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Abstract.~ The approaches which have been tsed sa far to
calculate the equation of state of hat dense matter are
bricfly reviewed .

1. INTRODUCTION

One of the important ingredienks in the description of ste-
1lar collapse is the equation of state which gives the pressure
as a function of density and temperature. This relation is requi-
red up to about nuclear density and up to temperatures of about
ten MeV. Calculating the equation of state is a difficult problem
because it involves the determination of the equilibrium state of
a mixture of neutrons, protons, nuclei, electrons, neutrinos and
photons, with a negligible amount of positrons. The wain diffi-
culty is that one needs the properties of hot exotic nuclei
immersed into a nucleon vapor. In contrast, electron, neutrino
and photon contributions to the pressure can be treated simply
and accurately by using standard formuiae for non interacring
gasee.
The purpose of the present paper is to give a brief review
of some of thc approaches which have been develaped sa far to
work out the equation of state. This review is not claimed to be
exhaustive, It will in fact be mainly devoted to the Eigh density
region between 1012 g/em® and nuclear density 3 x 104 g/ea?,
where a microscopic treatment of nucleon—nuecleon interactioms is
desirable, Indeed, in this domain, the external nucleom gas
begins to modify the properties of nuclei, In principle one should
calculate the pressure as a function of both variables, density
and temperature, However, as was pointed out by Bethe, Browm,
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Applepgate and Lattimer (1), entropy and lepton fraction Yy are
nearl¥ cons: nt in scellar collapse beyond densities of the order
of 1012 /cm because of neutrino trapping. Entropy is about unxty
per baryon, while the lepton fraction ¥p = Y, + ¥,,, where Yv is the
number of neutrinos per baryom,is about O, 35 (2). The equation of
state is thus needed only along the adiabat $/A = 1, which reduces
significantly the amount of numerical work.

In the first attempts to derive an equation of state at high
density, the baryon contribution to the pressure was evaluated as
that of a mixture of Beltzmann gases of nucleons and nuclei in
statistical equilibrium. This approach is reviewed in the next
section and will be referred to as macroscopic since it incorpo-
rates nucleon-nucleon interactioms only through semiempirical
formulae for nuclear masses and level densities. It is valid as
long as mass formulae are expected to be reasonably accurate.
However when nuclei become hot, corrections to liquid drop para-
meters, in particular surface energy cocfficients, as well as
distorsions of nuclei by external nucleons should be included.

For this reason, various microscopic approaches have been deve-
loped. Among these, we will review in section 4-7 the bulk matter
approximation (3, 4), the compressible iiquid drop model (5, 6),
the Thomas~Fermi (7, 8) and Hartree-Fock (9, I0) approximations.
In section 8 a comparison between various approaches is given.

2. MACROSCOPIC APPROACH

This approach, suaitable up to 0% 10‘3 glcms, has been used
and developed by several authors, in particular Sato (11), Arnett
(12), Mazurek, Lattimer and Browm (13), and El Eid and Hillebrandt
(14). It describes hot dense matter as a statistical equilibrium
between nuclei with various neutron numbers N and proton numbers
2. If ue label by a single index i the pair (N, 2}, the number p,
of nuclei i per unit volume is given by L
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In this forimula 8 is the inverse temperature, m, the wass of the
nuclaus i, By its binding energy, usually taken'from the droplet
model of Hyers and Swiatecki (15). The quantity z; {B) is the
partition function of the nueleus i

Z;B) = L expl- B (B (i) - E (i) @
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uvhare E (i) is the energy of the n-th excited state of the nucleus
i. The quantxty LA in equation 1 is tha modified degeneracy para-
meter
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where i, and };, are the neutron and proton chemical potentials in
the external uniform gas and V, and V, the corresponding poten-
tials, which for a given nucleon-nucleon force, are known functions
of the meutron and proton demsitiesp_ and p,. In practice the
chemical potentials are adjusted iteratively in order to obtain
the desired values of the baryon densxty p and the proton or lepton
fraction Yy or Yo, The total pressure is calculated as the sum of
electron and nucleon gas contributions, and of the various contri-
butions p.kT arising from nuclei.

To evaluate the partition functions in equation 1 it is comve-
nient to use semiempirical formulae for the level densities p(E)
related to 2{8) by

z; (B) =f p(E) exp(~ BE) dE (O]

o

The simplest such formula in the one derived in the Fermi gas
model (16)
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where the level density parameter a is Anzlke with A = N + Z,
This formula has to be improved near the origin to avoid the
divergences it would produce in equation 4 (17), Also the value

of a needs to be refined in order to include surface effects .hich
are not taken into account in the Fermi gas model (26). At large
excitation equation 5 is expected to overestimate the level density
since it assumes an infinite number of equidistant single particle
levels while there are only a few resounances in the continuum of
the shell model potential, However the tesulting error has been
found to be still small up to temperatures of 10 MeV, both ip
semiclassical (18) and Hartree~Fock calculations (19).

3. INGREDIENTS OF MICROSCOPIC METHODS

When density is higher than about 1013 g/cm3 it becomes nece-
ssary to treat in the same way the nucleons inside nuclei and
nucleons in the vapor, i.e. to use a microscopic description based
on nucleon-nucleon interactions. In spite of their great variety



microscopic methods almost always use the same two ingredients
nazely Skyrme forces and the Wigner Seitz approximation. Skyrme-
type density-dependent effective forces (20) have the great advan-
tage to lead to nuclear Hartree-Fock equations which have a simple
structure and which give an excellent description of many nuclear
properties such as radii, binding energies, ground state deforma-
tions, fission barriers, and giant regonances (21)}. The most
recent such forces are the modified SKM force of Bartel et al (2])
and the forces manufactured by the Brussel group (22).

The Wigner-Seitz approximation (23) is quite appropriate to
calculate the free znergy in the high density region because in
this case the nuclei ave expected to be arranged into a lattice.
In this approximation one divides the lattice up inte unit Wigner~
Seitz cells with one -wcleus at the center of the cell. One
neglects interactlons between cells and one uses Wigner—Seitz
boundary conditioms (23) within a cell. In Hartree-Fock calcu-—
lations this means that single nucleon wave function should
vanish or have zero derivatives at the cell edge. A further
simplification is to assume the cells to be spherical, which is
legitimate as long as the density at the cell edge in sufficiently
low or uniform., Notice that when using the Wigner-Seitz approxi-
mation one assumes implicitely that there is only one kind of
nucleus present in hot dense matter, while in Boltzmann gas
approaches it was possible to have mixtures of different nuclei.
This limitation is however not very important and has been showm
to lead to negligible errors (6, 9). In order to be accurate, the
Wigner-Seitz approximation requires that nuclei should So m a
lattice. This is the case if the plaswa paramater I = 2%e“/(RKT)
is larger tham 155 (24) , where 2 is the nucleus charge, R the
cell radius, and T the temperature. This condition is usuvally well
satisfied at demsities greater than 3 x 1013 g/cme3 (9). Below this
value it is necessary to include correction terms such as those
derived by Hansen (24). Up to now the only calculations that go
beyond the Wigner-Seitz apvproximation are those of the Munich
group (10), who use the augmented plane wave method. This method
requires the use of single-nucleon wave functioms without spheri-

cal symmetry.

4. THE BULK MATTER APPROXIMATION (3, &)

The simplest microscopic way to calculate the equation of
state is the bulk matter approximation, which describes the
nucleus as a piece of homogeneous nuclear matter, in thermal
equilibrium with an external uniform nucleon gas. If we denote
by u the fraction of the cell volume V occupied by the nucleus,
and By £(p,, p_, T) the free energy demsity of nuclear matter,
calculated e.g. “from a Skyrme force, the free energy of the cell
is given by
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where p_, p_ and p_, P, are the nestron and protan densities in
the nucleusPand thd vapor respectively. Note that F/V in equation
6 is independent of V because surface and Coulomh effects have
not been included. Minimizing F/V with respect to the five para-
meters £y, Pps Pns Pp. u, with the two constraints that the total
density shoufd be equal to p and the proton fraction Z/A to Y ,
yields three equilibrium conditions. These conditions require
that the pressures P and P, and the neutron and proton chemical
potentials p,, #i, and My, ii; should be equal in the nucleus and
the vapor. These conditions are sufficiently simple to allow
caleulations of the equation of state over wide ranges of density,
temperature, and proton fraction. The bulk matter approximation
alsp has the advantage to provide a transparent picture which ig
usefnl to explore the coexistence of nuclei and vapor, and to
determine the transition temperature, corresponding to uv = 1,
beyond which nuelei become wmiform wuclear matter. However this
approximation neglects important effects such as surface and
Coulomb contriburions. For this reason Lamb, Lattimer, Pethick
and Ravenhall (LLPR), have developed a finite tewperature liquid
drop model, which includes a proper treatment of surface and
Coulomb effects, while maintaining a tractable amount of numerical
work.

5. THE COMPRESSIBLE LIQUID DROP MODEL (5, 6)

This model is a generalization of the liquid drop model of
Baym, Bethe and Pethick (25) to finite temperatures. As in the
previous section the Wigner~Seitz cell coatains in this model a
piece of homogenesus nuclear matter located at the center of the
cell, which describes the nucleus, and a low density external gas
between the nuclear radius R and the cell radius R.. However the
cell free energy F now includes surface and Coulomb terms. Explici-
tely

Faw Ho,p,D+O-wv (G, B, D
2
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where the notations u, p_, P_, P, P, are those of section 4.
The Coulomb term Foguq cafi bePrakdn f?om the work of Baym, Bethe,
Pethick (25), while the surface energy coefficient is most easily
evaluated from Thomas-Fermi calculations of semiinfinité nuclear



matter with various proton fractions at finite temperature (26).
In reference (26) it was found that the temperature dependence
of the surface free energy is well described at low T by the
approximate formula

O (pfpye T = T (pyfp, O) (1 - TH/1Y) ®)

where T_ is of the order of 12.5 MeV.

In"actual calculations the free energy given by equation 7
is corrected to include contributions from alpha particles and
from the tramslational motion of the nucleus. However these’
contributions are rather small and can be neglected to a first
approximation. Since the speciﬁic free energy F/V given by
equation 7 depends on the cell size due to surface and Coulomb
effects, there are now six variational parameters Dn- Pns Bps
Pps u and R and two constraints p and Y, i.e. four equilibrium
conditions. These conditions, given in regerence (6), are still
simple enough to allow systematic caleulations of the equation
of state, It ie in fact the main advantage of the compressible
liquid drop model to provide a good compromise between simplicity
and reliability. It indeed contains all the ingredients necessary
for a reasonable equation of state and still leads to simple
numerical calculations. The only point which may still need to
be improved is the temperature dependence of the surface energy
since it is determined from Thomas-Fermi calculations. Indeed
the Thomas~Fermi method does not give a very accurate description
of the nuclear surface. To conclude this section we would like to
mention that a simplified version of the model, using an incom-
pressible liquid drop, has been proposed recently by Bethe, Brown,
Cooperstein and Wilson (27).

6. THOMAS-FERMI CALCULATIONS (7, 8)

. In this approach the free energy of a Wigner-Seitz cell is
a functional of the neutron and proton density distributions p,(r}
and pp(r). It is given by

PRy (e 8,0 = fW(o, 1,5 T - 1L sV ()

where the index o labels neutron and proton densities. The energy
dens1ty I ie usually taken co be the Skyrme energy functional,
which is a polyngmial in the demsities p,, kinetic emergy den51:1es
Ty, and in (Vpy)“. For a glven value of the density py the kinetic
energy density Ty is glven, in lowest order Thomas-Fermi approxi-
mation by eliminating Yo in the relations (6)
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where F is the Fermi function. The entropy density is given by
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where y, is a function of p; via equation 10. To determine the
density profiles p,(r) and py(r) one has to winimize the free
energy F with respect to p,(r) and pp(r), with the constraint
that the total baryon density is equal to p and the proton
fraction to Y . Up to now Thomas-Fermi calculations were restric-
ted to Fermi-gype profiles for the distributions p,(r) and p,(r),
because of numerical instabilities. However, in has been possible
recently to perform fully variational calculations by using the
so—czalled imaginary time step method (28). The amount of numerical
work in Thomas-Fermi calculations is large since the number of
variational parameters is the number of mesh points necessary to
describe the distributions p,(r) and p,(r). Fortunately the imagi-
nary time method provides a very efficient way to carry out mini-
mizations., In practice the Thomas-Fermi method is very useful
when there are large changes in the densities, namely when nuclei
begin to overlap, leading to configurations, called bubble confi-
gurations (5), where the lattice is built up by holes or bubbles
rather than nuclei.

7. HARTREE-FOCK CALCULATIONS (9, 10)

The most detailed treatment of nucleon-nucleon interactions
is provided by the Hartree-Fock (or meamn field) approximation at
finite temperature, In this approximation the nucleons in the
Wigner~-Seitz cell are described by an independent particle density
matrix of the form

D= %exp (.z.:ui az a.) ) a2

1 1



where 2 is defined by Trace D = 1 and where the o.’S and the
single particle states |9, > = al[0> are variational parameters.
The matrix D describes bofh nucléus and vapor. The free erargy of
the Wigner-Seitz cell reads

F = Trace (HD) + KT Trace (DLogD) (13)

whare H is the nuclear hamiltenian, which is usually chosen to
be a Skyrme type hamiltonian. An explicit expression for F in
terms of the variational paramecters is casily obtained by means
of standard many body techniques., Minimizing the free energy F
with respeet to o3 leads to the condition that the occupation
number of the i-tﬁ orbit ny = Trace (Da, a3) = Lf(1 + exp(ai))
should be given by a Fermi distribution. The minimization with
respect to the single particle orbits ¢y leads to Hartree-Fock
type equations. After solving these equations one still has to
minimize the free energy with respect to the cell radiue R,
vwhich determines the optimal size of the clusters. The nucleon
contribution to the pressure is then calculated as the opposite
of the grand potential F -~ u,N - 4,2 divided by the cell volume
V. Such mean field calculations are difficult numerically because
they correspond to a very large number of variational parameters,
equal to the number of mesh points times the number of orbits.
They are however very useful as a reference. In particular it
would be worthwhile to use mean field results to extract the
temperature dependence of surface free energy coefficients,

8. DISCUSSION

In figure 1 we compare the equations of state obtained in
the bulk matter approximation by Pi, Marcos and Barranco (PMB)
(29), in the incompressible liquid drop model by Bethe, Browr,
Cooperstein and Wilson (BBCW) (27), in Thomas-Fermi calculations
by Marcos, Barranco and Buchler (MBB) (7), and in the Hartree-
Fock approximation by Bonche ard Vautherin (BV) (9). All these
curves correspond to a lepton fraction Yy = 0.35 and an entropy
equal to unity per baryon. The corresponding density domain is
from 0.02 to 0.07 or 0.08 nucleons Eer fm?, Nuclear matter demsity
is 0.17 nucleons/fm3 i.e. 2.45 x 1014 g/cmé. From figure ! it can
be noted that even though the bulk matter apprcximation neglects
surface effects it gives an equation of state similar to thoze
obtained from more sophisticated approaches. The only important
difference is that it gives a slightly higher value of the adia~
batic index Y = 3LogP/3Logp. all other approaches give very
similar values of y, near 1.295, i.e. somewhat smaller than
the value of 4/3 which would be vbtained from electrons only.
This general agreement seems to indicate that, contrary to the
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Figure 1,- Pressure as a function of density,
Plotted on a2 doubly logaritimic scale. The
results of the bulk matter approximation (PMB)
{29), are compared with these of Thomas-Fermi
(MBB) (7), Hartree-Fock (BV) (§) and incom=
pressible liquid drop model caleculations (BBCW)
27).
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situation a few years ago only, there is now no major uncertainty
remaining in the determination of the equation of state at
subnuclear density. It should be remembered however that all
calculations use Skyrme forces which give a rather low density

of single particle states near the Fermi levels. It would be
worthwhile to perform calculations with forces giving befter
level densities, such as those built by Campi and Stringari (30).
Also all calculations assume temperature independent effective
nucleon-nucleon forces. However since this assumption has been
checked over a limited range of temperatures only, up to about

3 MeV (31), it would definitely be worthwhile to perform further
investigations. At densities higher tham nuclear demsity p, one
has very useful informations from the observed energies of mono-
pole vibrations. These modes indeed involve the equation of state
up to about twice nuclear density (32), as can be checked by
looking ac collective wave functions calculated for monopole
states (33). Most recent Skyrme forces do reproduce these data
quite accurately and, eventhough some ambiguities may remain,

it thus seems reasonable to trust them up to about twice nuclear
density. More information sbout the high energy region should
become available in a nearby future, with the advent of new heavy
ion facilities such as GANIL (32).
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