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ABSTRACT 
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Let us consider a gauge theory with a compact gauge 
group G and the Higgs field transforming according to an 
arbitrary representation of 6.The coupled Yang-Mills-Higgs 
equations admit monopole solutions (see [14] for a re­
view).Let us consider such a monopole given by the pair 
(Aj,»),and denote H the residual symmetry group left by the 
vacuum expectation value of *. 

In the theory of monopoles a fundamental role is 
played by the topological invariants 
[2,3,4,8,9,10,15,21].The most important of these invariants 
is 

(i) The Higgs charge [*] e * 2(G/H) defined by the 
asymptotic values of the Higgs field. 

(ii) If * belongs to the adjoint representation,we 
have an other topological invariant - the so-called topo­
logical charge -

(1.1) I - J Tr(F.«) 

where F is the gauge field strength.(1.1) appears for 
example in the expression given by Bogomolny ta?the lower 
bound of the energy.(1.1) has been generalized by Taubes 
[2].In [1] we made one further step and proved that,for any 
(n+1)- linear functions f on the integral 

(1.2) I ( f ) - f f<F,«, ,*) 
S n times 

is a topological invariant whenever 0^4-0. 
(iii) If the Higgs field generates a U(l) sub­

group, the projection of the Zang-Mills field on the » -
direction can be viewed as an electromagnetic 
field.The electric charge is then quantized [4].The mono-
pole's magnetic charge is expressed as an invariant 
Integral of the type (1.2),and the electric-and magnetic 
charges satisfy a generalized Dirac condition. 

I*:. The symmetry breaking mechanism by a Higgs field in 
: th* adjoint representation suffers however of a serious 



drawback:the residual symmetry group is in general not the 
one we would like to have in physics.For C - SU(N) for 
instance,the only possibility is [1] 

(1.3) H-S{U(i1)xU(i2-ii)x..xO(N-lp)}, 0<ii<..<ip<N. 

Most present-day physicists believe however that 
the exact symmetry group should be rather that of strong-
and electromagnetic interactions: 

(1.4) SU(3) cxO(l) e l n , 

It is clearly impossible to realize (1.5) by a Higgs field 
in the adjoint representation (except for G » SU(4)). 

On the other hand,in Grand Unified Theories [11] 
the symmetry is broken in several stages by Higgs fields 
which do not belong to the adjoint representation in 
general^ 

The aim of this paper is to extend the results of 
[1] to any compact gauge group and Higos field in any 
representation. 

First we describe ir1(H) in some detail.We show 
that,for any compact and connected H, 

(1.5) ir^H) - iTiCHga) x ZP 

where H 3 3 is the semis impie subgroup of H whose Lie algebra 
is [£,A] and p is the dimension of the centre of H.? 1(H S S) is 
a finite Abelian group. 

As it will be seen below,it is the free part of 
ffi(H) which plays a role in calculating the further 
topological invariants.We describe it in some more de­
tail.To do this consider,for any loop y in H , 

(1.6) piv) - — z ( f 6 ) e Z(t) , 
in v 

where z is the projection from £,the Lie algebra of H,to its 
centre Z(^),8 is the Haurer-Cartan form of H.(1.6) depends 
only on the homotopy class of v.We prove that p defines an 



(1-8) -kO-wWl 

isomorphism of the free part of ir1(H) onto z(r),the 
projection onto the centre of the unit lattice r of H. 

Our recipe for calulating p(y) is as follows: 
(i) choose a maximal torus T.find the unit lattice r 

(cf. [1]) .Project r to the centre of ft; 

(ii) choose a Z-basis Ci>--r<p of z(T) and select 
VifiVp in r such that z(7jfc)« Ck-

(iii) define f3 c £* by 

(1.7) f3('»Jc)-Ojk-

The fk'a are differentials of characters x^ of H and 

(iv) setting 

dx K 

2JT>F1 J X. 

we get an isomorphism between the free part and ZP,where p 
is the dimension of Z(£).p(?) is then found as 

-P 
(1.9) p(v) - E mk.<k-

Alternatively,denote by Z»(G) the centralizer of h in 
with projection z'rjî—> Z.(tj)> 

•3* 

(1.10) w*n - z'(de) 

gives a Z*(Q-valued 2-form n on G/H.Let us then define 

(1.11) p<(«) -_i_J »*n t Z5(C) 
s 2 

This is a homotopy invariant and it is not difficult 
to show that 

(1.12) p'(«) - p(0(*J) 

where A ia the injective homomorphiam from wa(G/H) to 
ir1(H) .Consequently 



(1.13) m^C*) - m^Ot*]) - J ** u K where CJ* « fk(0). 
S 2 

Let now f denote an arbitrary invariant function on fi xG/H 
which is linear in the first variable.He prove that 

(1.14) I ( f ) - J" f(F,«) 

S 2 

is a topological invariant (actually independent of the 
Yang-Mills field) and can be calculated as: 

(1.15) l(f) - f(p'(*),xa), 

where x 0 is a reference point in the orbit G/H with 
stabilizer H. 

There is an ambiguity in defining the electro­
magnetic properties:any C e Z(G) is admissible if it defines 
a U(l) subgroup (this latter condition is needed to have 
quantized electric charge [1,4]).If ( is chosen to satisfy 
these conditions,all electric charges will be,just as in 
the adjoint case,multiples of a minimal charge 

(1.16) q m i n - e0/ICI 

Let us choose an invariant inner product (-,-) on <j ,and 
define the electromagnetic field to be the (-component of 
F.The magnetic charge of the monopole turns out to be 

(1.17) g « ji- . 1*1*^1 

The electric-and magnetic charges satisfy hence a 
generalized Dirac condition: 

(1.18) 2 <J mi n3 - ~TT7ÎT" -

The situation iB particularly simple if Z(R) is 1-
dimensional.Then p'(») « C/M ,where ( is the minimal 
generator of Z(£) and M is an integer,which divides the 
order of the finite group Z(H)0/^Ha8 (the intersection of 
the connected component of the centre with the semisimpie 
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part). 
In this case both the electric-and magnetic charges 

are quantizedrthe Dirac condition reads [4,10,21] 

(1.19) 2qmin-gmin " VM . 

As examples,we consider the following particular cases: 
(i) The Higgs field IB in the adjoint 
representation.The previous results [1] are easily re­
covered. 
(ii) The case H-D(l) is even simpler.The electric-
respectively magnetic charges satisfy the original Dirac 
condition. 
(iii) If there exist,as conjectured,fractional electric 
charges and simultaneously monopoles having 1 Dirac unit 
magnetic charge,the residual symmetry group must be H » 
0(3),rather then SU(3)xU(1).(This conclusion can be ob­
tained also from the study of to which multiplets the 
fermions of the theory belong [16]).The Dirac condition is 
modified now to 

(1.20) 2q mi ng « m/3 .where m e Z. 

The SU(5) monopole [12,13] provides us with a nice 
application of our theory:at a mass scale of order 10*8GeV 
SU(5) is broken by the vacuum expectation value of a Higgs 
field in the adjoint representation,so (i) of Section 4 
applies.At energies of order 102GeV the symmetry is broken a 
second time,leaving U(3) as the residual symmetry group,so 
we can use (iii) of Section 4. 

• 
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2.THE «GCS CHARCE 

Let us assume that the gauge group S is a compact 
Lie group and let V be a finite dimensional vectorspace 
carrying a representation of G.The action of a g £ G on a 
vector v e V will be denoted by g-v.If the Higgs field » 
transforms according to this representation,the usual con­
ditions on the asymptotic behaviour of * imply that * maps 
S*,the 2-aphere at infinity,onto an orbit0-G-x„ in V.This 
orbit can be identified with G/H,where H :g the stability 
subgroup of the base point x D . 

The standard homotopy exact sequence implies that 
there is an injective homomorphism 

(2.1) 8:!r2(G/H) — > WitH) 

which becomes an isomorphism if G is simply connected.0 is 
described as follows [1]: denote Ui«{x»(6,#)e 
s2|0<8<(w/2)+e) and U2»{x=(e,*>) e S 2I (w/a )-e<6<ir) .UiuUj co­
vers S 2 and UinU2 retracts to the equatorial circle si.*:S 2-
->G/H lifts on Uj according to 

(2.2) *(x) - gi(x)-x„, x e Ui . 

Let y denote gi~i(x)g2(x)IS*.Then y maps Si into H and 

(2.3) 0[*] - [*]. 

I.) We study first [v].To do this we need to know ffj(H) 
in some more detail.Without loss of generality we assume 
that H is connected. 

Let H denote a connected,compact Lie group,let 
be its Lie algebra,and denote by Z(£) its centre . G is 
decomposed as 

(2.4) 6 - Z(A) + £«,/.]. 

Let z : C\—> Z(£) be the projection map defined by the 



decomposition (2.4).Let H s s denote the subgroup of H whose 
Lie algebra is [firG]-HBa is closed (hence compact) and 
semisimple.lt is also a normal subgroup since [Cfij is an 
ideal.Then H/H s s is a compact,connected subgroup whose Lie 
algebra is Z(£).But 2(£) is Abelian,hence H/H s a is a 
torus.So irx (H/HS3)ft ZP where p is the dimension of Z(£).On 
the other hand,H3S is compact and semisimple,so " 1(H a 3) is a 
finite Abelian group. 

The exact sequence H 3 S —> H —> H/H 3 S gives the 
short exact sequence of homotopy groups 

0 —> ^(Hgg) —>W 1(H) ~> ^(H/Hgg) — > 0 

Since iTx(H) is known to be Abelian and ir1(H/Hsg) is 
free,this sequence splits and n1(ti) is the direct product 

"i(H) cr WiCHgg) x JMH/Hsa). 

Let "i(H)tor denote the normal subgroup of elements of 
finite order.(2.2) shows that the inclusion map i: H s a —> H 
induces an isomorphism i* : WjCHgg) —> 7^ (H)tor »ar»d that 
w 1(H)/jr 1(H) t o r = ZP.What we have obtained is summarized in 
the following 

PROPOSITION 2.1 
The first homotopy group of a compact,connected Lie 

group is decomposed as 

(2.5) ir1(H) - JT1(H3a) x ZP. 

where p is the dimension of the centre of fi. 

The invariants we shall introduce in the sequel 
will be shown to depend only on the free part of 7r1(H).In 
what follows we focus our attention on this free part. 

The relation (2.S) states an abstract 
isomorphism.Let us analyze it in some more detail. 

Let us define first 

http://semisimple.lt


(2 .6) r - ( { « Glexp mi - e } . 

Let us f i x a maximal torus TcH with Lie algebra XThen 

(2.7) r = ? n T 

is a lattice in T called the unit lattice of H.We have 

? - U grg-i. 
geH 

Observe that z(Ad„{) = z(f) so that 

(2.8) z{T) = z(D. 

Let 9 «= h - 1dh denote the Maurer-Cartan 1-form of 
H.Then z 6 is a closed 1-form on H. Indeed, de = -(I/2)[8A8] 
by the structure equations (7).But the right hand side here 
is in [£,(] so it projects to 0 under z.Consequently d(z-ei = 
z(de) •= 0. 

Consider now a loop y in H and set 

(2.9) p(v) = _2_ f z.e e Z<<) 

Since z 9 is closed.it is easy to show that p(v) depends only 
on the homotopy class (?1 e ir1(H).(2.9) provides us hence 
with a homomorphism prWjfH) — > 2(C).p plays a crucial role 
in the sequel. 
It is a known fact from Lie group theory that,for a compact 
Lie group,any loop is homotopic to one of the form 

(2.10) y(t) - exp 2irt{ ,0<t<l 

for a suitable 4 from the Lie algebra.To be a loop ( must 
obviously belong to r.For such a loop 8V(t) (V (t)) - 27r{ 
and hence the integration in (2.9) is straightforward: 

(2.11) P([r]) - z « ) . 

http://closed.it


PROPOSITION 2 . 2 

( 2 . 1 2 ) Ker p - JMHJtor -

Proof : That Imp is free is obvious since it is a subgroup of a 
vector apace. So C w1(H)t.or Ker p. 

If p([7]) " Ortake a representative t —> exp 2wt£ of [7] .0 -
p([r])- z(£) so 4 is in [£,£] and hence exp iirti e H a a so [7] 
e "iCHag) - f 1(H) t o r. 

Thus p(.TJi<.H)) is isomorphic to >r1(H/Hag) ,the free 
part of ̂ (H). 

PROPOSITION 2.3 

(2.13) P C Ï ^ H ) ) - z(D. 

Proof: If ( e r «then 7(t)=exp 2»t{ is a loop in H and 
p(v) -z(f).Conversely,if [7] e ̂ (HKtake a representative 
loop t —>exp 2j7t€,{e r .But then Adgf e r for some g e H and 
PUT]) - z(«) - 2(Adg£) E z(r). 

Denote r z - roZ(^)rand let Z(H)„ be the connected 
component of the centre of H which has Z(d) a s its Lie 
algebra. 

PROPOSITION 2.4 

The exponential map sends airpCir̂ CH)) onto Z(H) 0 H s 8 

with kernel I"z.In other words, 

(2.14) Tz — > 2»rp(l71(H)) — > Z(H) 0nH„ 

is an exact sequence of Abelian groups. 

Proof : i f [ 7 ] e ff1(H),choose a r e p r e s e n t a t i v e 7 ( t ) - e x p 

27rtf,£ e r .Then P ( 7 ) » z ( { ) , and s o expiirzd) e Z ( H ) 0 . B u t 

exp 2wz(f ) » e x p 2 i r ( z ( { ) - { ) e H s s , s o exp maps 2irp(ir 1 (H)) i n t o 

Z(H) D«-> H 3 B . 

To s e e i t i s o n t o , t a k e g E Z(H)„o H 8 S , g » e x p 2 W £ 0 " e x p ï i r 4 1 
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with {„ e Z(G).*i e [fi,G],so exp2ir{(0-(1)~e and hence v(t) -

exp2irt({0-£1) is a loop in H and p(v) - z(4 0 -f l) -f 0. 

That r z » Ker exp 27rp(iri(H)) can now be easily shown. 

Z(H) 0 Hg 3 is a finite group,so p(iri(H)) is a lattice 

of rank p in Z(<\) which spans Z(£).If { is an arbitrary 

element in P(TT 1(H)) , then g « exp aw£ has finite order, g
M - e 

for some integer H.But g M * exp IJTMC since ( is in the 

centre.So 

(2.15) M« c T z. 

It is easy to prove the following 

PROPOSITION 2.5 

If f E £*,then >Fif is the differential of a 

character of H if and only if 

' (i) f([«,1]) = 0 

and 

(ii) f(?) C Z. 

Observe that (i) implies that f is determined by its 

restriction to Z(£) and is invariant under Ad H SO (ii) holds 

as soon as it holds on P.By proposition 2.3 this is 

equivalent to f (p(i71(H) ) ) C Z. 

Consequently we have a one-to-one correspondence 

between H,the Bet of characters of H,and the set of those 

elements in Z(&)* which take integral values on p(Wj(H) ) .The 

correspondence is given by 

(2.16) dx/>Fi - f«z. 

One can show that this correspondence is actually a group 

homomorphism. 

Proposition 2.3 allows us to find the image of p 

without first finding irl(H) since the unit lattice in a 

torus can be found directly and then projected into Z(Ç) by 

z. 



li. 

To calculate explicitly ,choose a maximal torus T in 
H;let r be its unit lattice.Let us choose a Z-basis Ci/>->(p 
for z(T) and select then Tix,..,T>p from r so that z(Tjfc) «= 
{jtfk̂ l,. .p. In this way we obtain the loops VfcCt) •= exp2Pti))c 
in H which generate the free part of JT X(H). 

tf f 1, ..,fP e ( ' vanish on (£,Q and satisfy 

«<«k) * ^(ik) - °jk' 

then the conditions (i) and (ii) of Proposition 2.S are 
satisfied so there are characters x l r..,x p of H such that 
dXk " >F»fk. 

If X is any character of H.then 

(2.17) dx/>Fi - E n kf* 

where the integers ni,..,np are computed according to 

(2.18) n k- dx(Cfc>/>Fï 

and so 

(2.19) x - xa

kl.-.Xp,cP-

If x is any charactei and y any loop,then x*y is a 
map S 1 —> U(l) and has thus a degree mx(>) which is a 
homotopy invariant,and so gives us a homomorphism mx:)?1(H) 
— > 2.If V(t) - exp 2irt{,f « r,then x(y(t)) - exp 
2irtdx(£),whose degree is dx(f)/>Fi-Hence 

(2.20) mx([-yl) - dx(«)/>R -

dx(z(«))/>Fi - dx(p([r]))/\Fi 

Using the definition (2.9) of p(v) this can be further 
written as 

PROPOSITION 2.6 
Each character x e H determines a homomorphiam mx' : 
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" l (H) -->Z 

(2 . 2 1 ) V [ 1 ')) 1 
•1 dx(f 6 

V 
) 1 

2JT-4-1 u dx 
X 

If we let mjc = mx.,where the Xk's are the basis of H we 

constructed earlier,then we get the map 

(2.22) (mi,..,Dp) : w^H) —>ZP 

which is surjective and whose kernel is the torsion part of 

7T1(H).The integers mjCCv]) depend obviously on the choice 

of the Z-basis.Note that m]ï(exp 2wtCnjUj)«n]c,consequently 

Ptlv]) i3 simply 

P 
(2.23) p([y]) - E m k.c k. 

i t . i 

p([v]) is already independent of the choice of the basis 

«k-

II.) As complete as it seems,the theory given here above 
is not very convenient in actual calculâtions,because the 
construction of the map 0 is not explicit.Hence one should 
desire an alternative description in terms of the Higga 
field * itself.So we examine now n2(G/H) to some extent. 

Let us introduce the centralizer of C in 5 : 

(2.24) Zç(l) - it e$ l[4,i?]«0, Vv eC,}. 

It is easy to see that relative to any invariant inner 
product on § ,Z.(^) - [^,£] so we have a direct sum 

decomposition 

(2.25) Ç - ZE<G> + C^'AJ 

and a corresponding projection 

(2.26) z' : J —> Z (£)• 



Of course Z(C) - G i\ Z»(G) and (2.25) is compatible with the 
previous decomposition (2.4) of £.In the adjoint repre­
sentation of H on R,H acts trivially on Z„(£),so z" is H-
invar iant: 

(2.27) z'(AdnO - z'(«) « e ,h e H. 

Thus the 2-form z' (de) is H-invar iant for the action of H on 
G by the right translations ao well as left translations by 
G.Further,if ( is the left-invariant vectorfield on G 
generated by {.then (*-iz'>dâ « z*(jCje) « 0 if i e£,so z'de 
descends to G/H to give an invariant 2-form.Thus we have 
shown: 

rsorpgmpw 3-7 
There is a G-invariant closed 2-form n with values 

in Z»(A) on G/H such that 

(2.28) Jt*Ci ' z'(d6) 

where ir:G —> G/H denotes the natural projection. 

If *:S 2 —> G/H is a smooth map,then by analogy with 

(2.9) we set 

(2.29) p'(*) - ~ J **n 

which is a priori an element of Z»(Ç).We now see how it is 
related to p(0[*])-Note that, since fl is closed p' (*) depends 
only on the homotopy class of * so gives a map 

(2.30) p': w,(G/H) —> Z.(C,). 

PWPP9ITIP" ?,T8 

(2.31) p'([*]) - p(0[«])) for all t*] « w2«*/H). 



In particulars * actually takes its values in Z(£). 

Proof: This is proven by the analogous argument to Theorem 
3.2 of our previous paper [lJ.Let us consider the lifts gj 
of « over Ui introduced in (2.2). 

2wp'(*) - ljm. f g n n * f g n n 
2 1 

- J g* z«(6) - g*z«(e) -

s l 

- J z'tAay(-i) g| e + 7*6} - z'(g*e) -
s l 

- J z"(i»* e )« J z'e . 
y s 1 "" 

But on H e is £-valued and z « z' on £ .Thus the last 
integral is just 2irp[v].This proves the proposition. 

We get hence the commutative diagram 

w2(G/H) ^—> Zg(G) 

(2.32) jo J 
Wj(H) £ > Z(Ç) 

Since 0 is injective,the kernel of p' is the torsion 
subgroup of w2(G/H) and the image of p' is z(T). 

If we take a Z-basis (},..,Cp for z(r) and extend to 

a basis Ci,-.»Cq of 2^(£),then 

4 . 
(2.33) Jl - E « k «k-

k'« 

for closed,invariant 2-forms u k on G/H.Then 

(2.34) -£ J ^ V - J 0 k > p 

mJc(0[*]) l <k < p 
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Thus the forms w k on G/H for l<fc<p determine by integration 
the free part of the Higga charge (•] « "2(G/H) of the Higgs 
field ». 

REMARK 
If fi,..,f3 is the dual basis to d,..,Cq then 

(2.3S) «jk - fk(n). 

It is easy to see that for k > p,f*(z'e) descends to 
G/H to give a 1-form cfc with ui* - da* which explains why the 
integral (2.29) only takes values in Z(£).In fact Z^(fi)* 
represents all closed invariant 2-forms on G/H,and those in 
Zh(&)* which vanish on Z(G) are the exact invariant 2-
forma.The quotient space H2(G/H;R) is thus 2(0*-
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3.GENERALIZED INVARIANTS 

In our previous paper we considered also some other 
invariants which are generalizations of the "topological 
charge" and also can be used to describe the electromagnetic 
properties. 

I. INVARIANT INTEGRALS 

By an invariant function on ^ x(G/H) we shall 
mean a function 

(3.1) f: £ x (G/H) —> R 

which is linear in the first variable and satisfies 

f(Adg«,g-x)=f(t,x) , t e ?,x e G/H ,g e 0. 

Such an invariant function can be viewed alternatively as a 
map 

(3.2) f : G/H — > §.* ,<f(x),£> - f(f,x) 

which is equivariant for the coadjoint action on 4*.Its 
image is then determined by f 0 « f(eH) • f(x0) c fc* and 

(3.3) f(gH) - g-f(eH) - g.f0. 

Thus the image is G>fo,the coadjoint orbit of fg.Note that 
(3.3) gives f in terms of f 0 and tells us that in order to 
define f by (3.3) it is necessary and sufficient that H be 
contained in the stabilizer of f0.Since H is connected this 
is equivalent to the infinitesimal version 

(3.4) <f0r[f^l> - 0 

(2.25) telle us that f„ is determined by its restriction to 
Zto(£).Thue Z»(&)* parametrizes the set of invariant 
functions. 
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It is clear that setting 

(3 .5) u f - <f 0 ,n> 

associates a closed invariant 2-form <Jf on G/H to each 
invariant function f in a one-to-one manner. 

Pg»CffiK 
If S" the Kostant-Kirillov-Souriau 2-form on the 

coadjoint orbit of f 0 [17,18,19],then it is easy to show 
that u £ - f *ST. 

Suppose that (A,*) is a Yang-Mills-Higgs pair satis­
fying the finite-energy condition D* - O.The field strength 
is given by the curvature F » dA + (x/a) [AAA] of A. If f is 
an invariant function,we can form a gauge-invariant 2-form 
f(F,«) on S2.0n the other hand we can pull back <Jf by * to 
give a second 2-form **cjf. .We claim that their difference is 
exact.This will allow us to evaluate the integral of f (F,*) 
in terms of p'([»]). 

First we translate the finite energy condition in 
terms of the orbit G/H V. 

pPftQPpsmPP ST! 
If we define the vector fields C on G/H by 

«gH ' aElo< e xe t«9> H ,« c § . 
then * satisfies the finite energy condition (i.e. DjtA - 0) 
if and only if for every tangent vector X on S 2 

(3.6) **X + (AX(X))»(X) - 0 . 

Proof:This follows at once from Dx* * X(*) + A(X)•» since 
G/H is sitting in the linear space V and in that case X(<t>) -
»*X. 

PROPOSITION 3.2 
If f is an invariant function then 
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(3.7) d{f(A,«)} - f(F,«) + (l/2)f([A*A],«). 

Proof: Por t e t,Z a tangent vector on S2,Proposition 3.1 
gives 

X(f(«,*))-»*X(f(«,-)) - -AxW*(x)<f(«'-))-

" ~ 3€ lo f<*'e*P tAx(X)-*(xj) -

• * 3C I. f< A dexp-tA x(X) «••<*» " 
- f(fA(X),«],*(x)). 

Thus for vector fields X,Y on S 2, 

X(f(A(Y),*))- f(X(A(Y)f*))f f([A(X),A(Y)],*). 

Then 

d[f(A,*)J(X,Y)«Xf(A(Y),*)-Yf(A(X),*)-f(A([X,Y]).*)= 

- f(dA(X,Y),*)+2f([A(X),A(Y)),#)-

- f<F(X,Y),4>) + f(£A(X),A(Y)],*). 

Since [AAA](X,Y)«2[A(X),A(Y)I this proves the pro­
position. 

It remains to examine the term f((A/\A),*).We again 
need the finite energy condition but this time we use the 
following form. If we lift * by g over an open set U (see 
2.2).This amounts to gauging * to a constant.The trans­
formed potential 

a » Adg i A + g*6 

takes i t s values in A.Thus 

f ([AAA],«)-f (Adg - 1[A/iAJ,eH)-<f 0 f [Adg~1A/»Adg-iA]>-
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-<f0't(a-g*e)*(a-g*e)]> 

Since f 0 vanishes on [fi,C].we have 

f([A A],») - g*<f0r[e ei>-

The structure equation of the Haurer-Cartan form gives 
then 

f([A*A],*)« - 2g*<f0,de> - - g*<f0rz,d6>» 

- - 2g*<f0,w*n> «= - 2<f0,**n> -

- - 2**w£. 

Combining this with Proposition 3.2 we obtain 

For any invariant f and any finite energy pair (A,4>) 
with »:S« —> G/H 

(3.8) f(F,«) - d(f(A,*)) + •*«*. 

CTRCWOT 3.4 •* 
For any invariant function f the integral 

(3.9) I ( , ) - J f(P,«) 
S2 

is a topological Invariant which can be calculated as 

(3.10) 1(f)- 2»<f„.#((«])> - J«rf(*((*]),x0) 

Proof:The integral of the exact term vanishes so 

f f(F,*) - f •*«* - <f ,f **n » - aw <f0,<*(£*])>• 
S a S 2 S a 

But the integral of a closed 2-form is a homotopy inva­
riant, so (3.9) depends only on [*] e 7ra(G/H). 
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This statement can be reformulated in a number of 
ways.For instance,by (2.31) and (2.23) we obtain 

COROUARV 3.5 

I ( £ ) - 2» £ <f .{k> . 1IL( [*]) -

C 3 i l ) P P 
- an E f (tk.x0) .m̂  » m E f (lkr*0) -"^ 

Since f projacts to the centre. 

This shows that the invariant integral formed from 
the Higgs- and the gauge field haB as its values a linear 
combination of the Higgs charges with the coefficients 
given by the invariant function f and a suitable basis 
Ci-..,lp of the centre of ft[1,20]. 

11.1 ELECTROMAGNETIC PROPERTIES 

Pirst the electromagnetic direction must be de­
fined.This can be done in a gauge-invariant way only by a 
Higgs field in the adjoint représentâtion.Our Higgs field * 
is however in some other representation in general. 

The point is that,to any vector { e Z(fi),we can 
associate a new Higgs field in the adjoint 
representation.Indeed,let us consider a local lift g(x) of 

• (2.2) «and let C «2(C) be an arbitrary vector playing the 
role of a base point .Set 

(3.12) *(x) - Adg(x)C. 

* (whose C-dependence has been omitted for simplicity) is 
well-defined since C is in the centre. It is also covariantly 
constant if • is so.This is seen in the gauge where * is 
constant noting that *{*)«£ now and that D* - [a,(] - 0 
because a is £ -valued and C is in the centre of G .Let 
(•,•) denote an arbitrary invariant inner product on £. 

Let us define the electromagnetic field 
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(3.13) 'ï - (l/e0.> (*,*/'*!) 

and the electric charge operator by 

(3.14) Q e m « e 0 */!*! -(e0/l«l)*. 

respectively.As explained in [4] - see also [1],Section 5 -
in order to have quantized electric charge C must generate a 

11(1) subgroup.There exists then a minimal CI(1) generator 
-.e. one whose generated loop closes first at t= 1 parallel 
to (.Assume for simplicity that c itself is minimal,i.e.a 
generator for rz.Theorem 5.2 of [1] implies then 

PROPOSITION 3.6 

All electric charges are multiples of 

(3.15) a = JLo. . 
m l n ICI 
In order to calculate the magnetic charge let us 

notice first that the orbit (in V) of x 0 projects to the 
orbit (in Ê ) of (;the projection is defined by 

tfC<9'xo>) * A dgC • 

Observe that *(x) = i7̂ (»(x) ) .Let us define 

(3.16) f(«,y) •• (C,w{(y)), € e ̂  ,y e G X Q . 

f is an invariant function on ,and it is also linear 
in t-The magnetic charge is thus expressed as 

(3.17) g - (1/4*) J a - (l/4weoICD J" 2(F,*) -

(l/47re0) J" f(F,«) 
S 2 

Here we recognize the generalized invariant lO.By Co­
rollary 3.4 we get 

THEOREM 3.7 
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The magnetic charge is given by 

g-^.C P'C*), ^ 

The electric -respectively magnetic charges satisfy 
a generalized Dirac condition.Prop.3.6 and Theorem 3.7 
imply in fact 

PROPOSITION 3.8 

2 q m i n 9 " TCTTT 

The situation is particularly simple if Z(fi) is one 
dimensional.Then "i(H) f r e e £r 2.Let T„(t) = exp 2irtij, be 
the loop which generates the free part,and let { denote the 
(unique up to sign) generator of rz.Then 

p' ([*])»P(-y)-m.p(70)=.ii.z(T?0) 

for some integer m. 
According to (3.18) the magnetic charge is now 

g - (m/2e)(z(7)),C/ltl) 

but z(() is in the centre so z({) - H.C,where H is the order 
of. exp xnz(T)) e Z(H)„n H s 8. So, using Proposition 3.8 we 

PROPOSITION 3.9 

(3.20) (i) p'((«]) - mC/tt , m € Z; 

(il) the electric - respectively magnetic chargea 
axe quantized, 

(3.21) q - n.q m i n - n.e„/ICI- n e Z; 

(3.22) g - m.g m i n - m.l(l/2e0H , m c Z ; 
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(iii) The generalized Dirac condition reads 

(3.23) 2 g m i n q m i n •= 1/M. 

This agrees with the results known previously [4,10,21]. 
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4-PARTICULAR CASES 

The theory outlined in the preceeding sections 

gives a conceptual framework valid for any compact Lie group 

G and a Higgs field * in any representation of G.Now we 

consider some of the physically most important particular 

cases. 

m G COMPACT AMD SIMPLY CONNECTED.» IN THE ADJOINT 

REPRESENTATION 

The theory of Sections 2 and 3 is consistent with 

the results in [1].Observe first that G is now semismple so 

the Killing form B is non-degenerate.Let us choose our 

maximal torus T so that "3" contains the base point £„. 

The four sets of fundamental quantities introduced 

in [1] are:the simple roots, <*i,.. ,ar;the fundamental 

weights /tj,.. ,nT, and their duals (1,.., t z and tix,..,iiT 

which satisfy (see [5],[6],or [1],Section 2.): 

(4.1) <Ki(«;))«=0i3f ^i(l!j)=Oi-j; 

B(«i,iJj)-oi-j[a>F"!i(i»ai)] 

Those fij.'s for which oj. (f„) 4 0 form a basis for 

Z(£),the centre of the Lie algebra of the stability group H 

of („.The unit lattice in turn is generated by (\F"i times) 

the Tli's. 

The semis impie part of H is now simply con­

nected,ir1(Has) - 0 so T X(H) is free,ir1(H) ZP where p is the 

number of the indices ifc defined above. 

p defined in (2.9) is hence an isomorphism between 

nx and z(D,the projection of the unit lattice to the centre 

of . 

PROPOSITION 4.1 

The Ck - «(>FiiJik) '» form a basis for Z(Ç). 

Proof:The image under z of the >F«?i's generate the 

centre.On the other hand z(\F"»i.) - 0 if i -f i^. Indeed,the 



decomposition (2.4) is orthogonal with respect to the 
Killing form B;but by (4.1) B(f iy.rVi) - 0 if i / ik,so >F"?i 
belongs to [£,Ç].Those l-forms dual to the *f-iViy. are just 
the #ik/>Fi 's.Hence 

(4.2) xk(exp2>r{) - exp 2WMi kU) r« eC. 

is a character of H,and,by (2.21),we have p Higgs charges 
m l f.. ,mp.According to (2.21), (2.7.2) : 

PROPOS ITION 4.2 

The Higgs charges are calculated as 

(4.3) mjc ->ik(p't*])/>Fi. 

Observe that a loop having mi, . . ,nip as Higgs charges i s 
given by 

•)r(t) - exp {2B\Fit E m k u i k } . 
'V. 

Indeed)its image under p is 

p(y) - \Fi Z mjc.z(5ik) - E m K.C k. 

But m k - Mik(p(7))/>Fi. 

The Higgs charges are expressed also as surface 
integrals [1,2]:by (2.33) we get in fact 

(4.4) V f * » " é- • J * V 

where 

(4 .5) L>K - Mi k (n)/>Fi 

which,by (4 .1 ) , reads a l so 

(4.6) >Fi u 
1 2 ^ 1 . 

•B(«. ,n ) 

The 2-form B({j. ,n) is seen to be just w**1** of [1]. 



The generalized invariant (3.9) reads in turn,according 
to (3.10) and (3.11).simply 

1(f) - f(z(2ff>Fl E »k*ikr€o>) -

(4.7) - 2W>|-1 £ f (7Jik.£0)-mk 

- 2ir Z E({ i k,€ 0)-m k 

c.f.[l] Theorem 3.5 . 

Finally,let us study the electromagnetic proper­
ties.Let (•,•) denote now the Killing form B on .According 
to Section 2 any C e Z(£) can be chosen to single out the 
electromagnetic direction.For example,if we choose ( c r 0 

to be r.ti. (r > 0),the electric charge is given by (3.IB) 
while the magnetic charge becomes 

(4.8) 

^^^TtH 
This is just the "partial charge" (5.18) of [1] ! 

Alternatively,we can chose { e r z to be parallel to 
{„.Expanding as < - £ b k { i ] £ we get 

<4-9> s - 4Tnrr— B(pw,Ebk«ifc) - E V V ' " * * -
as stated in [1],Theorem 5.4 . 

f l i ) H - g f l ) 
A second,even more simple case i s when the r e s i ­

dual symmetry group i s H«U(l).We ident i fy i t obviously with 
0 ( 1 ) em of elect.1ron1a9net.i91n. 

http://elect.1ron1a9net.i91n


Let { € r z be the minimal generator of U(1).0[*] is 
represented by the loop 

•y(t) - exp 2irtrC , r e Z 

So the Higgs charge is now r e Z.The integration in (2.3) is 
tr ivial,yielding 

(4.10) p'(») - pCv) - rc. 

Let us suppose that the Higgs field * is covariantly 
constant.The generalized invariant (3.9) becomes simply 

(4.11) 1(f) - r.f(CC) . 

There is now no ambiguity in choosing the electro­
magnetic direction.The electric charge reads,by (3.15), 

(4.12) q r o i n - e0/ICI, 

while the magnetic charge is expressed,by (3.18), 

(4.13) g - r.(CI/2e0. 

Consequently 

PROPOSITION 4.3 
If the residual symmetry group is 11(1),the original 

Dirac condition is satisfied : 

(4.14) 2qraing - r « 2 . 

(4.14) provides us also with the physical interpretation of 
the integer r.lt shows also that the mere existence of 
fractional charges and monopoles having one unit of Dirac 
charge imply that the residual symmetry group can not be 
simply U(l) . In other terms non-electromagnetic interactions 
must exist [4]. 

Interestingly,the integer r is expressed as a 
surface integral.Indeed,by (2.34) 



( 4 . 1 5 ) 
1 f * 

r - — - — * u , where u - (C,n). 
. 2irl«l 2 J

S Z 

(Hi.) greakjnq fro tjf?) 
Most p resen t -day p h y s i c i s t s be l i eve t h a t the exac t 

synunetry group in na tu re should be t h a t of strong-and 
electromagnetic in terac t ions : 

(4.16) H'« SU(3) cxU(l) e m. 

We argue here that this can be true only local­
ly, i.e. at the level of Lie algebras: 

(4.17) Q - su(3) * u(l), 

and it should be replaced rather by 

(4.18) H - U(3). 

Our argument is based on the hypothesis that 
particles with fractional electric charge (quarks) and 
monopoles having 1 Dirac unit magnetic charge exist simul­
taneous ly, so that the quantization condition becomes 

(4.19) 2 q m i n g - m/3 , m € Z , 

rather then the original condition (4.14) of Dirac. 
The statement follows from Prop.3.9.Indeed,for (4.16) 

ZJH'jrvH'as - (1) so M - 1 in (3.22) and the Dirac 
condition reads 2 g m i n q m i n - 1. 

For (4.18) instead M « 3 since now z(H) and H 3 3 

intersect in 3 points,so the Dirac condition is (4.19) as 
required. 
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THEOREM 4.4 
If particles with fractional electric charge and 

monopoles with 1 Dirac unit magnetic charge are to coexist 
in such a way that they satisfy (4.19),then the only 
possibility to have su(3)xu(l) as local symmetry is by 
having H-0(3) as exact symmetry group. 

Note that this same conclusion can be obtained 
alternatively from the study of to which multiplets the fer­
mions coupled to the theory belong [16]. 

In what follows we analyze the symmetry breaking to 
0(3) in some more detail. 

Let us represent H«U(3) by 3x3 antihermitian mat-
ricea.7r1(U(3) )i Z is generated by 

(4.20) -y(t) - exp 27rti?0»exp2»rt>f:lpoj 

2(C) is also 1-dimensional;it is generated by 

(4.21) C - vFl p u 

The projection z:u(3) —>Z(u(3)) reads : 

(4.22) z(«) - Tr(e).{/3, f € u(3). 

where Tr is the trace operator on 3x3 matrices. 

Consequently 

(4.23) C0 ' 2(U 0)- «/3 

is a Z-basis for z(T).Thus 

(4.24) P'(*) - m.z(7)o) - m-t/3 

Let f e [u(3)J* be defined by 

(4.2S) f - Tr/>j="i-
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C is dual to T?„ and takes integer values on r so it 
integrates to a character x of U(3): 

(4.26) x(g) - det g. 

Obviously m • Trp'(*))/>Fi. 

PROPQgffîP» i,.<? 

The Higgs charge m «[•] is expressed also as a 

surface integral 

(4.27) m - -Jj- J ** u 
S 2 

where 

(4.28) . Tr Cfl) 

n here being the Z(u(3))-valued 2-form defined in (2.28). 

The generalized invariant l(£) becomes,by (3.10), 

(4.29) I<f) - 2ffmf(i7,x0) - 2irmf(<,x0)/3 

for any invariant function f on Jx{G/U(3)}. 

The only choice for the electromagnetic direction is that 

given by C,so 

(4.30) q r o i n - e/3 

where e - -v|3e„/2.The magnetic charge reads in turn 

(4.31) g - m.g m i n - m/2e 

So the generalized Dirac condition is (4.19) as expected. 
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5.THE Stim MONOPOLE 

Let us consider the prototype GUT of Georgi and 
Glashow [11] with gauge group G - S(J(5). 

At energies of order 10 1 S GeV the SU(5) symmetry is 
broken by a Higgs field » in the adjoint (2a.) repre­
sentation, (i) of Section 4 applies to this case. 

Let us choose the base point [12,13] 

(5.1) vM-1 ^ll 
-3/2. 3/2 

The residual symmetry group is 

(5.2) H - S[U(3)xO(2)] 

with the Lie algebra 

(5.3) Ç- su(3)xsu(2)xu(l). 

H mediates strong-weak-and electromagnetic interactions. 
Z(Ct) * u(l) i 8 generated by 

(5.4) ? 3 - (>R/s) diag(2,2,2;-3,-3) 

H 8 a - SD(3)xS(l(2) i s simply connected,so v t (H) •= 2 i s 
generated by 

(5 .5 ) 7 ( t ) - exp ai;t>Fii?3, 

where TJ3 • >F ld iag (0 ,0 ,1 , -1 ,0 ) .Under z >|-ii}3 projects t o 

(S .6) 
2 2 I 

1-3 
I - 3 

which generates z(T) according to proposition 
4.1.Consequently 

(5.7) p'(*) - m.C -
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The 1-form dual to (S.6) is 

(5.8) f - /t3/>Fi - Tr s/>R, 

where Trj is the trace on the upper 0(3) part. Its expo­
nentiates to the character 

(5.9) x(g) - det a(g) 

(determinant of the 0(3) part).The Higgs charge m can be 
recovered as m = fL3(p' (»))/>Fi. Plainly, imj3 generates a 
loop whose Higgs charge is m. 

The Higgs charge is calculated also as a surface 
integral: 

(5.10) m - —^~ J **w 
S 2 

where 

(5.11) u - ji3(n)/>Fi. 

If f is an invariant function,the integral inva­
riant l(f) is calculated as 

(5.12) l(f) - mm.f(C f€ 0) - iwm.f(ija,«„) 

In particular(the trace invariant appearing in the Bogo-
molny bound of the energy is 

(5.13) I • swu.m 

The baBO point is chosen sometimes to be rather 

(5.14) « q - v>Fi 

where £ is of order 1 0 - 1 * [12].The residual symmetry group 
becomes now 

^ll , T-322+ii 
I T-3/2-e 
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(5.15) H'- S[D(3)xU(l)xU(l)] 

It consiste of those matrices of the form 

(5.16) 
Tir 

A e U(3), 
a i ' a 2 c n ' 1 * 

detA.u.u « 
1 2 

Its Lie algebra C, ' is all 

>Fi 
(5.17) T~Ô-

N-iA c u(3) 

Tr A + a1+ a 2 » 0 

Z(£') is 2-dimensional.lt is generated by f3 above and by 

(5.18) f 4 -(>Fi/B)diag(l,1,1,1,-4). 

"i(H')orZ2 is hence generated by thosee loops in 
(5.5) and by 

(5-19) exp s»>Fitu4, 

where i»4 - -vpi diag(O,0,0,1,-1) .There are now two Higgs 
charges,m and m'. 

The projection z: £ ' — > Z(C/ ) iB expressed as 

(5.20) z(4) - >Fi diag( ?£*: , ï|* , I|* ,0^. <*2 ). 

Hence for z(T) we get the generators 

(5.21) <i - z(u3) - >Fi diag (1/3,1/2,1/3,-1,0) 
and 
(5.22) C 2 - z(7>*) - >Fi diag (0,0,0,1,-1) 

Those 1-forms dual read 

http://2-dimensional.lt
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(5.23) fi - «3/>Fi - Tr3/-sFi, 

(5.24) f* - *t«/̂ Fi - Tr 4/>R 

They exponentiate to the characters 

(5.25) Xk - detk ,k - 3,4. 

If lv] cs. (m,m'),then 

(5.26) p(v) - m.d + m'.Ca -

- -\Fi diag (m/a ,n>/3 ,m/3 ,-m+m',-m" ) 

The Higgs charges are recovered asn< Tr3 (p* (*))/\Fi and 
m'- Tr4(p'(*))/>Fi.Alternatively,they can also be calcu­
lated vaccording to 

(5.27) m - -i f **w and m' - i- f »*u' , 

where o is the same as in (5.10)and u' is given by 

(5 .28) u 1 - Tr 4(n)/>|=1-

If f i s an invariant funct ion, the corresponding integral 
reads 

(5.29) iCf) - aw{m.f ( d , î 0 ) + m*-f(C a ,e„)} -

- 2 J F { m . f ( i > s , « 0 ) + m ' . f ( i > t , £ Q ) ) -

In part i cu lar , the trace invariant ( topologica l charge) 
becomes 

(5.30) I • (s - ae)irv.m + acirv.m'. 

I M p U f f i » ¥ » * tSBPeÂSf gy°2! e Ut i«fc?SHÇ tVe t famVls^f 8h 
e-o . 



At much lower energies (~ O(10 26eV) the symmetry is 
broken at a second time by the vacuum expectation values of 
a new Higgs field x in the (standard) fundamental repre­
sentation {£}.In order to apply our theory we have to 
consider the two Higgs fields as a single one,say * -
(*,X).* belongs to the representation f24+51. Tf we 
require that Du* ~ O.then the energy is finite. 

The base point becomes now x 0>({ a,x 0) where 

(5.31) X0 - v.(0,0,0,0,1), (v-O(10*GeV) 

x 0 alone has SU(4) for stabilizer,so the unbroken 
symmetry group for (S.17) becomea K - H SU(4) (respectively 
H 1 SO(4)).Interestingly,in both cases we get 

A I 
(5.32) K -

A e 0(3).So 

(5.33) *C « i[su(3)xu(l)] 

(det_Al. 
I 1 

ar+Xl 

i[U(3)]. 

-3X , aesu(3),XeV-lR 

U(3) is,as explained in Section 4,the physically relevant 
residual symmetry group:it propagates the electrostrong 
interactions. ( iii) of Section 4 applies now.7rx (K) £-Z is 
generated by 

(S.34) exp 237i(-^i N }t » exp awvpiti» . 

There is one Higgs charge,say m.Z(X) - Z(i(u(3))) -
i(Z(u(3))),where i denotes the inclusion map i:u(3) — > H 
SU(5).Z0O is generated by 

(5.35) C - i{>Fl M y - > P I -3, 



Hence,by (4.27), z(T) is generated by 

(5.36) < x - z(i(>Fi °°ib> " «/3 

so now 

The 1-form dual to Cx i s 

(5.37) f = Tr3/\Fi , 

The Higgs charge is recovered as m - Tr3(p' (*))/-\Fi. 
Alternatively,it is also expressed as a surface 

integral: 

(5.38) r - JL- J fu 

where 
(5.39) u ' Tr3(fl)/>Fx. 

Observe that the Higgs charges of * and of » are the 
same. 

The generalized invariants are given by (4.29).It 
can not,however,be used to calculate the lower bound of the 
energy. 

In order to discuss the electromagnetic properties 
a new Higgs field has to be constructed using C as base 
point,as indicated in Section 2.We do not construct it here 
explicitly;it is sufficient to know that it does exist. 

According to (iii) of Section 3,electric charge is 
quantized (since { e T0) in units of 

(5.40) q m t n - e/3 

where e - >|3eB/2. (Alternatively,one can use (3.15) direc­
tly,noting that C • >Fl(li+2i|2+3U3) - 4t3-3£4) The magnetic 
charge becomes in turn 

(5.41) g - m/ae 
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[12,13,14],so Dirac's condition reads now 

(5.42) 2q m i ng - m/3. 

as required. 
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