il)xU(iz-il)x..xD(N-ip)}, Ocij¢..cipeN.

Most present-day physicists believe however that
the exact.symmetry group should be rather that of strong-
and electromagnetic interactions:

(1.4) SU(3)cxU(l)em -

1t is clearly impossible teo realize (1.5) by a Higgs field
in the adjoint representation (except for G = SU(4)).

On the other hand,in Grand Unified Theories {11}
the symmetry is broken in several stages by Higgs fields
which do not belong to the adjoint representation in
generali

The aim of this paper is to extend the results of
1] to any compact qgauge qroup and Hiqggs field ip any

sen n.
First we describe mw,(H) in some detail.We show
that,for any compact and connected H,

(1.5) my(H) = 7 (Hgg) x ZP

where Hgg i8 the semisimple subgroup of H whose Lie algebra
is [f,h] and p is the dimension of the centre of H.w,(Hgg) is
a finite Abelian group.

As it will be seen below,it is the free part of
mi1(H) which plays a role in calculating the further
topological invariants.We describe it in some more de-
tail.To do this consider,for any loop 7 in H ,

(1.6)  pl») = z(,[e) € z(h) .,
. an
where z is the projection from h.the Lie algebra of H,to its
centre Z([),® is the Maurer-Cartan form of H.(l.6) depends
only on the homotopy class of y.We prove that p defines an



isomorphism of the free part of n,(H) onto 2z(I),the
projection onto the centre of the unit lattice I' of H.

Our recipe for calulating p(y) is as follows:

(i) choose a maximal torus T,.find the unit lattice T

(cf.[1]).Project I to the éentre of ﬁ;

(ii) choose a 2-basis {;,...{p of z(I') and select
TMar-«eMp in I' such that z(nx)= {k-

(iii) define £J € L* by

(1.7) £3 (9x) =034k

The fk's are differentials of characters xx of H and
(iv) setting

dax

1 —k

(1.8) me(¥) = E?rﬁ‘J‘ ),
v

we get an isomorphism between the free part and ZP,where p
is the dimension of Z(f).p(7) is then fcund as

Ld
(1.9) p(r) = L mg.lk-

Alternatively,denote by Z,(4) the centralizer of & in
with projection 2': § -~» ZH(C).

"
it

(1.10) 7*0 = z'(de)
gives a ZS(L)-valued 2-form f1 on G/H.Let us then define

(1.11) pt(®) =2 g"n € Zy(R)
-]

This is a homotopy invariant and it is not difficult
to show that

(1.12) p'(®) = a(a(dD)

where 6 is the injective homomorphism from w,(G/H) to
7, (H) .Conssquently



(1.13)  m (®) = m (o[®)) = I o* v*  where " = £%(n).
sz

Let now f denote an arbitrary invariant function on xG/H
which is linear in the first variable.We prove that

aagy 8« g0

SZ
ia a topological invariant (actually independent of the
Yang-Mills field) and can be calculated as:

(1.15) I(E) = £(p' (@) exq),

where x3 is a reference point in the orbit G/H with
stabilizer H.

There is an ambiguity in defining the electro-
magnetic properties:any ¢ ¢ Z(G) is admissible if it defines
a U(l) subgroup (this latter condition is needed to have
quantized electric charge [1,4]).If { is chosen to satisfy
these conditions,all electric charges will be,just as in
the adjoint case,multiples of a minimal charge

(1.16) Qnin = €/ 1}

Let us choose an invariant inner product (-,-) on % »and
define the electromagnetic field to be the (-component of
F.The magnetic charge of the monopole turns out to be

1 (2(®) . L)
26, ° e
The electric-and magnetic charges satisfy hence a

(1.17) g =

generalized Dirac condition:

(u(®).{)

(1.18) 2qp,3 =

The situation is particularly simple if Z(f}) is 1-
dimensional.Then p*'(®) = (/M ,where ( 1is the minimal
generator of Z(f) and M is an integer,which divides the
order of the finite group Z(H),n Hgg (the intersection of
the connected compconent of the centre with the semisimple



part).
In this case both the elactric-and magnetic charges
are guantized;the Dirac condition reads {4,10,21)

(1.19) 29min-Gmin = 1/¥ .

As examples,we consider the following particular éases:
(i) The Higgs field ie in the adjoint
representation.The previous results [l1) are easily re-
covered.

(ii) The case H=U(l) is even simpler.The selectric-
respectively magnetic charges satisfy the original Dirac
condition.

(iti) If there exist,as conjectured,fractional electric
charges and simultaneously monopoles having 1 Dirac unit
magnetic charge,the residual symmetry group must be H =
U(3),rather then SU(3)xU(l).(This conclusion can be ob-
tained also from the study of to which multiplets the
fermions of the theory belong [16]).The Dirac condition is
modified now to

(1.20) 29ping = m/3 ,where m ¢ 2.

The SU(5) monopole (12,13) provides us with a nice
application of our theory:at a mass scale of order 1016GeV
SU(5) is broken by the vacuum expectation value of a Higgs
field in the adjoint representation,so (i) of Section 4
applies.At energies of order 102GeV the symmetry is broken a
second time,leaving U(3) as the residual symmetry group,so
we can use (iii) of Section 4.



2-THE HIGGS CHARCE

Let us assume that the gauge group G is a compact
Lie group and let V be a finite dimensional vectorspace
carrying a representation of G.The action of a g € 6 on a
vector v € V will be denoted by g-v.If the Higgs field @
transforms according to this representation,the usual con-
ditions on the asymptotic behaviour of 9 imply that & maps
§2,the 2-sphere at infinity,onto an orbit O=g.x, in V.This
orbit can be identified with G/H,where H Ia the stability
subgroup of the base point x, .

The standard homotopy exact sequence implies that
there ie an injective homomorphism

(2.1) 8:m;(G/H) -=> wy(H)

which 1‘i:aecomes an isomorphism if G is simply connected.® is
described as follows [13: denote Ui={x=(6,9)¢
S210<0<(n/2)+€) and Us={x=(8,p)€ S2i(n/2)~e<8<n) .Ul co-
vers S2 and UjnUj retracts to the equatorial circle sl.®:52-
->G/H lifts on U; according to

(2.2) P(x) = gj(x)-xp, X € Uj .
Let v denote g3~1(x)g2(x)!Sl.Then v maps St into H and
(2.3) o8[®] = [7].

1.) We study first [7].To do this we need to know u, (H)
in some more detail.Without loss of generality we aesume
that H is connected.

Let H denote a connected,compact Lie group, let
be its Lie algebra,and denote by Z(R) its centre . & is
decomposed as

(2.4) A =2(k) + [G&.L].

Let z : (--> 2({) be the projection map defined by the



decomposition (2.4).Let Hgg denote the subgroup of H whose
Lie algebra is [{,0]1.Hgg is closed (hence compact) and
semisimple.It is also a normal subgroup since [{,,] is an
ideal.Then H/Hgg iZ a compact,connected subgroup whose Lie
algebra is Z(R).But Z({) is Abelian,hence H/Hgg is a
torus.So 7w, (H/Hgg)> ZP where p is the dimension of Z(6).on
the other hand,Hgg is compact and semisimple,so 7, (Hgg) is a
finite Abelian group.

The exact sequence Hgg ~-> H ~-> H/Hgg gives the
short exact segquence of homotopy groups

0 --> my(Hgg) —-»>m(H) —-> w;(H/Hgg) -->» O

Since m,(H) is known to be Abelian and w,(H/Hgg) is
free,this sequence splits and n,(H) is the direct product

7y (H) o~ m,(Hgg) x m, (H/Hggy,

Let 7;(H)tor denote the normal subgroup of elements of
finite order.(2.2) shows that the inclusion map i: Hgg —> H
induces an isomorphiam ix : w;(Hgg) —> 7 (H)ror-and that
w3 (H) /7y (H)ror = ZP.What we have obtained is summarized in
the following

i

O] 1 N 2.
The first homotopy group of a compact,connected Lie
group is decomposed as

(2.5) wy(H) = 7y (Hgg) x ZP.
where p is the dimension of the centre of h.

The invariants we ehall introduce in the sequel
will be shown to depend only on the free part of m;(H).In
what follows we focus our attention on this free part.

The relation (2.5) states an abstract
isomorphiem.Let us analyze it in some more detail.
' Let us define first


http://semisimple.lt

(2.6) T =t e (Alexp 2m¢ = e }.

Let us fix a maximal torus Tc H with Lie algebra JY.Then
(2.7) r-=Fany

is a lattice in J called the unit lattice of H.We have

T=U grg—1.
geH

Observe that z(Adge) = z(¢) so that
(2.8) z(T) = z(r).

L.et ® = h™!dh denote the Maurer-Cartan l-form of
H.Then z © is a closed l1-form on H.Indeed,d® = -(1/2)[0A &1
by the structure eguations [7).But the right hand side here
is in [R,4] so it projects to 0 under z.Consequently d(z+8) =
z(de) = 0.

Congider now a loop ¥ in H and set
(2.9) p(Y) = 72— | z°® € Z(4)

F13

Since z ©® is closed, it is easy to show that p(7) depends only
on the homotopy class {v] € w;(H).(2.9) provides us hence
with a homomorphism p:w,(H) ~-> 2Z(().p plays a crucial role
in the sequel.
It is a known fact from Lie group theory that,for a compact
Lie group,any loop is homotopic to one of the form

(2.10) 7(t) = exp 2r7tf ,Octcl
for a suitable ¢ from the Lie algebra.To be a loop ¢ must
obviously belong to T.For such a loop By () (7" (L)) = 2m¢

and hence the integration in (2.9) is straightforward:

(2.11) o(lr]) = z(§).
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0. 1 N
(2.12) Ker p = w3 (H)gor-

Proof :That Imp is free is obvious since it is a subgroup of a
vectorspace.So & 7w;(H)tor Ker p.

If p({v]) = O,take a representative t ~-> exp awté of (v].0 =
p([v])= 2(¢) 80 ¢ is in [G,L] and hence exp 27té € Hgg 90 [7]

€ 7y (Hgg) = 7, (H)tor-

Thus p(w,(H)) is isomorphic to m,;(H/Hgg) the free
part of w,(H).

OPOSITION 2.3
(2.13)  p(my(H) = z(T).

Proof: If £ € T ,then v(t)=exp 2nt{ is a loop in H and
p(7) =z(§).Conversely,if [v] € m;(H),take a representative
loop t —->exp awté, ¢ ’I}' .But then Adge €T for some g € H and
p(l7]) = z(&) = 2(Adgé) € z(I').

Denote Ty = 'n 2(R).and let Z(H), be the connected
component of the centre of H which has Z((|) as its Lie

algebra.

S1T10] .
The exponential map sends awp(w,(H)) onto Z(H), Hgpg
with kernel I';.In other words,

wp
(2.14) Tz --> anp(m,(H)) ---> Z(H)gNHgg
is an exact sequence of Abelian groups.

Proof: if [»] € m(H),choose a representative ¥(t)=exp
27té, € € T .Then p(7)=z(¢),and so expawz(t) € Z(H),.But
exp 2nz(¢)=expam(z(§{)-¢) € Hgg,s0 exp maps awmp(w,(H)) into
Z(H)pn Hgg-

To see it is onto,take g € Z(H) n Hgg,g=expamEy=exp2n§,
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with £;, € 2(Q) /¢, € [G/R1.20 expan{§,-¢,;)=e and hence 7(t) =
expant(£g-£,) is a loop in H and p(7) = z(&g -£,) =&¢-
That T', = Ker exp 2wp(wi(H)) can now be easily shown.

2(H)y Hgg is a finite group,so p(m1(H)) is a lattice
of rank p in Z(A) which spans Z(AR).If ¢ is an arbitrary
element in p(7;(H)).then g = exp an{ has finite order,gM = e
for some integer M.But gM = exp 27M{ since { is in the

centre.So
(2.15) M, € Iz.
it is easy to prove the following

0! ON 2
If £ € A*,then \F1f is the differential of a
character of H if and only if
) £U4.8) =0
and
(ii) £(5) ¢ z.

Observe that (i) implies that £ is determined by its
restriction to Z(f) and is invariant under Ady so (ii) holds
ag soon as it holds on T.By proposition 2.3 this is

equivalent to f(p(m,(H)))c Z.
Consequently we have a one-to-one correspondence

between ﬁ,the set of characters of H,and the set of those
elements in Z(G)”* which take integral values on p(w,(H)).The
correspondence is given by

(2.16) dx/\¥1 = feoz.

One can show that this correspondence ias actually a group
homomorphism.

Proposition 2.3 allows us to find the image of p
without first finding w;(H) since the unit lattice in a
torus can be found directly and then projected into Z(f) by
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To calculate explicitly ,choose a maximal torue T in
H;let T be its unit lattice.Let us choose a Z-basis {,....{p
for z(T') and select then 7,,..,7p from I' mro that z(7x) =
{xrk=1l,..p.In this way we obtain the loops 7)x(t) = expamtny
in H which generate the free part of m;(H).

1f £1,..,fP ¢ &* vanish on (f;, ;] and satisfy

£3(Lk) = £I(m) = Oy,

then the conditions (1) and (ii) of Proposition 2.5 are
satisfied so there are characters Xy1r--eXp of H such that

dxkx = Fafk,
If x is any character of H,then

(2.17) dx/¥1 = L nytk
where the integers nj...,np are computed according to
(2.18) nx= ax(lyx)/\F1
and so
(2.19) x = x, K1 xpE-
Ed

If x is any character and ¥y any loop,then x«y is a
map 8! --» U(l) and has thus a degree my(¥) which is a
homotopy invariant,and so gives us a homomorphism my:m, (H)
-=> 2.If 9y(t) =~ exp anvg,& € I,then x{(7v(t)) = exp
awtdx (&) ,whose degree is dx(&)/N-1:_Hence
(2.20) m, ({71} = Ax(¢&)/\F1 =

dx(z(€)) /1 = dx(p([7]))/ 1

Using the definition (2.9) of p(y) this can be further
written as

EROPOSITION 2.6

”~
Bach character x ¢ H determines a homomorphism m, :
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73(H) -—>2

1 1 ax
(2.21) m (7)) = o7y dx(fye ) = ¢ nyi‘

If we let my = my, ,where the xi‘s are the basis of H we
constructed earlier,then we get the map

(2.22) (mp,..,mp) : @ (H) ~—>2ZP

which is surjective and whose kernel is the torsion part of

7,(H) .The integers m;({7]) depend obviously on the choice
of the Z-basis.Note that my(exp 2ﬂt£anJ)=nk,conaequently
p(l7]1) is simply

4
(2.23) p(lrl} = Y mye.{x.

[T
p(Lv]) is already independent of the choice of the basis
{x-

I1.) As complete as it seems,the theory given here above

is not very convenient in actual calculations,because the

construction of the map 8 is not explicit.Hence one should

desire an alternative description in terms of the Higgs

field ¢ itaelf.So we examine now w,(G/H) to some extent.
Let us introduce the centralizer of ( in § :

(2.24) Zg () = (¢ €§1l&.m1=0. ¥n e},
It is easy to see that relative to any invariant inner

product on 5 z (4) - [5,4] so we have a direct sum
decomposition

(2.25) A 25(C) + [§.4)

and a corresponding projection

(2.26) z' 2 § - zg(c).



e

Of course Z(() =G q Zy(0) and (2.25) is compatible with the
previous decomposition (2.4) of L .1n the adjoint repre-
sentation of H on B,H acts trivially on zﬁ(C),so z' is H~
invariant:

(2.27) z2'(Adp€) = 2'(¢) €& € ,h e H.

Thus the 2-form z'(de) ie H-invariant for the action of H on
G by the right translations as well as left translations by
C.Purther,if 'E’ is the left-invariant vectorfield on &
generated by §,then §4z'-de = z'(.c'g' ©) =0 if ¢ €l .80 2'de
descends to G/H to give an invariant 2-form.Thus we have
shown:

PROPOSITION 2.7

There is a G-invariant closed 2-form Nt with values
in zs( §) on G/H such that

(2.28) 7*q = z'(de)
where 7:6 ~-> §/H denotes the natural projection.

if ®:82 --> G/H is a smooth map,then by analogy with
(2.9) we set

(2.29) p' (@) = ;}'_ I o*n
52

which is a priori an element of Z,(C).we now see how it is
related to p(0(®]).Note that since N is closed p* (P) depends
only on the homotopy class of ® so gives a map

(2.30) p': Wy (G/H) —~> zs(r,).

BROPOSITION 2.8

(2.31) p'((@]) = p(0[®])) for all [®] € wy(G/H).



In particular,p' actually takes its values in Z(f).

Proof: This is proven by the analogous argument to Theorem
3.2 of our previous paper {l].Let us consider the lifts g;
of ® over U; introduced in (2.2).

% % * ®
2mp’ (P) = 1%m>o I g,” n + I g, 7ra -
— u U
2 1
® x
= 1imy, IU 9, 2'(0) + j; g, z'(e) =
2 1
* x
= [ g, 2@ - g;2°(0) -
st
® ® x
= | zag (-3) g, 0 + ve} - z'(g)0) =
1
S
= I z'(v. 0 )= I z'e .
= s.l k4
But on H @ is {-valued and z = z' on & .Thus the last

integral is just 27p(7).Thias proves the proposition.
We get hence the commutative diagram

pv
7, (G/H) > z5 6)

(2.32) lb 1
7 (W) P> z(

Since 8 is injective,the kernel of p' is the torsion
subgroup of w,(G/H) and the image of p' is z(T).

If we take a Z-basis (1...,cp for z(I') and extend to
a basis {,,-..{g of zs(a),then

1
(2.33) n =L ok ¢y
k=4

for closed, invariant 2-forms «wK on G/H.Then

1] k> p
(2.34) 55 [ o - {
o m (6[9]) 1<k <p
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Thus the forms wX on G/H for l<k¢p determine by integration
the free part of the Higgse charge [®) € 7, (G/H) of the Higgs
field &.

REMARK
If £%,..,f9 is the dual basis to C;:--ch then

(2.35) uk = fk(n).

It is easy to see that for k > p,fK(z'0) descends to
G/H to give a 1-form ak with wk = dak which explains why the
integral (2.29) only takes values in Z({).In fact zs(a)'
represents all closed invariant 2-forms on G/H,and those in
2, (L)* which vanish on Z((|) are the exact invariant 2-
forms.The qguotient space HZ(G/H;R) is thus 2(f)*.
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3.GENERALIZED INVARIANTS

In our previous paper we considered also some other
invariants which are generalizations of the “topolagical
charge® and also can be used to describe the electromagnetic
properties.

1. INVARJANT INTEGRALS

By an invariant function on § x(G/H) we shall
mean a function

(3.1} £: EJx (G/H) ~-> R
which is linear in the first variable and satisfies
£(Adge,g-x)=£(¢.%) & €§,x € 6/H .9 ¢ C.

Such an invariant function can be viewed alternatively as a
map

(3.2) £ 1 G/H ~-» &% L £(x), 6> = £(£,x)

which is equivariant for the coadjoint action on 5'.It5‘
image is then determined by £, = f(eH) = f(x,) € §" and

(3.3) £(gH) = g-f(eH) = g-f,.

Thus the image is (Ofo,the coadjoint orbit of fq-Note that
{(3.3) gives £ in terms of f, and tells us that in order to
define £ by (3.3) it is necessary and sufficient that H be
contained in the stabilizer of f£,.8ince H is connected this
is equivalent to the infinitesimal version

(3.4) <£o, [£,5)> = O

(2.25) tells us that £, is determined by its restriction to
zg(r\).'rhue zg(c.)‘ parametrizes the set of invariant
functions.
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It is clear that setting
(3.5) of « <y, 0

associates a closed invariant 2-form «f on G/H to each
invariant function £ in a one-to-one manner.

REMARK

If @ the Kostant-Kirillov-Souriau 2-form on the
coadjoint orbit of £, [17.18,19]),then it is easy to show
that of = £

Suppose that (A,®) is a Yang-Mills-Higgs pair satis-
fying the finite-energy condition D® = 0.The field strength
is given by the curvature F = dA + (1/2)[{AARA] of A.If f is
an invariant function,we can form a gauge-invariant 2-form
£(F,®) on $3.0n the other hand we can pull back wf by & to
give a second 2-form ®*wf. .We claim that their difference is
exact.This will allow us to evaluate the integral of f(F,?®)
in terms of p'([®]).

FPirst we translate the finite energy condition in
texms of the orbit G/H V.

PPROPOSITION 3.1
If we define the vector fields ? on C/H by

A d

egH - 3t n(exp tég)H £ € g .
then @ satisfies the finite energy condition (i.e. Dud® = 0)
if and only if for every tangent vector X on S2

N
(3.6) ®1X + (Ax(X))o(x) = O -

Proof :This follows at once from Dygd = X(®) + A(X)-® since
G/H ig sitting in the linear space V and in that case X(®) =
OxX.

BROPOZITION 3.2

If £ is an invariant function then



18

(3.7) d{f(A,@)} = £(F,@) + (1/2)L((ArA],®).

Proof: For ¢ € ;,x a tangent vector on S2,Proposition 3.1
gives
X(E(E. D) )=P2LX(£(E,°)) = -By(R)o(x)(£(E,-))=

== SE lo £(f.exp tA (X)-®(x)) =

4a
< T ac In f(hdexp-tnx(XJ £,0(x)) =

= £([A(X).£],®(x)).

Thus for vector fields X,Y¥ on 82,

X(L£(A(Y),®))= L(X(A(Y),®))+ £([A(X),A(Y)],®).

Then
dlf(A,®)}(X,Y)=Xf(A(Y),®)-YE(A(X),®)-£(A([X,Y]),®)=
= £(dA(X,Y),®)+2£([A(X),A(Y)] . ®)=
= £(F(X,Y),®) + £([A(X),A(Y)].®).

Since [AAA](X,Y)=2[A(X),A(Y)] this proves the pro-
position.

It remains to examine the term f([{A AA},P).We again
need the finite energy condition but this time we use the
following form.If we lift & by g over an open set U (see
2.2).This amounts to gauging @ to a constant.The trans-
formed potential

as= Adg-; A+ g'e

takes its values in A.Thus

£([AAA] . ®)=f (Adg—2[AsA],eH)=<£f,, [Adg—1A A Adg~1A]»>=
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=<fy, [(a-g"®) Ala-g0)]>
Sinca £, vanishes on [f,0].we have
£([A A).®) = g*"<f,.[0 O)s.

The structure eguation of the Maurer-Cartan form gives
then

£([AMA), D)= - 29" <f,,d0> = - g"cf,,2'dO>=
= - Zg'cf,,u'n> = - 2<f,,o‘n> -
= - 20%f1.
Combining this with Proposition 3.2 we obtain

IHEOREM 3.3
Por any invariant £ and any finite energy pair (A,®)

with ®:82 -~ G/H

(3.8) £(F,®) = A(f(A,3)) + ®"uf.

SOROLLARY 3.4 *
PFor any invariant function f the integral
(3.9) 8« [ gqr0
. sl

is a topological invariant which can be calculated as
(3.10)  I(E)a zmefy. u((®])> = anf(ua((®]).x,)

Proof :The integral of the exact term vanishes so

feeo = [o' =t . f 0% s = am £ ucton)>.
s? s? s?

But the integral of a closed 2~form is a homotopy inva-
riant,so0 (3.9) depends only on [®] € my(G/H).
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This statement can be reformulated in a number of
ways.For instance,by (2.31) and (2.23) we obtain

COROLLARY 3.5
L0 TN ([0]) =
ka1 0k My

(3.11) P P
a ’"kf‘f(ck’xo)'mi = ’"kglf("k'xo)'mk

Since f projscts to the centre.

This shows that the invariant integral formed from
the Higge- and the gauge field has as its values a linear
combination of the Higgs charges with the coefficients
given by the invariant function f and a suitable basis
€3r..clp Of the centre of [;[1.,24].

A1.) ELECTROMAGNETIC PROPERTIES

First the electromagnetic direction must be de-
fined.This can be done in a gauge-invariant way only by a
Higge field in the adjoint representation.Our Higgs field @
is however in some other representation in general.

The point is that,to any vector { ¢ Z({).we can
associate a new Higgs field in the adjoint
tepresentation.Indeed, let us conaider a local 1lift g(x) of
® (2.2),and let { € Z(4) be an arbitrary vector playing the
tole of a base point .Set

(3.12) ¥(x) = Adg(x)¢.

¥ (whose (-dependence has been omitted for simplicity) is

well~-defined since { is in the centre.It is also covariantly

constant if ® is so.This is seen in the gauge where ¢ is

constant noting that ¥(x)«{ now and that D¥ = [a,{] = O

because a is 4 ~-valued and ¢ is in the centre of & .Let

(*++) denote an arbitrary invariant inner product on 4.
Let us define the electromagnetic field
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(32.13) F o= (L/ey (F,¥/1%1)
and the electric charge operator by
(3.14) Qem = @y ¥/1¥1  ~=(eg/1L1)¥.

regspectively.As explained in (4] - see also [1l],Section § -
in order to have quantized electric charge { must generate a
U(1l) subgroup.There exists then a minimal U(l) generator
..e. one whose generated loop closes first at t= 1 parallel
to ¢{.Assume for simplicity that ( itself is minimal,i.e.a
generator for I'y.Theorem 5.2 of [1]) implies then

PROPOSITION 3.6
All electric charges are multiples of

e
—_a .

(3.15)  qp;p, = o

In order to calculate the magnetic charge let us
notice first that the orbit (in V) of x, projects to the
orbit (in 5 } of ¢;the projection is defined by

"((g'xn)) - Adgc
Observe that ¥(x) = 7;(®(x)).Let us define

(3.16) £0E.y) = (E,m(y)), €€ B,y e Oy .

f is an invariant function on l;xGxo,and it is also linear
in ¢.The magnetic charge is thus expressed as

(3.17) g = (1/4m) Is’ = (1/4me 1¢1) j;z(r,w) -

= (1/ame) [ £(F.0) .
g2

Here we recognize the generalized invariant I(£)_By cCo-
rollaxry 3.4 we get

THEOREM 3.7
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The magnetic charge is given by
9= 5P @, 5=
]

The electric -respectively magnetic charges satisfy
a generalized Dirac condition.Prop.3.6 and Theorem 3.7
imply in faect

PROPOSITION 3.8
(3.19) = (p'C[®]).8)
2q,in9 = (1]

The sitvation is particularly simple if Z(§{) is one
dimensional.Then w,;(H)frge & 2.Let 74(t) = exp 2mtn, be
the loop which generates tha free part,and let { denote the
(unigue up to sign) generator of r;.Then

P ' ([®1)=p(¥)=m.p(V4)=w.2(7y)

for some integsr m.
According to (3.18) the magnetic charge is now

g = (m/2e)(z(7).L/1L))

but z(¢) is @n the centre so z({) = M.{,where M ia the order
8£tpxp 2nz(n) € 2Z(H)gy n Hgg-So,using Proposition 3.8 we

PROPOSITION 3.9
(3.20) (1) p'([®)) ~ m¢/M ., m € Z;

(ii) the electric - respectively magnetic charges
are quantized,

(3.21) q = n.gpin ™ n.ep/1{!* n € 2Z;

(3.22) g = M.Gpjn = M. I{1/2e)M , m € 2 ;
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(iii) The generalized Dirac condition reada

(3.23) 20min9min = 1/M.

This agrees with the results known praviously [4.10,21].

E1N
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4.P 1C

The theory outlined in the preceeding sections
gives a conceptual framework valid for any compact Lie group
G and a Higgs field ® in any representation of G.Now we
congider some of the physically most important particular

cases.

IN NT
REPRESENTATION
The theory of Sections 2 and 3 is consistent with
the results - in [1].0bserve first that ¢ is now semismple so
the Killing form B is non-degenerate.lLet us choose our
maximal torus T so that T contains the base point £,.

The four sets of fundamental quantities introduced
in (1) are:the simple roots, a,;,..,ay;the fundamental
weights pg,,..,4r,and their duals §,,.., &y and 9;,..,%y
which satisfy (see [5),(6]),0r [1].Section 2.):

(4.1) @f(€4)=0iy; ki (B5)=045;
B(£5,05)=03503F1a;(ng )]

Those §j,'s for which aj, (&) 4 0 form a basis for
2(5).the centre of the Lie algebra of the stability group H
of §,.The unit lattice in turn is generated by (1 times)
the nj‘s.

The semisimple part of H is now simply con-
nected,n;(Hgg) = D so 7,(H) is free,m,(H) ZP where p is the
number of the indices ix defined above.

p defined in (2.9) is hence an isomorphiam between
m, and z(T),.the projection of the unit lattice to the centre

of .

PROBOZITION 4.1
The {x = z(\F174,)'s form a basis for Z(C).

Proof:The image under 2z of the <\ 174's generate the
centre.on the other hand z(\174) = O if i 4 iy.Indeed,the



decomposition (2.4) is orthogonal with respect to the
Killing form B;but by (4.1) B(éik,ﬂi) =0 if i # ix.80 \Fu;i
belongs to [{,().Those 1-forms dual to the \Fmik are just
the uik/Q:l's.Hence

(4.2) X (expam¢) = exp 2""'1]:“) & el.

is a character of H,and,by (2.21).,we have p Higgs charges
m,,..,mp.Accotding to (2.21),(2.22) :

ROPO: N _4 4
The Higgs charges are calculated as

(4-3) . mp = my (0" [®])/ V1.

Observe that a loop having my,..,m; as Higgs charges is
given by ’
7(t) = exp {2nF1t L meny, ).
tr

Indeed,its image under p is

P(Y) = V1 L mg.2(94,) = 3: mg.-Cx-

fu

But my = .u-ik(P('V))/‘l-:l-

The Higgs charges are expressed also as surface
integrals {1,2)}:by (2.33) we get in fact

(4.4) M((®D = . J-°*“’k
sz

where

(4.5) Wk = gy )/

which,by (4.1),reads also

fa, (0, )

i
(4.6) ¥ o - L._i._lk._ -B(g; )
2\F1 k

The 2-form B(£j,,N) is seen to be Jjust w(€ix) of [1].



The generalized invariant (3.9) reads in turn,according
to (3.10) and (3.11),simply

1(£) = E(z(271 P MRy €g)) =
%

(4.7) = a7~N-1 L £(njy06q) Mg =
"]

=ar L E(Cikveo)-mk
¢
v

c.£.{1] Theorem 3.5 .

Finally,let us study the electromagnetic proper-
ties.let (:,+) denote now the Killing form B on .According
to Section 2 any { € Z({) can be chosen to single out the
elecq;omagnetic direction.For example,if we choose { € Iy
to be z.tik (r > 0),the electric charge is given by (3.15)
while the magnetic charge becomes

1 —_—
g,= = B((2rNm2E m.m. )k, ) =
k Ineolcikl § Iy 1y

(4.8)

ZeTe. T |la, (™ ) :
)] lk lk aik

This is just the "partial charge" (5.18) of [1] !
Alternatively,we can chose { € I'; to be parallel to

£y .Expanding as ({ = F by £, we get
®
(6.9 g = grrgy— BPOVE Bby ) = £ by (e 1/1¢)g,.
"
as stated in [1],Theorem 5.4 .

Lii) H = U(1)

A second,even more simple case is when the resi-
dual symmetry group is H=U(l).We identify it obviously with
U(l)em of electromagnetism.
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Let ¢ € T, be the minimal generator of U(1).0[®] is
represented by the loop

7{t) = exp 2ntx{ , r € Z

So the Higgs charge is now r ¢ Z.The integration in (2.3) is
trivial,yielding

(4.10) P'(®) = p(v) = x¢.

Let us suppose that the Higgs field ® is covariantly
constant.The generalized invariant (3.9) becomes simply

(4.11) 1(€) = r.f(¢,L)

There is now no ambiguity in choosing the electro-
magnetic direction.The electric charge reada,by (3.15),

(4.12) 9min = €o/1&H,
while the magnetic charge is expressed,by (3.18),

(4.13) g = r.tfi1/2e,.

LY

Consequently

PROPOSITION 4.3
If the residual symmetry group is U(1l),the original

Dirac condition is satisfied :
(4.14) 20ping = r € Z .

(4.14) provides us also with the physical interpretation of
the integer r.It shows also that the mexre existence of
fractional charges and monopoles having one unit of Dirac
charge imply that the residual symmetry group can not be
simply U(l).In other terms non-electromagnetic interactions
must exist [4].

Interestingly,the integer r is expressed as a
surface integral.Indeed,by (2.34)



1 x
r= (.0 0) =
27 (L.8) ISZ

(4.15)

r = i I 0. w , where w = ).

Most present-day physicists believe that the exact
symmetzry group in nature should be that of strong-and
electromagnetic interactions:

(4.16) H'= SU(3)cxU(L)gp-

We argue here that this can be true only local-
ly.i.e.at the level of Lie algebras:

(4.17) {, = su(3) + u(L),
and it should be replaced rather by
(4.18) H = U(3).

Oour argument is based on the hypothesis that
particles with fractional electric charge (guarks) and
monopoles having 1 Dirac unit magnetic charge exist simul-
taneously,so that the quantization condition becomes

(4.19) 2qming *= m/3 , m e Z ,

rather then the original condition (4.14) of Dirac.

The statement follows from Prop.3.9.Indeed,for (4.16)
Z(H') N H'gg = (1} so M = 1 in (3.22) and the Dirac
condition reads 2gpindmin = 1-

For (4.18) instead M = 3 since now Z(H) and Hgg
intersect in 3 pointe,so the Dirac condition is (4.19) as
required.
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THEO! -

If particles with fractional electric charge and
monopoles with 1 Dirac unit magnetic charge are to coexist
in such a way that they satisfy (4.19),then the only
possibility to have su(3)xu(l) as local symmetry is by
having H=U(3) as exact symmetry group.

Note that this same conclusion can be obtained
alternatively from the study of to which multiplets the fer-
mions coupled to the theory belong [16].

In what follows we analyze the symmetry breaking to
U(3) in some more detail.

Let us represent H=U(3) by 3x3 antihermitian mat-
ricea.m, (U(3))~ 2 is generated by
(4.20) y(t) = exp 21rtﬂ°=ex927rt\l:1[001]
2({) is also 1l-dimensional;it is generated by
(4.21) ¢ =1 [111]
The projection z:u(3) -->Z(u(3)) reads :
(4.22) z(€) = Tr(€).{/3, €& € u(3).
where Tr is the trace operator on 3x3 matrices.
Congsequently
(4.23) (g = 2Z(ng)= (/3
is a 2-basis for z(r).Thus
(4.24) p'(®) =~ m.z(n0) = m.L/3

Let £ € [u(3))" be defined by

(4.28) f = Tr/\V1.
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£ is dual to 74 and takes integer values on I so it
integratees to a character x of U(3):

(4.26) x(g) = det g,
Obviously m = Trp'(®))/\1.

EROPOSITION 4.5
’ The Higgs charge m =[®] is expressed also as a
surface integral

(4.27) m= " w
S2
where
(4.28) o« TZgoy
1 '

n hq;e being the 2Z(u(3))-valued 2-form defined in (2.28).
The generalized invariant 1(f) becomes.by (3.10),

(4.29) I(E) <« 2umE(n.%g) = 2nmE(L.%g)/3

for any invariant function f on 5x{G/U(3)}.

The only choice for the electromagnetic direction is that
given by {,so

(4.30) dmin =~ €/3
where e = \3e,/2.The magnetic charge reads in turn
(4.31) g = m.9min * w/2e

So the generalized Dirac condition is (4.19) as expected.
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S5.THE SU(S) MONOPOLE

Let us consider the prototype CUT of Georgi and
Glashow [11] with gauge group G = SU(S5).

At energies of order 101% GeV the SU(5) symmetry is
broken by a Higgs field ® in the adjoint (24) repre-
sentation. (i) of Section 4 applies to this case.

Let us choose the base peoint [12,13]

(5.1) £, = vNEL - - i-ili_;/;
The residual symmetry group is

(5.2) H = S(U(3)x0U(2)]

with the Lie algebra

(5.3) G~ su(3)xsu(2)xu(l).

H mediates strong-weak-and electromagnetic interactions.
Z(R) = u({l) is generated by

EHS

(5.4) §3 = (Fi/s) diag(2,2,2:-3,-3)

Hgs = SU(3)xSU(2) is simply connected,so m,(H) = 2 is
generated by

(5.5) y(t) = exp amt~\F1m,,

where 7, = \Fidiag(0,0,1,-1,0).Under z 17, projects to

2.’2 ]
(5.6) - -
i -3
which generates z{I') according to proposition

4.1.Consequently

(5.7) pP'(D) = m.g
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The l1-form dual to (5.6) is
(5.8) £ = uy/NF2 = Try/ 1,

where Tra is the trace on the upper U(3) part.its expo-
nentiates to the character

(5.9) x(g) = det;(g)

(GQeterminant of the U(3) part).The Higgs charge m can be
recovered as m = u,(p'(@))/\Fﬁ. Plainly, my, generates a
loop whose Higgs charge is m.

The Higgs charge is calculated also as a surface

integral:

(5.10) m-—— [ o'
g2

where

(5.11)  w = ga(A)/\F1.

If £ is an invariant function,the integral inva-
riant I1(f) is calculated as

(5.12) I(f) = 2nm.£(L,60) = 20m.£(03,&q)

In particular,.the trace invariant appearing in the Bogo-
molny bound of the energy is

(5.13) I = smv.m

The base point is chosen sometimes to be rather

(5.14) € = v¥1 i-él&ts

17572-¢

where € is of order 10~'¢ [12].The residual symmetry group
becomes now
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(5.15) H'= S[U(3)xU(1)xU(1)]

It consiste of those matrices of the form

a A € U(3),

(5.16) a , a,ra, €u(l)

Ia: detA.ul.uz L
Its Lie algebra £ ' ie all

Aoy 1A € u(3)
£ = 1 all ¢ a.a € R

a

(5.17) 2 Tr A+ a+a =0

2(4') is 2-dimensional.lt is generated by §,; above and by
(5.18) §a =(\-1/5)diag(l,1,1,1,-4).

my(H') 22 1s hence generated by thosee loops in
(5.5) and by

(5.19) exp 27 \F1tn,,

where 7, = ~F1 diag(0,0,0,1,-1).There are now two Higgs
charges,m and m'.
The projection z: §'--> Z([') is expressed as

(5.20) z(¢) = ¥l atag( 2, TR TR 4, a0 ).
Hence for z(I') we get the generators

(5.21) ¢, = z(n;3) = 1 diag (3/3,1/3,1/3,~1,0)

and

(5.22) {2 = Z(ﬂ‘) = 1 diag (0,0,0,1,-2)

Those 1-forme dual read
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(5.23) £l = uy/NF1 = Try/NF1,
(5.24) €2 = po/NFL = Trg/NF1
They exponentiate to the characters
(5.25) Xk = detyx ,k = 3,4.
1f {v] >~ (m,m"'),then
(5.26) p(¥) = m.Ly, + M . [, =
= 1 diag (m/3,m/3,m/3,-m+am’',-m')
The Higgs charges are recovered as m ~ Try(p’(®))/1 and

m'= Tr,(p'(®))/N-1.Alternatively,they can also be calcu-
lated ;according to

L]

1 * 1 *
(5.27) m = 57 I ® w and m' = T3 I ® w' ,
2 s?

where © is the same as in (5.10)and w' is given by
(5.28) w'= Tr (M/F1.

If £ is an invariant function,the corresponding integral

reads
(5.29) 1(f) = ap{m.£((,,Ep) + M*.£(L2.Ep)) =
- zﬂfm-f(ﬂaren) + m'-f(”‘nen)] -

in particular,the trace invariant (topological charge)

becomes

(5.30) I = (5 -~ 2€)ryv.m + 2€mv.m’.

A815P b PINE et ARPEASRESONRe [dddarfe PAMY thHe 22ne"EP998R



At much lower energies (~ 0(102GeV) the symmetry is
broken at a second time by the vacuum expectation values of
a new Higgs field X in the (standard) fundamental repre-
sentation {§}.In order to apply our theory we have to
consider the two Higgs fields as a single one,say ¥ =
(®,x).¥ belongs to the representation {24+5}. Tf we
reguire that Du¥ = O,then the energy is finite.

The base point becomes now xg=(f4.Xp) where

(5.31) Xy = v.(0,0,0,0,1), (v~-0(102GeV)
Xy alone has SU(4) for stabilizer,so the unbroken

symmetry group for (5.17) becomes K = H SU(4) (respectively
H' SU(4)).Interestingly,in both cases we get

Al
(5.32) K = | (det Ay = i[U(3)].
et ALl
A € U(3).So
at+til
by | U _
(5.33) K « ifsu(3)xu(l)] = -3a|_| . aesu(3).aevIR
0

U(3) is,as explained in Section 4,the physically relevant
residual symmetry group:it propagates the electrostrong
interactions.(iii) of Section 4 applies now.m,(K) ~ Z is
generated by

o i
(5.34) exp 2ni{~\F1 l' 0 J)t = exp ZYI\FLt‘))a .
1

There is one Higgs charge.say m.Z(x) = 2(i(u{3))) =
1(Z(u(3))),where i denotes the inclusion map i:u(3) --> H
SU(S).2(¥) is generated by

1 1,
(5.35) ¢ = i{\"1 [11] } = 1 , 1‘30
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Hence,by (4.27), z(l) is generated by
(5.36) ¢, = z(i(V2 ["01})) = ¢/2
so now
The l-form dual to {, is
(5.37) £ = Pry/ i,

The Higgs charge is recovered as m = Tr,(p'(®))}/¥1.
Alternatively, it is also expressed as a surface

integral:
1 x*
(5.38) r =2 | 2? w
S
where
(5.39) w = Tr,(n)/Fi.

Observe that the Higgs charges of ¥ and of ® are the
same.

The generalized invariants are given by (4.29).It
can not,however,be used to calculate the lower bound of the
energy.

In order to discuss the electromagnetic properties
a new Higgs field has to be constructed using { as base
point,as indicated in Section 2.We do not construct it here
explicitly;it is sufficient to know that it does exist.

According to (iii) of Section 3,electric charge is
quantized (since { ¢ Ty) in units of

(5.40) dmin =~ €/3
where e =~ 459,/2.(Altetnatively,one can use (3.15) direc-

tly,.noting that ¢ = \F1(7,+27,4+37,) = 4£,-3¢,) The magnetic
charge becomes in turn

(5.41} g = m/ae
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(12,13,14],80 Dirac's condition reads now
(5.42) 2qming = m/3.
as required.
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