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ABSTRACT

Field theory techniques are applied to the study
of interact ing boson systems. A dynamical quasi -
par t i c le theory derived by the equations of motion
method is compared with IBFM as a means of coupling
an odd par t ic le to IBM cores. For a single j -
she l l , the two models are found to be roughly
equivalent on a phenomenological l eve l . This
equivalence requires that the IBFM parameter Ao is
a function of the core, SU(5) vs. SU(3) or 0(6),
but not an exp l i c i t function of the Fermi level*
IBFM is found to 'Cor io l is attenuate1 in strong-
coupled bands - par t ly decoupled cases must be
investigated fur ther . The dynamical quasi pa r t i c le
method has advantages with respect to ( i ) the physi-
cal signif icance of the pair ing A as opposed to the
I B F M A j j i ' s , ( i i ) par t ic le t ransfer , at least in
p r inc ip le , and ( i i i ) easy genera l i zab i l i t y . In an
appl icat ion of s ta t ic mean f i e l d theory, the a-
cluster interpretat ion of the SU(4) model for the
Ra isotopes is tested. I t is found that a larger
cluster would be required to account for experimen-
ta l odd-nucleon decoupling factors.

1 . Introduction

Boson methods and f i e l d theory are complementary approaches to
the many-body problem. The basic point of th is contr ibut ion is that
boson models may lead to the concept of f ie lds and can thus be tested
by the wel1-developed techniques of f i e l d theory. The conception of
f i e lds can occur ei ther in attempts to visual ize i n t u i t i v e l y the
meaning of the boson symmetry groups, or in a more rigorous fashion.
Section 2 gives an example of the former, while Section 3 describes a
theory for the l a t t e r . In both cases we focus on the odd par t i c le as
a probe of nuclear structure.

\
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2. Probing the Mean Fields: Do Ra Nuclei Resemble Diatomic
Molecule?? ~~ "~~

The doubly even nuclei in the Ra region have unusually low-lying
negative-parity states. There is a long tradit ion of applying
molecular-type group^theory to account for such spectra1*2 / , and at
th is meeting Daley has discussed a specific decomposition of the U(6)B
U(4) symmetry group3 »*•). The p-boson of that model has been in tu i t ive-
ly associated with an axisymmetric o-cluster degree of freedom5*6)
partly because the U(4) group has previously been applied to
di-molecules7) and partly because configuration mixing between the two
0+ states of the model accounts for the experimental systematics of
thei r relative a-decay widths3*1*). Equally compatible with the sym-
metry would be for example a core - 1I+C di-molecule, made plausible by
the recent observation of spontaneous 14C emission from 2 2 3Ra8*9) , or
the pear shapes obtained as stat ic equilibrium configurations from
mean f i e ld theory10).

2.1 Characteristic effects in odd-nucleon orb i ts . We shall see that
odd-nucleon spectra can distinguish between these dif ferent real iza-
tions of the in t r ins ic symmetry. To understand how the odd part icle
can respond in a characteristic way to an asymmetric cluster, i t is
useful to start from the spherical shell model picture shown schemati-
cal ly in Fig. 1. Dashed and solid lines represent j -shel ls of oppo-
s i te par i ty . Each major shell has one intruder j -she l l of high j and
unnatural par i ty. Reflection symmetric deformations (e.g. &2) do not
mix the intruder wave functions very much due to the parity selection
rule, and this allows phenomena l ike backbending and strongly
decoupled bands to occur in deformed nuclei. However, even a small
asymmetric (e.g. g3) deformation spreads the high-j strength over the
valence shel l . Thus the quenching of otherwise large j+ matrix ele-
ments can be a quantitative measure of reflection asymmetry.

U 2 Y,

w3 ( -

Fig. 1. Schematic picture of spherical shell structure which
i l lust rates why the high-j intruder sub-shells are more sen-
s i t ive to octupole than quadrupole deformation.



Experimental evidence for this effect on j+ matrix elements has
been found in decoupling factors1 1) , notably the ones in 225Ra, also
in the Coriolis coupling between K=3/2 and 5/2 bands of 225AC12) and
in the absence of backbending in 2 2 2Th1 3 ) . Here we shall focus on the
decoupling factors in 225Ra, since decoupling factors are normally
accurately described by mean f ie ld theory11*). Five different i n t r i n -
sic shapes w i l l be tested: ( i ) a spheroid, ( i i ) an o part icle half
emerged from the spheroidal core, ( i i i ) an o part icle completely out-
side the core but connected by a thick neck, (iv) an A = 14 cluster
likewise outside the core, and (v) a smoother pear shape corresponding
to the Strutinsky equilibrium.

2.2 Parametrization of the mean f i e l d . For numerical calculations,
the mean f ie ld experienced by the odd nucleon wi l l be described by a
folded Yukawa potential plus spin-orbit and Coulomb termsis). The
parameters of such single-particle potentials were determined by the
Los Alamos-Lund group16) in 1974 using data from deformed actinide and
rare earth nuclei. These parameters have been found to extrapolate
accurately to other regions of nuc le i 1 7 " 1 9 ) .

Shapes l ike molecular cluster configurations can be obtained with
the three-quadratic-surface parametrization20) i l lus t ra ted in Fig. 2.

ORAU 8488.2

Fig. 2. Parametrization of the intrinsic shape.

There are nine shape coordinates: Ij, 12, 13, alf a2, a3, cy, c2, and
c 3. Three constraints are given by volume conservation for given
mass, A, and by the requirement of smooth connections at z = zx and
z 2 where the surfaces intersect. The remaining six constraints must
be chosen to give the shapes listed above. The following six require-
ments were imposed: (i) The semi-axes a2, c2 are scaled to the size
of a cluster of mass A'=4 or 14. (ii) The center of mass is fixed by
(A-A1) 1L + A'l2 = 0. (iii) The separation of the centers, 12-Ii» is
cx for a half emerged cluster, and cx + c2 for clusters outside the
core, (iv) The neck region, z2 - zlt is c2 for a half emerged cluster
and 2c2 for clusters outside the core, (v) The eccentricities of the
two clusters is equal, a^C]^ = a2/c2. (vi) The cluster eccentricities
correspond to e 2 = 0.14 with the a cluster, and e 2 = 0.10 with the

 1J*C



cluster. Since no self-consistency c r i te r ia are being applied, the
choice of these eccentr ici t ies is arb i t rary. However, the odd-nucleon
wave functions are not very sensitive to the eccent r ic i ty 1 1 ) . (Note
that for molecular configurations the eccentricity of each cluster
would be enhanced by the Coulomb f i e ld of the other2 1 ) . ) The pear
shape from Strutinsky theory is described by Nilsson's e 2 , £3*'--
parametrization10).

2.3 Evidence from decoupling factors in 225Ra. Decoupling factors in
225Ra were recently determined in Y-ray spectroscopy22). The spin
I = 1/2 of the 225Ra ground state has also been confirmed by a laser
measurement of hyperfine s p l i t t i n g 2 3 ) . The decoupling factor, a,
extracted from experimental energy levels is related to the matrix
element of j+ between n and Rx conjugates of the in t r ins ic single-
par t ic le state by11)

a = - p < n * 1 / 2 | MMi/2 (1)

where p is the total parity. Both parities were observed in experi-
ment, and the values extracted for the j+ matrix element are listed at
the bottom of Table I. In the strong coupling limit these values
would be identical, and the observed values do indeed lie near an
average of -2. (According to Ref. [11] the spreading arises, in the
strong coupling representation, due to off-diagonal matrix elements of
7? analogous to the off-diagonal Coriolis matrix elements of j+)«

The j+ matrix elements between R, -conjugated14) and
:ed si = 1/2 orbitals, calculated for the shapes

Table I .
parity-conjugated
described in the text and deduced from experiment22) for 225Ra.

Sn(MeV) orbit

Spheroid
TT = +

Spheroid
ir = -

1/2 a

Octupole
e3 = 0.12

-7.46
-7.08

-6.05

-6.45

# 63
# 65

# 69

# 67

6.75
5.80

6.76
5.88

5.64
4.64

#

#

#

66
71

67
70

69
72

/1 .42 4 . 8 5 \

-7.76

-6.53

(-4.16 -0.42)
\ -4 .65/

( 1.16 2.49J
v -2.59/

[-1.43 -1.83 ]
V -4.40 /

Experiment -4.90 # 69 -1.53
-2.59



Calculated values for the different shapes are listed in Table I.
All K = 1/2 orbitals calculated to come within +1.3 MeV of the Fermi
level are included in Table I, except the orbital [501 1/2] which
would easily be distinguished if it were observed experimentally; its
wave function remains rather pure for all the shapes considered here.
The top two orbitals in Table I illustrate a slight complication that
may occur in the interpretation of the calculated numbers. Two
Nilsson orbitals which would normally have largg decoupling factors of
opposite sign ?r» .'•xed, and both the diagonal j+ matrix elements are
reduced, not due co reflection asymmetry but simply because the orbi-
tals happen to come close in energy and therefore mix. Cases like
this are easily recognized in the calculations, however, by a small
gnergy spacing combined with a large off-diagonal matrix element of
j+. In the excitation spectrum of the nucleus, the unmixed strongly
decoupled orbitals would-be restored by this off-diagonal matrix ele-
ment. For this reason, j+ matrices and not just diagonal elements dre
shown in Table I.

From Table I it is seen that neither the spheroid nor the half
emerged a cluster can provide candidates for the 2 2 5Ra ground state.
With the % cluster outside the core, there is some quenching of large
negative j + values around the Fermi level, but not enough for
agreement with the data. With a 11+C cluster, on the otlier hand, orbit
#70 is compatible with the data considering the uncertainties of the
present calculation. With an octupole shape near the self-consistent
equilibrium, orbit #69 is right at the Fermi level of 2 2 5Ra and
accounts for the observed decoupling factor.

In summary, the odd particle signature seems to exclude both the
reflection symmetric and the a cluster alternatives in 2 2 5Ra.

3. Probing the Dynamical Fields of Boson Cores.

The previous section discussed an odd particle probing the mean,
or static, field from the core. The present section takes up a method
in field theory to couple fermions to the dynamical field of a
core 2 4). The dynamical field of a quantal core is defined by all the
energy levels, the transition matrix elements between them and the
diagonal moments. The dynamical field of an Interacting Boson Model
(IBM) core is thus defined by the output of codes like PHINT or
NPBOS25), and the method can be straightforwardly applied. In connec-
tion with the IBM, this "dynamical quasiparticle" method is a distinct
alternative to the Interacting Boson Fermion Model (IBFM) of Iachello
and Scholten26.27).

Section 3.1 below reviews the general method and Section 3.2
describes its application to IBM cores; further specifics can be found
in Refs. [28,29], Section 3.3 presents a numerical comparison of the
dynamical quasiparticle method with IBFM, for IBM cores with SU(5),
SU(3) and 0(6) symmetry. A realistic application using the "mixed
IBM2" mercury cores of the Tucson group30*31) is discussed in a
separate contribution to this conference32), and applications to some
other kinds of boson cores can be found in the literature33'34).



3.1 Quasiparticies in dynamical f ie lds . First we derive general
f ie ld equations for states | I> of the odd-A nucleus, following the
equation of motion method worked out by Klein and others3 5"3 6 ) . Since
the f inal goal is a theory for coupling odd nucleons to cores with
known dynamical f ie lds , the quantities entering the f ie ld equations
wi l l be expressed in terms of the states j R A-l> and | R' A+l> of the
two neighboring doubly even cores. We start by writ ing down tne
obvious identity

which follows from the anticommutation relation for single-fermion
creation and annihilation operators a j + and a j . Hers j denotes the
spherical single-part icle quantum numbers (nljm), n = £(2j+l) and
<*jm = (-)J+m aj-m* Next, the completeness relations for the two cores
are inserted between the Fermi on operators, which gives

) I> = | I a j + | RA-1XRA-1 | aj j I> + ¥j | R'A+lXR'A+1 J i j + | I> (3)
jRR'

The c-number coefficients in this expression are unknowns to be deter-
mined from the f ie ld equations. Denoting them UJ and v j ,

I I> = Z Ui an+l RA-1> + VH TI I R'A+1> , (4)
1 jRR' J J ' J J

i t is seen that the states | I> of the odd-A system are quasiparticle
states obtained by a Bogolyubov transformation from part icle states
a-j+ | RA-1> and hole states aj | R'A+1>. These states | I> have good
angular momentum and good part icle number.

Equations of motion are obtained in the usual way, by forming com-
mutators between the Hamiltonian and the Fermi on operators and taking
matrix elements between appropriate states

<I | [ h ,a j + ] | R A-l> = (E1 - E^"1) <I | a j + | R A-l> (5)

j = (Ej - ERI"1) <I | ? j | R'A+1> (6)

The expressions on the right are obtained because | I>, | R A-}> and
| R'A+1> are eigenstates of h; they contain the energy eigenvalues, E,
and coefficients identical with the ones previously denoted UJ and VJ .

Up to this point the formalism is exact. To proceed i t is
necessary to specify the Hamiltonian, so we assume a two-body interac-
t ion between single-particle states of the most general form that can
be written as a multipole expansion

(7)



hSp = L ej aj
+aj (spherical s.p. Hamiltonian)

j

= E j ' > a j + a j ' (p.h. multipole operator)

(8)

(9)

,A + = z <j j r*Yp | j ' > a j + a j ' + (multipole pair operator) (10)
jj1

Inserting this Hamiltonian into the equations of motion gives the
field equations

e + ER + r -AH

-A -e + E'1; - r
A+l

u

V

= E i

I

u

V
(11)

where

rA±l = - i j'> <R A±l R' A±l> W(j 'A IRjjR1

<R A-l R1 (13)

The set of solutions | I> to the field equations in the particle and
hole basis is ovarcomplete by a factor of two, so a density matrix
must be constructed and used as a projector to identify the physical
subset. This could lead to a self-consistent microscopic theory of
the nucleus, which is not desirable if the core field is to be input.
Therefore self-consistency is bypassed through projection with the
approximate density matrix that is obtained from the "adiabatic" part
of the field Hamiltonian only 2 4* 2 8), in other words the part that is
even under the conjugation aj + < — > Hj.

3.2 Models using IBM cores. In practical calculations the core space
must be truncated to a set of states connected by large P* and
Q* matrix elements, and boson cores are clearly suitable. The most
complex form of the boson-fermion Hamiltonian actually used so far29)
includes a quadrupole-quadrupole interaction and quadrupole pairing,

H =
n w

(14)

P
M M

where the single-particle operators are



q2 =1 < j | r2Y2 | J'> aj+aj ' (15)
w j j '

and the collective pair operators are

A model to compare with IBFM is obtained with

u
nIBM " IBM " IBM1

Q2 = ez(s% + sd^ + x (d+d)2) (19)

| P o
+ | RA-1> = A6RR1 (20)

g2 » 0 (21)

Then the only difference between the models lies in the handling of
exchange effects between the fermion and the core. In TBFM, exchange
effects enter through the spherical occupation probability v2 and
through an explicit exchange term i.e.,

r ^ (l-2v2) x quadrupole coupling and
(22)

/vz(l-v2) x exchange term,

while in the dynamical quasiparticle method they arise through the
Bogolyubov transformation.

Both models have the same number of parameters. Both the v2 of
IBFM, and the Fermi level A used as a reference for the single-
particle energy e in the dynamical field equations, are determined by
the particle number. The ro of IBFM equals <2 above to within a
constant factor such that the models are identical for completely
filled or empty j-shells. There remains one parameter for each model:
A and A, respectively.
o

3.3 Numerical comparison with IBFM. The dynamical quasiparticle
method and IBFM will be compared in numerical calculations for a



j = 9/2 shell coupled to an SU(5), SU(3) or 0(6) core. For a given
core, particle number and quadrupole coupling strength, the energy
levels most likely to be observed in experiment will be plotted versus
the parameter A or A O , respectively. The core and the quadrupole
coupling parameter are identical with those used in Refs. [25,27],
with the minor exception of taking x in Eq. (19) equal to zero for the
SU(5) core, which gives vanishing diagonal core quadrupole matrix ele-
ments.

Results for an SU(5) core are shown in Fig. 3a. The case which
is shown has v2 = 0.2 and exchange effects play a significant role.
Clearly, similar spectra can be obtained by varying the parameters A
and A of the two models, which suggests that the two different ways
of handling exchange effects are in fact roughly equivalent on the
phenomenological level. For the 0(6) core and v2 = 0.3 in Fig. 3b,
changes of Ao have a similar but somewhat stronger effect on the
spectrum compared to changes of A.
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Fig. 3. Energy levels for a core plus a j = 9/2 part ic le in a

partly f i l l e d she l l . The energies relative to the I = 9/2 level
obtained by the dynamical quasiparticle method are plotted as func-
tions of the pairing gap parameter A (above), and by the IBFM as func-
tions of the exchange term parameter Ao (below). Case (a) has an
SU(5) core and the occupation of the j -shel l v2 = 0.2, (b) en 0(6)
core and v2 = 0.3.
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Fig. 4. Same as Fig. 3, but for an SU(3) core and (a) v2 = 0.8,
(b) v2 = 0.4.

However, A and Ao are not in general equivalent parameters. From
the way that v2 enters the IBFM Hamiltonian, expressions (22) above,
it is clear that at mid-shell (v2 = 0.5), a variation of Ao is exactly
equivalent to a variation of v2, which would correspond to°a variation
of the Fermi level \ in the dynamical quasiparticle formalism. A con-
nection between A and x is also obvious in Fig. 4a, which has the
results for an SU^3) core at v2 = 0.8. The rotational model analog
would be a prolate rotor with the Fermi level A just below the K = 9/2
Nilsson orbital. An increase of A gives only a slight lowering of the
K = 7/2 band head, related to the familiar compression of BCS quasi-
particle levels, whereas an increase of A ha? an effect similar to
moving the Fermi level further down into the shell. Results for the
SU(3) core and v2 = 0.4 are shown in Fig. 4b. Clearly more variation
of the spectrum can be achieved with the parameter Ao than with A,
however, the same range of spectra could have been achieved by
adjusting both A and x.

An interesting question is whether the IBFM introduces any
"Coriolis attenuation". The level ordering cannot be used as a prime
indicator in view of the discussion above. However, the levels appear
to be consistently more spread out in energy in the IBFM which does
indicate some kind of attenuation. For example, the K = 9/2 band in



Fig. 4a from the dynamical quasi particle theory has a moment of
inertia 1.38 times that of the core, ostensibly due to Coriolis
coupling to the K = 7/2 band, whereas the K = 9/2 band from IBFM has a
moment of inertia actually smaller than that of the core.

To conclude this section we shall look for an empirical connection
between the two models by focussing on parameter values which give
similar spectra. As a reference we take the dynamical quasiparticle
spectrum at A = 1.0 MeV, which is a physically reasonable value.
There is a range of Ao values for which IBFM gives a similar level
spectrum, see e.g. Figs. 3 and 4. An estimate of the optimal Ao is
indicated in Fig* 5 for each core and several values of v2. Keiping
KZ and A fixed and varying X through the shell in the dynamical quasi-
particle approach is seen to be roughly equivalent to keeping r and
Ao fixed and varying v

2 through the shell in IBFM. The value of"
A° corresponding to A = 1.0 MeV is about 0.8 MeV for the SU(5) core
and 1.2 MeV for the SU(3) and 0(6) cores. The value of Ao can be
expected to scale with ro. However, since the same ro was used here
with all three cores27),°it is not obvious why A comes out smaller in
the SU(5) case. °
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0.0
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1 { ;
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1 1 L.
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*06
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0.0 0.2 0.4 0.6 0.8 1.0

V
Fig. 5. The A O values for which the IBFM spectrum is most

similar to the spectrum obtained by the dynamical quasiparticle method
with A = 1 MeV, for three different cores and different occupation
probabilities in the j-shell, v2. The two methods give identical
spectra at v 2 = 0 and 1 for all values of Ao» and they are symmetrical
around v 2 = 0.5 for the SU(5) and 0(6) cores, so those points are not
shown.



4. Conclusions and Discussion.

Molecular configurations that have been speculatively inferred
from boson models for the Ra nuclei were tested by studying the motion
of odd nucleons in the in t r ins ic mean f ields implied by such con-
f igurat ions. I t was found that the interpretation of the p-boson in
terms of an a cluster and a reflection symmetric core does not account
for the decoupling factors - or the K = 1/2 ground state - of 225Ra.
I t was previously known that these and other single-particle proper-
t ies are well described with the octupole shapes obtained from mean
f ie ld theory1 1) . Experimental data for the somewhat l ighter odd-A
isotopes are presently scarce but would be very interest ing.

The spectroscopy of odd-mass nuclei can be used more generally to
test the description of collective modes in boson models. In order to
calculate odd-A spectra using boson cores, the dynamical quasiparticle
method is put forth as a viable alternative to IBFM. On a phenomeno-
logical leve l , the two models were shown to be similar with respect to
easily measurable energy levels (c . f . Refs. [37,38] for a discussion
of not so easily observable differences). However, the dynamical
quasiparticle method has some practical advantages. I t is applicable
to any kind of core with equal ease. Its parameter A§is more
"physical" than the corresponding IBFM parameters AJJ' in the sense
of being more readily available from theory or experiment. Extensions
to include for example the quadrupole pair f ie ld are straightforward.
The problem of single-particle transfer should also be mentioned. The
correct form of the operator is unknown in IBFM, as was emphasized at
this meeting in the session on supersymmetries. The dynamical quasi-
part ic le theory does not bring out supersymmetries; however the expl i -
c i t presence of fermion operators and two cores in the formalism does
imply that spectroscopic factors are_unambiguously obtained from
matrix elements of the type <R A±11 i j + a j + I I>.

This work was partly supported by the U.S. Department of Energy
under Contract No. DE-AC05-760R00033 with Oak Ridge Associated
Universit ies. We acknowledge the contributions of S. Frauendorf and
D. Lewellen, valuable discussions with J.L. Wood, and also thank J.R.
Nix for use of the folded Yukawa code at LANL.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, aor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.


