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par les conditions dans lesquelles les équations para-axiales sont
possibles. Les équations relativistement correctes sont ensuite
présentées.

Les propriétés de focalisation de base des dipöles et des quadri-
poles sont décrites ainsi que le fonctionnement du doublet et du triplet
du quadripole. On développe la formulation de l'optique par matrice et
l'on s'en sert pour déduire un certain nombre de résultats de base comme
les relations de simulé, les plans principaux, la dispersion et l'achro-
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ABSTRACT

The fundamentals of ion optics are presented, beginning with the
basic non-relativistic equations of motion, and the conditions under which
the paraxial equations hold. The relativistically correct equations are
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The basic focussing properties of dipoles and quadrupoles are
described as well as the operation of the quadrupole doublet and triplet.
The matrix formulation of optics is developed and used to derive a number
of basic results such as imaging relations, principal planes, dispersion
and achromatism.
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Introduction to First Order Ion Optics

TWO LECTURES GIVEN TO SCANDITRONIX STAFF, MAY 1982 BY W.G. DAVIES

1. Why do ire need ion optical systems?

Ion optical systems are used for many purposes amongst which are:

i) To transport an ion beam from an accelerator to a target. This is

the most common application,

ii) To produce special beam properties at this target, (i.e. at a

microtron or neutron therapy target.)

iii) To prepare the beam for injection into another accelerator such as

a synchrotron or cyclotron. (In many respects this is a similar

problem to ii above.)

2. Basic design requirements

When designing and operating a beam transport system, it is necessary to

know two important things:

i) What does the beam we are starting with look like?

ii) What must it end up looking like?

If we do not know the answers to one or both of the above questions, then

we must design a system that has sufficient flexibility to accommodate

our ignorance. The extent of our ignorance will be reflected in the

complexity and cost of the system. Here knowledge saves money and time.

If we do know what we have and what we want, then the problem remaining

is how to get from the beginning to the end. As with any other design

problem, the simplest and best design is usually the result of a thorough

understanding of the problem and the possible methods of solution.

Except for very simple problems this is an evolutionary process.

3. Basic physics of beam optics

In these lectures I will restrict myself to a discussion of magnetic

systems, and for the moment to systems where the energy of the beam is

constant - i.e. non-accelerated systems. In many instances electrostatic

lenses look the same as magnetic lenses, but the beam is always accelera-

ted or decelerated inside an electrostatic lens so in general they can

have quite different properties.
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The force on a particle travelling in a magnetic field is

"F = qv x "5 (1)

Here F = force, q = charge of the particle (+ for protons, - for

electrons) v = velocity and B = magnetic field. The "x" means vector

cross product and the result is that the force is perpendicular to the

plane formed by v and B.

The force due to the magnetic interaction is countered by the

"Centrifugal force" experienced by the deflected particle.

F = mv2/p (2)

where m is the mass and p is the radius of curvature. These two forces

must be equal for us to have a stable trajectory. If the arrangement is

as shown in Fig. 1, we can equate the two expressions with the result

qvz By = mvz/p (3)

which becomes

qByp = mvz = Pz (4)

From (4) we obtain

By = Pz/qP (5)

and

p = Pz/qBv (6)
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For particles with relativistic velocities these equations still hold if we

replace P = mv by

P = - /l863mE + E 2 (7)

where m is now in AMU (atomic mass units) and E is the kinetic energy in MeV.

P is the momentum of the particle in units of MeV/c.

Equation 7 is easily derived from the relation connecting the total

energy T and the momentum (see for example Goldstein p.204).

so that

T2 = p2c2
 + m V (8)

P = I /(me2 + E ) Z - m1^ (9)

where we have substituted

me 2 + E (10)

the rest energy plus kinetic energy.

Finally we have

The equation

Bp = P/q

(11)

(12)

defines what is referred to as the B-rho or the magnetic rigidity of the

particle beam; Bp is in Tesla-meters (T-m) if P is in (MeV/c) and q is in

multiples of the electron charge. Equations (5) and (6) above can be written

in an "obvious" manner as
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p = (Bp)/B (13)

and

B = (Bp)/p (14)

4. Elements of First Order Systems

There are only two focusing elements available to the designer of a

first order ion-optical system. They are the dipole and quadrupole. A dipole

is shown in Fig. 1 and the .quadrupole in Fig. 2. The magnetic field as a

N

f
G

Fig. 1 Dipole magnet
showing the definitions of
the coordinate system, the
direction of the field and
the direction of the force
for a positively charged
particle going into the
paper. Fx = -vzBy.

Fig. 2 Quadrupole magnet
showing definitions of
the coordinates, forces
and fields as in Fig. i.
Once again, a positively
charged particle is
assumed to be entering
the paper.
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function of the coordinate X are shown in Fig. 3. We see that a dipole has a

a perfectly uniform field, so that except for end effects the particle will

travel along the arc of a circle with radius given by equations (6) or (13).

A simple uniform field dipole, with perpendicular entrance and exit boundaries

has the properties of a thick lens in the bending plane, the X-plane, and the

properties a drift space in the axial or Y-plane. The distributed, or "thick"

lens properties of a dipole can easily be demonstrated graphically, as illus-

trated in Fig. 4. The trajectory of a particle travelling in a quadrupole

field is more complicated. Here the deflection of the particle increases

linearly as the particle goes farther away from the center of the quadrupole.

In the example of Fig. 2, we see that a positively charged particle is always

deflected towards the axis if it lies near the X-plane. Application of eq. 1

shows that the particle will always be deflected away from the axis if it lies

on or near the Y-plane. This is a general property of all quadrupole sing-

lets. They can be oriented so that they are focusing "F" or defocusing "D" in

either the X or Y planes, but never in both at the same time. By convention

the symbols "F" and "D" always refer to the X-plane, i.e. F means focusing in

the X-plane AHD defocusing in the Y-plane etc.

Bv

DIPOLE

QUADRUPOLE

Fig. 3 Shows the magnetic field as a function of the X coordinate for an
ideal dipole and an ideal quadrupole magnet.
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Fig. 4 The thick lens or distributea focussing property of a magnetic dipole
is illustrated by A simple geometrical construction.

5. Doublet and Triplet Lenses

Fig. 5 and 6 show schematically how a doublet and triplet lens are

formed. It is, of course, possible to interchange the X and Y planes. Let us

assume that all singlets have the same strength. Referring to Fig. 5a, we see

that a ray leaving the optic axis at the object position is bent back towards

the axis by the first element. After travelling a distance £, it encounters

the defocusing lens, but closer to the axis where its strength is less (see

Fig. 3). Hence it is not defocused as much as the first lens focused it. The

net result is focusing. However, the focusing power of the doublet is about

half of that of the singlet. In the other plane (Fig. 5b), the ray first

encounters the defocusing lens where it is deflected outwards. After

traversing the distance A, it is deflected back towards the axis by the

focusing lens because, by having been bent outwards initially, it passes

Through the focusing lens in a region of higher field strength (see Fig. 3).
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OBJECT

Fig. 5 Schematic representation of a quadrupole doublet in each of the two
planes. The choice of FD in X and DF in Y is arbitrary and X and Y can
clearly be interchanged. The "imaging" properties of a doublet and the
"astigmatism" associated with doublet lenses is also indicated. The lines
denoted ti and te are the so-called principal planes of the lens and they
illustrate why the doublet has unequal magnifications in the X and Y planes.

Thus once again, the effect is net focusing. So, we see that two

singlet lenses of approximately equal strength are net focusing in both planes

whether or not they are connected FD or DF even though each singlet is

focusing in one plane and defocusing in the other. However, their imaging

properties are not at all alike. As indicated in the figure, the FD combina-

tion always has a magnification greater than 1, and the DF combination always

has a magnification less than 1. This is, in some sense, the same as having a

lens with a lot of astigmatism. This intrinsic "astigmatic" property of doub-

let lenses can often be a problem. On the other hand, if one starts with a

beam that is astigmatic (that is, the virtual objects in the X and Y planes

are at. different positions) a doublet lens is very useful in correcting this

astigmatism.
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OBJECTr A--V7--

V IMAGE

I

te

Fig. 6 Schematic representation of a triplet quadrupole lens. Once again,
the choice of FDF in the X plane is arbitrary, and the two planes can be
interchanged. The figure illustrates that a symmetric triplet lens forms a
stigmatic image with equal magnifications in the X and Y planes. The
principal planes are not coincident, though, so even though the image is
stigmatic, the focal lengths are not the same in the X and Y planes.

We can avoid the problems associated with the astigmatism of a

doublet lens by using a triplet lens as shown in Fig. 6. Arguments identical

to those given above for a doublet lens can be used to prove r.hat a triplet

lens is also net focusing whether or not it is connected as FDF or DFD.

Furthermore, if the lens is operated symmetfically, that is the first and last

elements have equal strengths, we see immediately from the symmetry of the
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system that the imaging properties must be the same, i.e. the magnifications

will be equal in both the X and Y planes. One penalty we must pay for this

symmetry is that the focal length of the triplet lens is even weaker than that

of a doublet when compared with the strengths of the singlets. Obviously, a

triplet lens that is operated asymmetrically will have unequal magnifications

in the two planes. The range of magnification will vary from that of a sym-

metric triplet to that of a doublet in the extreme case where we turn off one

of the end elements.

6. Paraxial Optics

An optical system is said to be paraxial or first order when the

rays transform according to a system of linear equations. That is:

(15a)

6i = cxo + d60 (15b)

In general, the rays do not satisfy the above equations, but contain a very
2 2

large number of "higher order terms" such as x or 6 or x6 etc. In fact what

we have done is to expand the exact ray equations in a power series about the

optic axis or central trajectory. The optic axis is the trajectory followed

by a particle with momentum Po and x = 8 = 0. For many systems all rays lie

very close to the optic axis and the paraxial approximation is very good. The

higher order terms are called aberrations. They can come either from approxi-

mations in expanding the geometry of the system (i.e. tan 0 = 6) or from

higher order terms in the expansion of the magnetic field, for example the

field in a real quadrupole is never perfectly linear. I will say no more in

these lectures about aberrations. However, their existence should not be

forgotten!

More precise definitions of the requirements for paraxial optics

and some elegant consequences of this formalism are given in the following

sections.
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6.1 The Paraxial Condition

The first order approximations' are valid when all rays remain close

to the "optic axis" or central trajectory.

In general the approximation is valid if tan 6 ra 6, and x/p « 1 where P is

the radius of curvature of the central ray.

FARAXIAL
9 RAY

— Z .OPTIC
AXIS

Fig. 7 Diagram showing the relation between the paraxial ray and the Optic
axis.

6.2 Coordinate System

A general Curvilinear Coordinate System that is locally orthogonal

is used because the origin of the local system always lies on the central

trajectory as shown in Fig. 8.
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F&RAXIAL RAY

CENTRAL
RAY

Fig. 8 Curvilinear coordinate system used in computing ray trajectories. The
local orthogonal coordinate system (x,y,z) is oriented such that (i) x is in
the bending plane and directed along the local radius vector p, (ii) z is
tangent to the central trajectory, and (iii) y is the upward pointing vector
perpendicular to the (x,z) plane. (Note the system can be either right handed
or left handed depending on the direction of the curvature.) The coordinate
of the ray is given as a function of s, the distance along the central
trajectory from the origin to the position of local coordinate system.

In a field free region the central trajectory is a straight line

and the Curvilinear system reduces to a simple Cartesian system. In a uniform

field bending magnet S is an arc of a circle, that is the radius of curvature

p is constant. Most beam optics systems consist of a series of straight lines

and
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arcs of circles, so the generalized coordinate system is really not so

complicated to use in pract.' *e.

6.3 Equations of Motion

The paraxial equations of motion are obtained most elegantly by

expanding the relativistic Hamiltonian in the curvilinear system.

H = eV + c {m2c2 + Cp - iA) 2} 1/ 2 (16)

where V and A are the sealer and vector potentials of the electromagnetic

field. The Hamiltonian (eq. 16) is transformed such that the independent

variable is s, the distance along the central ray rather than the time t.

Hence Hamilton's equations become, after a few pages of algebra. (See for

example Courant and Snyder.)

P' = p. x- = £ etc.
x ax ds

3ps p- = 8Ps - = 3 ( 1 7 )

In the paraxial approx. x1 = 9 y' = $.. The expanded Hamiltonian when

substituted into Hamilton's equations leads to two second order differential

equations. For a dipole magnet they are

x" + (1 - n)h2x = h6 (18a)

y" + nh2y = 0 (18b)

h = 1/p (18c)

where 6 = Ap/P0 and Po is the central momentum.
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y
Poe

(19)

We assume that the magnetic field B is in the vertical direction so that v x B

bends the particles in the horizontal direction.

For a field free region eq. 16 and 17 reduce to

x" = 0

y" = 0

(20a)

(20b)

These equations are easily integrated leading to the solutions

x

y

as + b

cs + d

(21a)

(21b)

Now, b = xo, the initial value of x and

Px
T~
o

tan 6 = 9 (22)

The relationship between P, Po and Px is shown in Fig. 9.

Fig. 9 Relationship between the total particle momentum P, the momentum along
the optic axis Po and the transverse momentum Px.
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We make the approximation that P = Po (22a)

Where

so that

P2 = P2 + P
2

o x

P2 « P2.
X O

(22b)

(22c)

Hence

= 9c (23a)

(23b)

where here kx and ky are constants of the integration. Thus we see that for a

drift space the transformation is linear. This linear transformation property

is also approximately valid for all electrostatic lenses, magnetic dipoles and

quadrupoles.

6.4 Matrix Fonnalisa

The drift space (eq. 21,23) can be written as a matrix transformation:

XI

. 8 1 _

' i (s-so)"

0 1

X

o

e
__ o_

y i

e
o

"i L"

0 1

ry0~

_ • < > _
(24)

If the beam is bunched and we wish to know what happens to the bunch, we can

write a similar matrix for the differential bunch length & and the momentum

spread 6 as a function of S. Thus

L/v.

or

1 L

0 1

\l 1
O ;

6
o

(25)

Thus we see that in this case the 3 pairs of canonically conjugate coordinates

of Hamilton's equations (x,6), (y,<l>), (&,S) transform independently of each

other but with the same transform.
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This property is only valid under special circumstances. It is true for

drifts and quadrupoles but not for dipole bending magnets. In a dipole the

term h<5 in eq. 18a produces coupling of the (x,6) and (i,6) coordinates and

leads to the phenomenon of dispersion. Then the transformation between SQ and

Si cannot be written as 3 independent 2 x 2 matrices.

In general the transformation through the region from So to Sj can be

written as a 6 x 6 matrix, R(Si - So) = Ro- The theory of linear

transformations tells us that the results for a set of successive piecewise

constant regions can be obtained by matrix multiplication.

Ro R. R R4 Rs

So Si SI S3 S4 Se

Fig. 10 Schematic illustration of how 6 elements comprising an optical system
cah be related by multiplying their respective transforms matrices.

R(Sn - So) = R(Sn - Sn_i) R(S2 - - S0) (26)

Hence X6 = R(S6 - SQ)XO

where X

x

e
y (27)

%

6
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I f we have midplane symmetry then t h e ( x , 0 ) and (y,<|>) c o o r d i n a t e s a r e a lways

o r t h o g o n a l and t h e g e n e r a l 6 x 6 m a t r i x has the form

16Rll

R21

0

0

R51

0

R12

R22

0

0

R52

0

0

0

R33

R43

0

0

0

0

R34

R44

0

0

0

0

0

0

1

0

F

R

0

0

R

1

26

56

What do the matrix elements mean?

This is most easily seen by inspecting their dimensions.

R,. = (x /x )
11 no , . . _. .

/ / \ = transverse linear magnification
R33 = ( W

(28)

22
R. .
44

<VV angular magnification

R43

has dimensions of 1/L and is the
inverse of the focal length

= (x /e )
n o

*has dimensions of L and represents the effective
drift lengths respectively through the system.

= (x /& ) = d , the linear momentum dispersion
n o x

R o ,
Zb

= ( 6 / 5 )n o dQ angular momentum dispersion

51

"52

= U/x )
o

U/eo)

terms which mix (x,8)(&,6) coordinates
pai rs in bending magnets

56
*has dimensions of L and represents the effective
length of the system for the longitudinal coordinates

*Note! The effective lengths are often different for each of the 3 pairs of
canonically coniugate variables. Their values depend upon the details of the
optical system and to some extent can be adjusted independently of each other.
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6.5 Siaple Optical Systea

For simplicity let us look at a simple non dispersive system which is the

same in x and y. Thus we need only consider the 2 x 2 transformation matrix.

RX

Rll R12

R21 R22
(29)

Let us check a few simple properties. The focal point of a system is defined

as the point where a principal ray crosses the axis, as shown in Fig. 11.

IMAGE
PLANE

Fig. 11 Parallel to point focus. When the focal length f = I/R21 = L
distance from the lense to the image plane, a parallel to point focus
condition exists.

Thus

0

e R21

12

R22

(30)
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For this to be true R^. - 0.

Thus R = 0 is the condition for a parallel to point focus;

1
R x = x /f where f is called the focal length.
21 o o

A point to point focus is said to exist when all rays emanating from a

point are refocused to a point in the image plane. This is shown in Fig. 12.

OBJECT PRINCIPAL RAYS A

IMAGE

Fig 12 Point to point focus. A point to point focus exists when all rays

emanating from the object point pass through the image point. (See eq. 31,

and 40.)

Thus

R11

21

R12

*22

(31)

If all rays emanating from X Q pass through Xj then
necessary condition for a point to point focus.

= 0 . This is a
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6.6 Principal Planes

The principal planes of an optical system are defined as the pair of

planes that produce an image-object relationship with a magnification of +1.

These planes are found by transforining the optical system R into a new system

Rj which satisfies the above conditions. For a 2-dimensional case

11

21

'.."1
22

=n
(32)

where t. and t are the distances from the entrance and exit boundaries of the
I e

system under consideration to the principal planes.

Hence

21

The condition that

12

22

(R22 •

^ 2 1
(33)

leads to

R22

t.

t.R21 = 1

-R n)

(34)

(35)

where R 1/f.

Since the matrix elements R.. and R~ are both unity in R. (eq. 33 and 34)

and since in general R?. = 1/f * 0 and since the determinant, det JR. = 1,

then R._ = 0. Thus the matrix R. has the form
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1 0

(36)

where if r is positive R. is divergent and if f is negative R. is convergent.

The matrix R1 (eq. 36) is identical to the transformation matrix of a "thin"

lens.

Thus we see that any arbitrary region can be transformed into the matrix

of a thin lens with focal length f = 1/R9)
 and two principal planes a distance

t. = f(l - R ) and t = f(l - R ) from the boundaries of "R". (See Fig. 13

and eq. 32.)

The sign convention for the distance to the principal planes (see eq. 35

and Fig. 13) is as follows: tj and te are measured outward (inward) from

the entrance and exit boundaries of R when their signs are positive

(negative). Thus both t£ and te are negative in Fig. 13.
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L2

-Li

Fig. 13 An example of how the principal planes of the optical system
represented by the matrix R exhibit the optical properties of an arbitrary
system in a simple way.

Let us consider the example shown in Fig. 13. Let us also assume that

the optical system represented by "R" is convergent. Then as indicated in the

figure, eq. (36) becomes

1

1 0

and the principal planes are located a distance tj and te from the

entrance and exit boundaries of the system R.

Thus we can define two new lengths, L. and L. as

Li • Li " K )

L2 = Le

(38)

The overall transformation, R,, is:
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1 L 1 0 1 L
R3 "

0 1 -1/f 1 0 1

(39)

- L2/f;

-1/f 1 -

This matrix exhibits most of the elementary properties of optics. For

example, if we want a focus-to-focus condition then R. = 0 so that

L L
h1 + L2 - -£-£ = 0 (40)

which reduces to the well known imaging formula

+ , = _ (Note convergence is assumed.) (41)
Ll L2 t

If we want a parallel to point focus then R.. = 0 in eq. 39, so 1 - L /f = 0

or L = f which is what we mean by focal length. The linear magnfication is

R. = 1 - L?/f which for a point to poini focus becomes R.. = -L_/L. where we

substitute for f irotn the condition thrt R._ = 0 into the expression for R..

in eq. 39. This is the well known formula for the magnification of a thin

lens imaging system.

6.7 Achromatic Bending Systems

In beam transport systems in which the energy spread of the beam, AE/E is

not extremely small (i.e. « 1%), the dispersive properties of dipole magnets

must be taken explicitly into account. Very often the dispersion is useful

and is why spectrometers and analysing magnets are useful. At other times it
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becomes a problem such as in the microtron and neutron therapy systems, or in

the transport of bunched beams where preserving the time structure of the beam

is important.

The dispersion of a dipole magnet is analogous to the separation of white

light into different colors by a glass prism. To first order, the theory is

the same, although the derivation of the matrix elements is quite different.

Also, the methods of correcting dispersive effects in light optics and ion

optics are different.

As was noted earlier (see section 6.4), dispersion couples together the

(x,9) plane and the (£,<S) plane. Thus, one must have a 4 x 4 matrix instead

of a 2 x 2 matrix. For convenience, we will write it as follows:

11

21

12

22

0

0

1

0

"eff

(42)

Here we write the dispersive terms Rj6 and R26 as dx and dg to make their

meaning more transparent.

Two important terras will now be defined:

NON-DISPERSIVE: A system is said to be non-dispersive when the matrix

element dx = 0. (When dx = 0, *e " ° also.)

ACHROMATIC: A system is said to be achromatic when both dx = 0 and dg = 0.

(Both £x = 0 and IQ = 0 also.) Thus we see from the matrix, eq. 42, that a

necessary condition for an optical system to be decoupled in each of the three

pairs of canonically conjugate variables is for the system to be achromatic.

Another necessary condition is that the system have midplane symmetry. This

separates the (x,9) plane from the (y,<l>) plane as discussed earlier.

Misalignment (in particular a rotation about the optic axis) of dipoles

and especially quadrupoles, leads to coupling of the (x,6) and (y,<f>) planes.

If the system is also dispersive such misalignments lead to coupling of all
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three pairs of coordinates. As we will see later, such couplings can make it

impossible to obtain the required beam properties.

Achromatic systems have another notable property. Not only is (x,6)

independent of (£,6) where 6 = AP/Po, but they are also insensitive to small

errors in the dipole field settings, because Ap/p = AP/Po = -AB/Bo.

The most commonly used achromatic bend is composed of two identical

bending magnets (but in reflection) and a quadrupole singlet, as shown in

Fig. 14.

QUAD

L| / DIPOLE

Fig. 14 Schematic representation of a simple achromatic bending system. The
dashed line represents the symmetry plane of the system, i.e. the half to the
right is a reflection of the half to the left. This system is made achromatic
by adjusting the strength of the quadrupole. It appears that we can set two
independent conditions (dx = dg = 0) with only one free parameter.
This is not true because the imposition of exact reflection symmetry is
equivalent to setting one parameter.
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7. Eaittance, Acceptance, Brightness and Phase-Space

Up until now we have dealt with the problem of how to "trace" the path of

a single ray or particle through an optical system with the help of first

order matrix transformations. In reality, we cannot deal with a single ray,

but uust deal with bundles of rays or particles. Often there are millions of

particles present in these bundles. We can deal with this problem very

elegantly by making use of the concept of phase-space. There exists a number

of powerful mathematical thei is which allow us to find some "simple"

solutions to what otherwise would be a very time-consuming and costly problem

if solved by "brute-force". (i.e. perhaps by tracing hundreds of rays through

the system.)

The total phase-space of the beam is the minimum "volume" occupied by all

of the particles in the n-dimensional space required to describe the system.

We will find out what this means in a few moments. Consider a typical

bundle, such as the one represented in Fig. 15.

Fig. 15 Bundle of rays. All of the rays in this bundle will fit into a
certain "volume" in phase-space. Once this volume has been determined it
remains constant in non-accelerated systems, if no beam is lost through
scattering or by running into something.
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The "volume" in phase space can be defined as the product of al l the

canonical variables.

e = x6y<|>£6 (43)

Each particle in the bundle occupies a certain phase space volume given by

eq. 43.

Somewhere there will be three particles that occupy the largest volume in

the 6 dimensional space. This volume defines the maximum phase-space of the

beam. All other "volumes" are smaller. A nice property of these volumes is

that they can lie within each other! (There are other ways of defining

phase-space, but I don't think they are easier to understand.) If the optical

system has mid-plane symmetry and does not contain any dispersive elements,

then the phase-space defined by eq. 43 reduces to 3 independent 2-dimensional

phase-space "volumes" or areas.

e = x9
x

e = y4> (44)

For simplicity, let us deal with only the phase-space in the (x,6)

plane. The particle with the maximum x9 defines the maximum phase-space area

in the (x,9) plane. It is said to have a phase-space or "emittance" of

ex = x9 (cm-mrad) or whatever units one is using. (44a)

We note here that the phase-space or emittance is a property associated with

canonical pairs of variables. It is not meaningful to define a phase-space

from the xy variables, for example.
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The concept of emittance is most useful when we know the percentage of

the total intensity contained in a certain phase-space volume (or area). For

example, perhaps 68% of all particles are contained in, say, a phase-space

area of 1 cm-mrad (in the x-plane), 95% in 2 cm-mrad, 99% in 3 and 100% in 5.

The emittance of this beam is 5 cm-mrad. However, if we are willing to throw

away only 5% of the beam, the remaining 95% is contained in an area of only 2

cm-mrad! Perhaps we will decide that it's not economic to have a system with

big enough apertures to accommodate the full beam. BE VERY VERY CAREFUL HERE,

BECAUSE THE PHASE-SPACE AREA OF THE BEAM IS NOT THE SAME AS THE BEAM AREA IN

THE X-Y PLANE! Also, although the maximum aperture requirements of a beam

transport system are a function of the emittance of the beam, the relationship

is not necessarily simple.

Now is a good time to clearly define some of the terms that have been

used or are going to be used.

EMITTANCE: The emittance is a property of the BEAM. It is the PHASE-SPACE

VOLUME OR AREA occupied by a specified intensity fraction of the beam (e.g.

95%).

BRIGHTNESS: The brightness of the beam is the INTENSITY of the beam within a

specified PHASE-SPACE volume. The more current we have in a given phase-space

volume, the brighter is the beam.

ACCEPTANCE: Acceptance is a property of a DEVICE The acceptance of an

accelerator or beam transport system is the MAXIMUM phase-space that the

device can ACCEPT . Often we must match the EMITTANCE of the beam to the

ACCEPTANCE of the device. This includes not only matching the phase-space

volumes or areas, but also matching the orientation and shape of the PHASE

ELLIPSES.
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Now that we have defined what the phase-space, or emittance, of the beam

is, we must find out how it transforms through the system. The phase-space

area or volume is not so useful if we only use it as defined in eq. 4^ and

44. We will define the so-called "beam matrix" as follows: If the motion of

all of the particles is random (i.e. their trajectories are uncorrelated or

independent of each other) as is more or less the case at the plasma boundary

of an ion source or at an electron gun filament, then we can define a matrix

by taking the outer product of the ray vectors defining the phase-space

contour of interest - for example the maximum phase-space of the beam.

Define:

[a]- (45)

Where T means the transpose of the matrix. (A matrix is transposed by

interchanging its rows and columns.)

This matrix is a "quadratic form" in matrix algebra and under the right

conditions it is an "invariant" which means its determinant remains constant

as the matrix is "transformed" — as we shall see shortly. If we can define

the beam matrix as in eq. 45 at some place then we can find out what it looks

like at any other place in the optical system as follows: We already know

that



- 29 -

[R][xo]

By definition,

Where [i] is the unit matrix.

Also,

Thus, using the rules of matrix algebra, eq. 46 can be written as:

(46)

(47)

_™"1_. iTr -1
(48)

So that we can obtain the result

(49)

We see from eq. 43 and 45 that the phase-space volume is

det o
1/2 (50)

Going back to our 2 x 2 example, the above can be summarized as

x

[a]
[x 0] x2 0

o e'

(51)
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a n d , ,1/9 T 7

det 0\U = / x V = x6 = e . (52)

As we have seen before, the optical transformation matricies have det.R = 1

for systems with constant energy. Matrix algebra tells us that if det R = 1,

then det ol is unchanged by the transformation given by eq. 49. We can invert

this statement too. That is if we know that o is invariant then det RJ = 1.

We can do this because of a very powerful theorem in classical mechanics

called "Liouville's Theorem1.

LIOUVILLE'S THEOREM

For systems that satisfy Hamilton's equations (as given in section 6.3), the

density of particles in the appropriate 2, 4, or 6-dimensional phase-space is

invariant as we move (transform a) through the system.

So, to summarize, phase-space is conserved, that is detIoj =

constant, or "invariant" if:

i) the beam is not accelerated or decelerated

ii) there are no beam losses. (Part of the beam does not run into something.)

iii) there is no scattering of the beam by gas or foils

iv) space-charge effects are negligible.

In general, it is the 6-dimensional phase-space that is conserved.

If we also have midplane symmetry and an achromatic system (or a system

without dipoles), then clearly the three 2 x 2 phase-space areas are conserved

independently of each other and in general will have different areas.

If the system contains dispersive elements (dipoles) then the

2-dimensional phase-space in the dispersive, or X-plane is not conserved.

However, the 4-dimensional phase-space

e = xei6 (53)

is conserved. The reason that ex, the (x,6) phase-space <•!•. t i; not conserved

by itself is because the dispersion mixes the (x,6) and < ,o) ,-oordinates as

we saw earlier. Thus one must be very careful when me.) . •., mg or using the

2-dimensional phase ellipses, because dispersive effeci -. ran make it appear
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that the eraittance has increased even though this is not really true. Never-

theless, the beam width and hence aperture requirements as well as the maximum

beam angle are increased in the (x,8) plane by the dispersion.

Equations 45 and 51 can be shown to be identical with the equations

of an ellipse, in 6 and 2 dimensions respectively. In order to see how this

works, let us consider once again a 2-dimensional example. The 2-dimensional

phase space is given by eq. 51 for an "uncorrelated" beam. This matrix is

equivalent to the equation for an ellipse that is oriented along the X-6

axes. (i.e. The major and minor axes of the ellipse lie along the axes of the

canonical coordinates.) This is shown in Fig. 16. It is easy to show that in

this case the equation has the form.

Yx2 + 092 = ex (54)

Here 3 = X Q / ^ and Y = e
0/

e
x

If this ellipse represents the phase-space for 100% of the beam then the con-

tours for 95% and 68% of the beam intensity, for example, will be concentric

ellipses lying inside the 100% contour. One of the most useful and most

powerful properties of phase-space is that if a particle lies on the ellipse

shown in Fig. 16, it always lies on the ellipse no matter how the ellipse is

rotated or stretched. Perhaps a more important fact is that a particle that

lies somewhere inside a given phase ellipse can never move outside that

ellipse (unless it suffers some interaction that violates Liouville's

Theorem). Thus, particles that lie between the 95% and 100% contours at some

point in the system will always lie between these two contours.
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Let us see how our phase ellipse, equations 51 and 54, transforms

through a drift space of length L. Making use of eq. 49, we can write

1 L

0 1

x2 0o 1 0

L 1

o

L6

LV.
(55)

Equation 55 can be written as

[a,]
r xl 9l

r xl 9l
(56)

Where "r" is the statistical correlation coefficient which is a measure of the

degree to which x and 6 are correlated or dependent upon each other. Formally

we can define the correlation coefficient as follows:

<x8>
(57)

where <> means average value or expectation value of the quantity within the

symbols <>. The equation of the ellipse representing eq. 55 and 56 has the

form:

Yx 2ctx6 302 (58)

This ellipse is shown in Fig. 16b. We see that the original ellipse, Fig.

16a, has been rotated to the right and stretched. Nevertheless, the areas of

the two ellipses are identical and are given by
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A = IT det o = ire (59)

This is easily demonstrated by direct calculation of the determinant, which

for a 2 x 2 matrix is

det H - °12a21
(60)

The coefficients of the equation of the rotated ellipse, eq. 58, can be found

from the following matrix equation:

& -a

-a Y

(61)

3, Y, and a are the so-called "Twiss" parameters.

b)

Fig. 16a Erect phase
ellipse for an uncorrelated
beam as given by eq. 50 and
54.

Fig. 16b Rotated phase
ellipse after drifting a
distance L. See eq. 55
and 58. Both 6 and ex

remain constant even
though x increases.

NOTE: The shape of the phase ellipse is NOT the same as the shape of the
beam. One of the coordinates of the phase ellipse is the angle of the beam
envelope with respect to the optic axis. This one cannot see".
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We can understand physically why the phase ellipse is rotated and\

stretched in Fig, 16 by studying Fig. 17.

Fig. 17 Transformation of the X-coordinate through a drift distance L. The
angular coordinate is a constant and the X-coordinate increases linearly
with L.

We also see from equations 55 and 56 that if the drift distance L

is very large, the correlation coefficient, r, approaches unity. In this case

the phase ellipse approaches a straight line. The area of the ellipse remains

constant, however, even for this extreme case.

In an analogous way, we can see how the phase ellipse transforms under

the action of a thin lens.
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In analogy to eq. 55 we have:

1 0 x^ 0 1 -1/f
r

! -l/f

where we assume convergence. (See eq. 36.)

-x2/f

-x2/f (62)

Equation (62) can obviously be written in the form of eq. 56 and eq. 58.

The initial and transformed phase ellipses are shown in Figs. 18a and b

respectively. In this case the emittance ellipse is rotated to the left,

instead of to right as for a drift (see eq. 55 and Fig. 16b). Note that in

this case the beam width x is constant and the angle increases as the focal

length decreases.

a) b)

Fig. 18 a) Initial phase ellipse as in Fig. 16a.
b) Rotated phase ellipse after the action of a

focussing lens.
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We should note here also that phase-space is ELLIPTICAL only if FIRST

ORDER optics is valid. When aberrations are included the phase-space is no

longer elliptical but its area is still conserved. In extreme cases, such as

when passing through the fringe field of a cyclotron, for example, the

phase-space can look more like a hockey stick than an ellipse. If we have a

situation that is describable to first order, we can obtain some very

important information about the beam properties from the beam matrix. For

instance, the maximum size of the beam is given by

x = /o., = /x2 (63)
max 11

The maximum angle of the beam is given by

9max

Thus, it is easy to trace the maximum beam size in the X-plane by calculating

the beam matrix at various points using eq. 61. A very useful thing to do is

to plot x along the system and obtain "a beam envelope plot". The beam

envelope plot for the 100% phase-space contour tells us what the aperture of

the system must be to pass all of the beam. A representative example is shown

in Fig. 19.

Let us now look at some other information that we can obtain from

the beam matrix. The points where the phase ellipse intersects the coordinate

axes are as follows:

X-intercept x. = /a (1 - r2) = /x2(l - r2) (65a)

9-intercept 9 ^ = /a (1 - r ) = /82(1 - r2) (65b)
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Fig. 19 Representative beam envelope for the X and Y planes of a beam
transport system.

A WAIST occurs when the correlation coefficient r = 0. That is when the major

and minor axes of the phase ellipse are oriented along the coordinate axes. A

waist is not at all the same as a focus as we will see from the following

example. Fig. 20 shows a simple optical system that forms an "image" of a

waist with unity magnification. For convenience, the focal length is assumed

to be f = -1. The focus or image always occurs at the same place as noted in

the figure, but the position and size of the waist depend upon the phase-space

of the beam as can be seen in Table 1.

The phase ellipse at the image plane or focal plane of the example in Fig. 20

can be found from eq. 49 as in our previous example. Thus:

-1 0

L-l/f -1

x2 0
o -1 -l/f

0 -1 (x It)1 + e2

o o

(66)



- 38 -

OBJECT

IMAGE

Fig. 20 A simple optical system which forms an image of an initial object
which is also a waist. The image is independent of the emittance of the beam,
but the position and size of the waist is very dependent on the emittance of
the beam. See text for clarification.

So we see that at the focal point,

xi = V (67a)

/8 2 + (x /f) Z

oo
(67b)

and

r = 1/2
(66c)
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6=10. €=10

OBJECT IMAGE

Fig. 21 Object and Image phase-space or emittance ellipses for th"e example
shown in Fig. 20.

Table 1 shows the beam parameters at the object and image planes,

as well as the distance from the image plane to the waist for 3 different

values of the initial phase-space. The example illustrates some of the

problems and differences one encounters when one deals with images and

waists. Images are easier to calculate, but are hard to establish in

practice. Waists are easier to find, because if we adjust a lens such that we

minimize the beam width, then we are very near a waist. The problem is that

the lens strength required to produce a waist depends upon the magnitude of

the beam emittance — if the emittance changes because we scrape off beam

somewhere, then the position of the waist will also change.
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The distance from the focus to the waist can be found by solving

for the distance Lw that is needed to transform eq. 66 into a diagonal

matrix. This distance is

Lw (68a)

The size of the waist at Lw is

Xw = (68b)

These two equations are very useful and should be remembered!

Table 1

Xo = 1 in all cases.

6o

.1

1.

10.

e
X

.1

1.

10.

Xl

1

1

1

1

1

10

91

.005

.414

.05

r

+.99501

+.70711

+.09950

*
Lw

-.9901

-.5000

-.0099

Xw

.09978

.70711

.99504

*Note: Lw is the distance from the focal plane to the waist in units of the

focal length.

There is one other difference between a waist and a focus that is

worth noting; a focus is stable with respect to changes in the average beam

direction at the object position, a waist is not.

Before finishing, perhaps it is worth noting how the phase space of

a beam transforms in an accelerated system. Here I will hot go into details,

but only point out that the AREA of the phase ellipse for each of the 3 pairs
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of canonically conjugate variables, (x,9), (y,<l>), and (A,<5) is inversely

proportional to the beam momentum. That is:

= Gx(Po)Po/Pl
(69)

Thus as the beam momentum (and energy) increases, the phase space decreases if

"noise" is not added to the system at the same time.

These lectures have presented a brief, perhaps too brief,

introduction to the basic concepts of beam optics. In some cases there are

many pages of algebra connecting the results presented here. Some of the

concepts, such as phase-space, are not easy to understand, however one is not

required to understand everything in order to make use of some of the

results. The only problem then is being sure that the formulas or concepts

fit the situation under consideration.

APPENDIX

The first order transformations for a drift, a quadrupole singlet

and a uniform field bending magnet are given for the convenience of the

readers and agree in format to those given in ref. 4.

(a) Drift Space:

1

0

0

0

0

0

L

1

0

0

0

0

0

0

1

0

0

0

0

0

L

1

0

0

0

0

0

0

1

0

0

0

0

0

Y"2L

1

X

9

y

•e
-

I

6

where L • s. - s_ the length of the central ray of the drift,

Y = (1 - B )~ and 3 = v/c; c is the velocity of light.
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(b) Quadrupole singlet:

,-1 •
cos

-k

0

0

0

0

, 2where k

kL

sin

k sin kL

kL cos kL

0

0

0

0

(l/Bp)(3B /3x).

0

0

cosh kL

k sinh kL

0

0

0

0

k"1

cosh

0

0

sinh kL

kL

0

0

0

0

1

0

0

0

0

0

Y

1

(c) Uniform field bending magnet

cos a

-P sin a

0

0

-sin a

0

p sin a

cos a

0

0

-p(l-cos a)

0

0

0

1

0

0

0

0

0

L

1

0

0

0

0

0

0

1

0

p(l-cos a)

sin a

0

0

_2
Y L-p(a-sin a)

1

where a is the bending angle of the central ray of the magnet and p is the

radius of curvature.

The matrix elements of a rotated pole face are given by

1

tan3/p

0

0

0

0

0

1

0

0

0

0

0

0

1

-tanB/p

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1



- 43 -

Bibliography

There are many books and articles covering the topics of ion

optics, classical mechanics (including relativistic mechanics) and classical

electricity and magnetism. The ones listed here are chosen on the basis of

personal prejudice but are in any event not only readable but give thorough

accounts of the subject matter.

1) Classical Mechanics by Herbert Goldstein, Addison-Wesley, Reading, MASS.

(1959)

2) Classical Electricity and Magnetism, by W.K.H. Panofsky and Melba

Phillips, Addison-Wesley, Reading, MASS. (1955)

3) Classical Electrodynamics, by J.D. Jackson, John Wiley and Sons Inc., New

York (1962)

4) A First and Second-Order Matrix Theory for the Design of Beam Transport

Systems and Charged Particle Spectrometers, K.L. Brown SLAC Report #75,

(1967).

5) Calculations of Properties of Magnetic Deflection Systems, S. Penner,

Rev. Sci. Instr. 32 (1961) 150.

6) Transport, A Computer Program for Designing Charged Particle Beam

Transport Systems, K.L. Brown and S.K. Howry SLAC Report #91, (1970)



ISSN 0067 - 0367

To identify individual documents in the series

we have assigned an AECL- number to each.

Please refer to the AECL- number when re-

questing additional copies of this document

from

Scientific Document Distribution Office

Atomic Energy of Canada Limited

Chalk River, Ontario, Canada

KOJ 1J0

ISSN 0067 - 0367

Pour identifier les rapports individuels faisant

partie de cette serie nous avons assigne

un numero AECL- a chacun.

Veuillez faire mention du nume>o AECL- si

vous demandez d'autres exemplaires de ce

rapport

Service de Distribution des Documents Officiels

L'Energie Atomique du Canada Limitee

Chalk River, Ontario, Canada

KOJ 1J0

Price $4.00 per copy Prix $4.00 par exemplaire

© ATOMIC ENERGY OF CANADA LIMITED. 1983

2362-83


