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1. INTRODUCTION 

Particles circulating In a colliding beam storage device like the SPS 
collider experience a localised focussing field when crossing the opposing 
beam. To first order this can be approximated by a linear lens which 
produces a small tune shift from the unperturbed tune, called the linear 
beam-beam tune shift. However, the force is intrinsically nonlinear and 
the nonlinearity gives rise to two unwanted effects. Firstly it introduces 
a dispersion of the tune with amplitude and secondly it excites nonlinear 
resonances. 

The problem of the beam-beam interaction has been of considerable 
interest for many years. The main reason for this interest is that almost 
all electron-positron storage rings have fallen short of their design 
luminosity due to this effect. It is now known that this phenomenon is 
also a serious limitation in the SPS collider. Although a great deal of 
theoretical and experimental effort has been invested in the subject, the 
problem is still not completely understood. There are many theoretical 
models of the beam-beam interaction and there have been at least two 
dedicated workshops 1], 2]. In addition, a number of review papers are 
available 3],4],5]. 

It is not the object of this paper to try to give another 
comprehensive review of the subject. Instead, in the rest of this 
introduction jlome experimental data on the beam-beam effect in e +e" 
and p-pbar colliders twill T>e-fpresented in order to illustrate their 
differences and similarities. Then, after treating the linear beam-beam V"1 
force, the subject of nonlinear resonances ¡viril- bcf introduced using some »-\ 
simple examples.f^It must be emphasized that these lectures are intended à. f . 

— Co-no. for non-specialists so the normal Hamiltonian treatment will not be used. Q 

Instead, the more physically intuitive but also more limiting differential 
equation method will be employed. This method will be used to investigate 
one-dimensional beam-beam resonances for a conservative system (hadron 
colliders only) in the weak-strong régime. The influence of tune 
modulation and the concept of stochasticity will then be introduced, 
followed by a short description of the resonance trapping mechanism. } 

Finally, some practical implications for the SPS collider will be 
discussed. 
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2. EXPERIMENTAL DATA FROH e+e~ AND HADRON COLLIDERS 

2.1 e*e~ Colliders 

Figure 1 (from reference 6) shows the luminosity versus current 
observed in the four major e +e~ colliders operating at the present 
time. The luminosity L is given by 

L = I a (2.1) 
4TrMe afa a 

Where f is the revolution frequency, M. the number of bunches per 
beam, I the current per beam (assumed equal for the two beams) and 
a are the standard deviations of the beam size at the crossing 

* t y point. 
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Fig. 1 (from reference 6) 

Luminosity and beam-beam tune shift versus current for the four 
large e*e~ collider SPEAR, CESR, PETRA and PEP 

The behaviour of all four machines is remarkably similar. At low 
current, except for PETRA, the luminosity increases proportionally to 
I s in agreement with equation 2.1. Above a certain threshold current 
the curves break and the luminosity is more proportional to I rather than 
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I a. Even more clearly the upper plots of the vertical beam-beam tune 
shift Çy as a function of current show a clear saturation above a 
certain threshold current. This value of the tune shift is generally 
known as the beam-beam limit and as can be seen from the data it is quite 
precisely defined for all four machines. 

As will be shown later, the vertical tune shift is proportional to the 
ratio of the current to the vertical beam size and the reason that it 
saturates is that the beam size increases proportionally with the current 
above the threshold value. This is an important characteristic of 
e +e~ machines. At a given current an equilibrium distribution exists 
which is a balance between the heating due to the beam-beam interaction 
and quantum fluctuations and the cooling due to synchrotron radiation 
damping. The beam size has been observed to blow up by as much as a 
factor of five before the lifetime is affected 7], 

Considerable progress in understanding the dependence of the beam-beam 
limit on various machine parameters has been made in recent years by the 
use of computer simulation 8],9],10]. When all the relevant physics is put 
into the computer programs, results are obtained which closely model the 
behaviour of real machines. Such simulations have been used in PEP, PETRA 
and CBSR to improve machine performance. The main reason why computer 
simulation is so successful at modelling e +e~ machines is that the 
(non-conservative) particle dynamics needs only to be followed for a few 
damping times (10*-10* turns) before the equilibrium distribution 
is established. This is in sharp contrast to the situation in the SPS 
collider. 

2.2 Hadron Colliders 

The first hadron collider to operate was the ISR. This is a very 
special machine for two reasons. Firstly, the operating beam-beam tune 
shift is very low (~ 4 x 10~* per intersection) and is only 
important in the vertical plane due to the horizontal crossing angle. 
Secondly, the beams are debunched so except for small effects like 
intrabeam scattering or power supply ripple, the tune of a given particle 
remains rigorously constant in time. Under normal operating conditions no 
important beam-beam effects are observed even though the beams are stacked 
across relatively low order resonances (7th and 8th order). 

In order to achieve a usable luminosity in the SPS collider the 
beam-beam tune shift must be almost an order of magnitude greater than in 
the ISR (3 x 10~* per intersection) and the collisions are head-on 
so produce equal tune shifts in both planes. In addition, the beams must 
be bunched as in e +e~ machines so the tune of a given particle 
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continuously sweeps through resonances as it performs energy 
oscillations. However, there is negligible synchrotron radiation damping 
so an equilibrium distribution does not exist. One would not expect to 
see a 'hard' beam-beam limit as observed in e +e~ machines but rather 
to observe a decay rate of the beam intensity which depends strongly on 
the current and on the working point. 

The important unanswered question before the collider came into 
operation was whether the decay rate was sufficiently low for useful 
physics to be done. The required beam lifetime is of the order of a day in 
order to accumulate enough antiprotons for the next fill. Although the 
ISR could not answer this question under normal operating conditions, some 
Indication of the magnitude of the effect was obtained in an experiment 
where the lattice was strongly distorted in order to obtain a beam-beam 
tune shift of up to 3 x 10~" per intersection and one of the beams 
was bunched 11]. The observed bunch lifetime was strongly dependent on 
the vertical separation between the two beams. The best measured lifetime 
of 30 hours at least gave some confidence as to the viability of the SPS 
collider. 

Very early in the commissioning period of the collider, strong 
beam-beam effects were observed 12]. Figure 2 shows a scan of the tune 
diagram with three proton bunches and a single weak antiproton bunch in 
the machine (6 crossings per revolution for the antiprotons) and with a 
beam-beam tune shift of 3.3 x 10~ 3 per crossing. Figure 2a) shows a 
chart recorder output of the intensity of one of the proton bunches 
together with the antiproton bunch on a very sensitive scale. Figure 2b) 
shows the tune diagram between the third and fourth order resonances, 
where the 10th, 7th and 11th order resonances are indicated. 

The intensity decay rate was measured at different positions in the 
working diagram indicated by the lines marked 1,2 etc. The meaning of 
these lines is the following. The proton bunch (with which the tune is 
measured) has a negligible spread and can be considered to occupy a point 
in the working diagram which is indicated by the lower point on each 
line. On the other hand, as we shall see later, the antiprotons have 
spread in tunes due to the beam-beam interaction. The small amplitude 
particles are shifted upwards by the total tune spread of 6 x 0.0033 = 
0.02 in each plane, corresponding to the point at the other end of each 
line. Large amplitude antiprotons occupy most of the space between these 
two points. 

The decay rate of the antiprotons is extremely sensitive to the tune. 
At the point 1 only the small amplitude antiprotons touch the 10th order 
resonance and the lifetime (inverse decay rate) is around 300 hours as is 
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Fig. 2 

Scan of the working diagram between the third 
and fourth order resonances 
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usual right at the start of storage. As the working point is moved 
upwards, larger amplitude particles straddle the 10th order resonance 
Cpoint 2) and the lifetime quickly drops to only 25 hours. 

The 7th order resonance (point 4) is extremely destructive, giving a 
lifetime of only 3 hours. This, at first, is surprising because ideally 
one would expect the collisions to be exactly head-on, in which case odd 
order resonances cannot be excited. However, the tune of the antiprotons 
is different to that of the protons (due to the beam-beam shift) so that 
the closed orbits are not exactly identical and small displacements of the 
beam centroids can be expected at the crossing points. In addition, odd 
order resonances can be driven by the small residual dispersion at the 
unwanted crossings. Points 6 and 7 show the influence of the 4th order 
resonance. The lifetime is almost too low to be measurable. Points 8 and 
9 show the effect of returning to the initial position (point 1). 

The proton decay rate is quite insensitive to the tune. This is 
because the antiproton beam was too weak to excite beam-beam resonances on 
the protons and the natural machine nonllnearity for driving resonances of 
this high order is negligible. The practical implication of all this is 
that in order to have reasonable conditions for physics the tune must be 
restricted to a very small region of the working diagram corresponding to 
that of point 1 in the figure. Therefore the beam-beam effect imposes 
severe constraints on machine performance. 

In contrast to e +e~ machines, direct computer modelling of the 
beam-beam interaction is of limited use. The main reason is that there is 
no equilibrium distribution so that the particle dynamics must be followed 
for very many turns before a decay rate can be established. In the SPS the 
antiprotons make something like 10* beam-beam collisions per hour and 
a one-hour lifetime can be considered to be disastrous. Therefore, the 
computational difficulties are formidable and we are obliged to use simple 
analytical models like the one developed in the rest of this paper. The 
real value of simulation programs is to test the models and the 
approximations that go with them. 

3. THH BEAM-BEAN FORCE 

We consider a round Gaussian beam with n particles per unit length and 
with a density distribution 
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/>(r) = _ne_ e ^ ^ 2 " ' (3.1) 
2traa 

The Lorenz force on a test particle at a radius r Is 

F = e(E + u x B) = e(E r ± BcB^) -r. (3.2) 

where the negative sign corresponds to a particle in the same bunch and 
the positive sign to a particle in the other beam, r Is the unit vector. 

The radial electric field E r and the poloidal magnetic induction 
can be obtained from Gauss' theorem and Ampere's law respectively, 

neglecting the flux out of the ends of the bunch. 

2iTrEr = i_ J 2irr' p(r') dr' 
o o 

so 
E r = _ M _ f l _ e-r'/Za) (3.3) (1 - e"* ' * " ) 

2 T r r c 0 

ZirrB^ = v r t / 2nr'ßc p(r') dr' 

and 

B. . n e » o ß C (i _ e-r'/2a') (3.*) 
v 2ur 

Then 

F = ne J
 ( 1 ± ß 1) ( 1 _ e - r 2 / 2 c r 2 ) (3.5) 

r 2 i r r c
0 

For particles in the same bunch the force falls off as 1/Y 2 and 
is completely negligible at the energy of the SPS collider. However, this 
is only the macroscopic effect of the overall space-charge field. Coulomb 
collisions between individual particles in the same bunch give rise to a 
phenonmenon called intrabeam scattering which is, important in the 
collider. This effect will not be discussed here. 
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For particles in the other beam, the effect of electric and magnetic 
fields is additive. We define an equivalent magnetic field B e q which 
gives the same force 

eq 
!r_ 
eßc 

!r 
Be —L + B • 
ne(l + B 21 (i _ 
¿ir c„ ßc r o 

(3.6) 

Fig. 3 
The equivalent beam-beam field 

3.1 The Linear Tune Shift 

Small amplitude particles experience an almost linear field with 
gradient 

a B 
3F 

eg 
r = 0 

ne(l + ß 2 ) 
4ir ßco 2 

o 
(3.7) 

For the SPS collider, n = 1.6 x 1 0 1 1 m - 1 and a = 0.1 mm 
at the experimental crossing points, giving a gradient of 150 T.m - 1. 
The linear tune shift AQ^ is given by 
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AQ, = i— • G_ . ß* . L (3.8) 
L Air Bp 2 

where ß* is the beta function at the interaction point and L/2 is the 
effective length of the interaction (half the bunch length). 

Then putting Bp = m^cßy/e and r p = e2/(4tr 
c on Qc J) we get the linear beam-beam tune shift, which we will 
call I to be compatible with other authors. 

£ = AQ L = ÜIfi!l (3.9) 
4 T T Ö 2Y 

where N is now the total number of particles per bunch and r p is the 
classical proton radius, r p = 1.535 x 10 - 1*m. We take ß = 1. 

In the case of an elliptical beam with Gaussian distribution the tune 
shift is 13], 14] 

W r p . [B^I (3.10) 
(" x + ff

2) Lff J x » z 

We can write the beam size in terms of the invariant emittance 

o 2 = (cßvl ß* (3.11) 
4Y 

Equation 3.9 then becomes 

f > N r P (3.12 
tr(eßY) 

so the linear beam-beam tune shift in a hadron machine is independent of 
the energy and for round beams it is also independent of the beta function 
at the crossing points. This is why low-beta insertions are so interesting 
for increasing the luminosity. In the SPS the beta functions at the 
crossing points are reduced from their normal values of ß H = 50 m, 
ßy = 50 m, to B H = 1.3 m, ßy = 0.65 m, giving more than a factor of 
50 increase in luminosity but with the same beam-beam tune shift 
parameter. 
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If the beam-beam effect only produced a linear tune shift this could 
easily be corrected by adjusting the overall tune of the machine. 
However, we see from figure 3 that the field becomes very nonlinear at a 
modest betatron amplitude and this produces two effects. Firstly, the 
tune of a particle is a function of the amplitude of its oscillation. 
Particles with very small amplitude are shifted by the full amount Ç 
whereas particles with a very large amplitude almost see no effect from 
the other beam so their tune is not shifted at all. This gives rise to a 
tune spread inside the beam which cannot be compensated by quadrupoles. 

Even more important, it is Known that such concentrated nonlinear 
fields excite resonances and can have a profound influence on the phase 
space dynamics. The experimental results presented in the previous 
chapter show a strong dependence of the lifetime of the beam on the tune 
and bad regions are strongly correlated with 'resonant' values of tune. 

In the next sections, the phase space dynamics in the presence of such 
resonances is investigated. However, since many readers may not be 
acquainted with the fundamentals of nonlinear resonance theory, a short 
introduction to the subject is first given with examples using nonlinear 
driving fields which are somewhat simpler than the beam-beam field. 

4. NONLINEAR PHASE SPACE DYNAMICS 

We are interested in investigating the perturbed Hill's equation of 
the form 

dfx 
ds 2 

+ K(s)x = g(x,s) (4.1) 

where g(x,s) is some driving function nonlinear in amplitude x and 
distributed in azimuthal position s. 

The above equation can be transformed into the equation of the 
perturbed harmonic oscillator using the classic transformation of Courant 
and Snyder 15]. 

Tj = X//B ; 6 = J ds/QB. 

Since Qß = R, in this 'smooth' approximation, 6 changes by 2ir per 
revolution. Equation 4.1 then becomes 
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+ Q 2n = E ( T i . e ) (4.2) 

The most elegant and general way of investigating the behaviour of 
such a system is using Hamiltonian dynamics. For a complete treatement of 
the problem using this method the reader is referred to the literature 
16],17]. In the present work a more physically transparent, although less 
powerful method is used in which the discussion will be limited to 
one-dimensional motion only. 

The homogeneous equation 

TI" + Q 2 n = 0 (4.3) 

gives a first integral 

The trajectories in the phase space r\, n'/Q are circles of radius 
c. The area of the circle is T I C 2 = ire, where e is the 
"emittance" of a particle i.e. the area of phase space (divided by T T ) 
enclosed by the particle trajectory. 

The solution of equation 4.3 is 

n(6) = Sc cos (Q9 + <t>) 

were c and 4> are constants defined by the initial conditions. 

4.1 The Amplitude and Phase Equation 

In order to solve the inhomogeneous equation 4.2 we use the method of 
Kryloff and Bogoliubov, often called the method of variation of constants 
or variation of parameters (for a detailed discussion see reference 18]). 

We assume now that c and 4> are no longer constants but we allow 
them to vary slowly with 6. 

( T T / Q ) 2 + n 2 = c 2 (4.4) 

= Vt C O S • (4.5) 
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TI m Sc cos * a) 
(4.6) 

n' = - Q/7 sin * b) 

where in the second equation we already neglect the c' and 4>* terms. 

The variables c and • are nearly the action/angle variables of 
Hamiltonian dynamics. The true canonical variables are generally called I 
and • , where I = cQ/2. 

The inverse transformation is 

c = n* + ( V / Q ) 2 a) 
(4.7) 

• = - arctan (V/QTI) b) 

Differentiating 4.7 a) we get 

d£ = 2TIT1* + ^lin" d9 Q , 

= 2TLL (T1.. + Q ^ j (4.8) 
Q 2 

= 2 n ' s s / 2 g ( T i , e ) 

Similarly from 4.7 b) we get 

d* 
d9 

Qfnn" - TI 1 2 1 
Q 2 n 2 + V a 

Q _ QB J /'R(TI,8)T| 
c 

(4.9) 

The second term in equation 4.9 is just the tune shift due to the 
perturbation. 

Finally we substitute the unperturbed solution 4.6 into the right hand 
sides of the above equations to get the two important equations for the 
amplitude and phase 

US. = 2 Q B , / a e l / a g (Ve cos 4, 6) sin * a) 
d Q (4.10) 
d* = Q - QB 3^ 2g (v*c cos <fr. 6) cos 4> 
d6 x Sc b) 
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We will now illustrate the use of these equations with the help of 
some simple examples. 

4 . 2 A Single Octupole 

We consider a single short octupole of length L and strength K = 
(3 ,B z/3X 3)/6 Bp. 

The driving term in equation 4 . 2 . is then of the form 

g(n . e ) = K ß , / a n a f ( e ) ( 4 . U ) 

and the 6 dependence can be expressed as a Fourier expansion 

00 
f(9) = - L _ 

TTQB 
I + I cos p 6 j ( 4 . 1 2 ) 

P=l 

Then 4 . 1 0 gives 

d ç = 2KL . e
a

B
a
 c o s » * s i n * I + Z c o s p 9 a ) d9 ir " i ¡ 3 * s i n * I 

L 2 

d* = Q _ KL. cß a eos 4 * í I + I cos p e l 
d e * L 2 P=I J 

p = i j 

b) 

( 4 . 1 3 ) 

For the time being, we will neglect the second term in the square 
brackets on the grounds that it is rapidly oscillating so that Its 
contribution over many revolutions averages to zero. Later on, we will 
analyse the situation when this is not the case. 

The phase equation is then 

d*. = Q - KL. e B a cos* * ( 4 . 1 4 ) 
d9 2TT 

where the second term is the perturbation of the tune due to the 
octupole. The cos** term shows that the instantaneous tune depends 
on the amplitude of the particle on any particular traversal of the lens. 
What we are interested in is the mean tune over many revolutions. If 
there are no resonance effects the particle will have sampled the octupole 
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over a large number of phases between 0 and 2rr after many revolutions. 
So to Elnd the mean tune we average over the cos** term. 

d* 
de 

= Q 

= Q 

2tr 

3KL c B a 

16TT 

B " ' LB X a 

32ir B p 

2TT 

i_ f cos* 

2Tf J 
* d* 

(4.15) 

The second term Is the well-known expression Eor the variation of tune 
with amplitude in an octupole. It is used to good advantage to stabilise 
high-intensity beams against transverse instabilités by providing Laudau 
damping through a spread of betatron frequencies as a function of 
emittance. As we will see later, it also plays a crucial rôle in 
influencing the phase space trajectories of particles in the presence of 
beam-beam induced resonances. We will call it the nonlinear detuning 
ÛQ N L- Note that if we had taken a sextupole instead of an octupole as 
an example, we would have an integral over cos 3* which would have 
given no. nonlinear detuning. 

Averaging the amplitude equation 4.10 a) in the same way gives 

de. 
de 

KLc aß a I 
2w 

2TT 

sin • cos'*d* 

(4.16) 

so the octupole has no effect on the amplitude of oscillation. The phase 
space trajectories are still circles but the tune depends on emittance. 

We now wish to analyse the conditions under which we cannot neglect 
the second term in brackets in equation 4.13. In 4.13 b) we have terms of 
the form cos 4* cos p6. Firstly we expand the term cos** 
using well-known trigonometric identities. 

cos* • = cos4* + cos2* + 3 (4.17) 
8 2 8 

and we see that we have the nonlinear detuning immediately from equation 
4.13 b) without needing to do the averaging trick, due to the constant 
term in the above expansion. Of course, all we have done is to expand 
cos* * as a Fourier series and the factor 3/8 is just the zeroth 
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harmonic. 

Then 

cos 4 * cos p9 = 1_ r c o s (4o> + p9) + cos (4* - p6)) 

+ ¿ (cos (2* + pG) + cos (2* - pG)) (4.18) 

3 cos pG 
8 

Slowly varying terms appear in the above expression when one of the 
difference terms is close to zero. This happens when 

These values of the tune correspond to the 4th order and half-integer 
resonances. We will now Investigate the phase space trajectories when the 
tune is in the vicinity of such resonant values. It will be noticed that 
the half integer resonance, which is normally associated with a quadrupole 
perturbation, can also be driven by an octupole perturbation. In general, 
i. resonance of order n can be driven by all higher multipoles. The 
significance of this statement will become apparent when we discuss 
beam-beam resonances. 

In the phase and amplitude equations we now keep the resonant term 
cos(4* - pG) (assuming that the tune is near to a 4th order resonance) 
as well as the nonlinear detuning term to get 

Q = P/4 
or 

Q = P/2 

d£ = KLB a. c
2 

dG 8TT 
c sin 4Hf 

(4.19) 
d* = Q + AQ M T + luda! dG v i 6 T r 

c cos 4i|» 

where t|r = (Q - p/4)G + o> is called the "slow" phase variable. 

4.3 The Resonant Invariant 

It is left to the reader to show that the amplitude and phase 
equations near a resonance of order n are 
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âL = 2nc n / 2B„sin n*|f a) d6 n 
(4.20) 

M = (Q - p/n) + n A n c n / 2 _ 1 + n ß n e n / 2 _ 1 c o s b) 

The nonlinear detuning is 

A Q N L = n A n c n / 2 - 1 ( 4 - 2 1 ) 

and the resonance (half) width is 

ÛQ n = n B n c n / 2 1 (4.22) 

We will see later the physical significance of the resonance width. 
In general, if the resonance is driven by an arbitrary azimuthal 
distribution of multipoles the Fourier decomposition 4.12 must be done 
more carefully, taking into account the variation of strength and beta 
function at the individual elements. In general, for N arbitrarily spaced 
short lenses 

A„ = 1 ? »l\ \ n n (4.23) 
2 n + 1 u (n/2)! 2 1 = 1 B * 

and 

an = j / > B„ = l / a D
2 • b* (4.24) P 

where 

P = 
M 
I 

2n.tr.n! 1-1 

1 M 
I 
i = l 

_i 1 • C O S p e. 
Bp 1 1 

B i _ 1 L i ß i / 2 s i n p 9 i 
Bp 

(4.25) 

(4.26) 
2n.Tr.n! 
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and 

Bn-1 = d n ~ 1 B y 

dx"" 1 

From the amplitude and phase equations 4.20 we can derive an important 
invariant Multiplying 4.20a) by d^/dO and 4.20b) by dc/dO and 
subtracting, we get 

d_ 
d6 (Q - p/n ) c + 2A n c 

n/2 2B r 

n/2 cos nt|r ].. (4.27) 

(Q - p/n)e + 2 A n c n / 2 + 2 B n c n / 2 cos m|r = Constant (4.28) 

Bquation 4.28 gives us the trajectories of particles in the variables 
e,>|> in the vicinity of a resonance of order n. Once the initial 
conditions c and i|r fix the values of the constant the motion can o o 
then be followed for all time using equation 4.28. 

These trajectories are Influenced by both the resonance excitation and 
the nonlinear detuning. The octupole example we considered above excites 
both of these terms. In order to Illustrate separately the influence of 
excitation and detuning, in the next sections we will consider the example 
of a single sextupole which we have already shown produces no nonlinear 
detuning. Then by adding a zeroth harmonic octupole term we will show how 
the trajectories are modified. 

The resonant invariant is 

(Q - p/3)c + 2 c , / a B cos 3* = C (4.29) 

Consider the situation exactly on resonance when Q-p/3 = 0 . Then for 
values of cos 3i|r = 0 particles must go to infinite amplitude. The whole 
of the phase space Is open. (Figure 4a)). 

Slightly off resonance we have 

AQ Le + 2e 3' IBj cos 3 y = C (4.30) 



- 336 -

QC -0.6S6I 
5 -0.100) 
OCT-0.0301 

a) b) 

UL -U.bbb 
S -0.083 
ocT-B.aes 

c) d) 

Fig. 4 

Phase space trajectories in the vicinity of a 3rd order resonance 
without (a) and b)) and with (c) and d)) octupole stabilisation. 
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where AQ L = Q -p/3, the distance of the linear tune from the resonant 
value. 

We now observe the appearance of fixed points de/d6 = 0, 
<hjf/de = 0, giving sin 3i|r = 0, cos 3* = ± 1 and ÛQ L = 
3c f B, 

where c f is the fixed point amplitude. One fixed point is the origin 
around which small amplitude particles move on circular trajectories. It 
is called a stable fixed point. The other three fixed points at t|r = 0, 
2w/3, 4ir/3 are unstable fixed pointed and define a separatrix between 
closed and open trajectories. (Figure 4b)). 

The tune shift corresponding to the fixed point Is called the 
resonance width AO.-. 

AQ 3 = 3c f
l'»B t 

= B a / a c l / a L . 3 l B _ (4.31) 
16TT Bp a xa 

A particle with emittance will find itself inside the 
separatrix and stable if AQ^ > AQ s but outside the separatrix 
and consequently unstable if AQ L < AQ s. Therefore AQ a is 
smallest distance from the resonant tune for a particle with emittance 
c f to remain stable. This concept of resonance width is useful for 
low-order unstabilised resonances but is frequently misused in the context 
of high order resonances in the presence of nonlinear detuning as is the 
case for beam-beam resonances. 

The third-integer resonance is frequently used to obtain a slow spill 
of particles from a synchrotron. As the tune is slowly pushed towards the 
resonance particles stream out through the unstable fixed points making 
bigger and bigger jumps in amplitude each revolution until they finally 
cross a thin-wire electrostatic septum and are extracted from the machine. 

4.4 The Nonlinear Detuning 

We conclude this chapter with a short discussion of the influence of 
nonlinear detuning on the phase space trajectories. Since the tune 
depends on the amplitude the effect is to stabilise the trajectories in as 
much as amplitude growth of particles on resonance leads to a tune change 
which tends to move the particles off resonance. 
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As an example, consider the effect of switching on an octupole lens in 
the vicinity of the sextupole resonance already discussed. 

Thus 

AQ Le + Kil + 2 £ ' / a B , c o s 3* = C (4.32) 

Figures 4c) and 4d) illustrate the effect of Increasing octupole 
strength in stabilising the resonance. With a weak octupole the 
trajectories spiral back in as the octupole changes the large amplitude 
tune. Stronger octupole completely stabilises the phase space. Stable 
and unstable fixed points appear about which the particles move in closed 
(elliptical) or open (hyperbolic) orbits. 

The nature of the fixed points can be investigated by making a small 
amplitude expansion around the fixed points. The phase and amplitude 
equations written in terms of the radius r = c1^3 are, in the 
general case of a resonance of order n 

di = nr n - 1B-, sin n* de n 

ijîfc = AQ L + Kr 2 + n B n r n _ 2 cos n* 

At the fixed points r = r Q then dr/dG = dv/dG = 0. Putting r 
= r Q + Ar, >|f = yQ + Aty. Then 

^ = n 2 B„r" - 1 cos nqr A* d r n o o 

áAí = (2Kr„ + n(n-2) B„ r 1 , - 3 cos mjr ) Ar d9 * o v ' n o o' 

with cos ni|r0 = ± 1. 

Then 

Ar"= n 2 B n r ^ _ 1 cos ro|ro(2Kr0 + n(n-2)Bn rjj - 3 cos nt|fQ) Ar (4.35) 

a) 

b) 

(4.33) 

a) 

b) 
(4.34) 

and neglecting the second term in brackets we obtain 
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Ar" - 2B nKn 2rQ cos n* QAr = 0 (4.36) 
which is the harmonic oscillator equation if B n Kcos n* Q < 0, giving 
circular orbits around the fixed point or hyperbolic orbits if B nKcos 
m|r0> 0. 

The unstable fixed points define séparatrices. The stable fixed points 
are the centres of islands of stability into which particle orbits becomes 
locked. The stability of the large amplitude pnase space depends on the 
relative strength of the resonant excitation to nonlinear detuning. 

The sextupole example illustrated above requires a supplementary 
octupole lens to stabilise the resonance. However, the beam-beam force 
itself provides both nonlinear detuning and resonance excitation. The 
next step will be to investigate the phase space topology for this case 
using the method developed above. 

5. BEAM-BEAN RESONANCES 

In this section we will analyse the one-dimensional particle motion 
for the strong-weak case. This means that we are interested in the 
behaviour of a weak beam under the influence of a strong beam in which the 
particle trajectories remain circles in phase space. That is to say we do 
not take into account the perturbation of the strong beam by the weak 
beam. This approximation is probably good for the present operating 
parameters of the SPS collider, where the beam-beam tune shift due to the 
antiprotons is almost an order of magnitude smaller than that due to the 
protons. 

The object is to solve the amplitude and phase equations 4.10 using 
the beam-beam field 3.6. Assuming the beam-beam kick to be located over a 
small distance L the driving term is 

g(n.e) . S*¿ i1" e -ßT,2/2°2 I [ l • I cos pel (5.1) 

QT,B 5 / 2L J L2 p-1 J 

Substituting the unperturbed solution TI = Vecos* in this equation, 
we obtain the phase equation 

d* - Q 
de 

- e -° c o s a * J [ l + ^ cos pej (5.2) 

where a = cß/2c 2. 
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Now the next step Is to extract the slowly varying part of equation 
5.2. This can be done in two ways. 

Expanding the exponential we get 

(1 - e -a cos '*) . J r r - n " - 1 « " - 1 ! , : , . ' " « 
n=lL n! J 

(5.3) 

and using the expansion 

c o s 2 n * = 1 
,2n 

n-1 r 2n! 2 cos(2(t-n)*) . f2n)! 
1=0 (2n-l)! i! (n!) 

(5.4) 

We obtain the phase equation as a triple summation 

m-1 m-1 m _ 1 

d*_ = Q 
d9 

T 0 0 m-1 m-1 1 1 1 - 1 , n 4C T (-li a y / 2.f2ml! cosf2(t-mW + (2m)n 
Lm-1 2

2 * n. i-0 t (2m-!l)! u ( m ! ) 2 M 
(5.5) 

• I I + E cos pe 

L 2 p=l J 
The task is now to extract the slowly varying part of this expression. 

The DC term is easy. It is 

A Q N L = Ç l r r - n m- 1r2mna m - 1 1 (5.6) 
m=lL 2 2 m - 1 ( m ! ) 3 J 

This is just the variation of tune with amplitude but now as well as the 
octupole term all the higher multipoles of the beam-beam force are 
important. 

The slow term in cos ni|f is more difficult to spot because the 
resonance of order n is also driven by all the higher multipoles of the 
beam-beam force. We are interested in terms of the form cos(p6 - 2(1 
- m)*) where 

pe - 2(11 - m)qe - o (s.7) 
i.e. 

Q = 2 
2(m - 1) 

= p/n (5.8) 
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where n Is the order of the resonance. Therefore we can get rid of the 
summation over 8. by keeping only the terns for which 

8. = m - n/2 (5.9) 

The slowly varying part of equation 5.5. transforming to the slow 
phase * is then 

¿4 = (Q - p/n) + I U'(a) + Ç V (a) cos n* (5.10) 

where 

U'(a) Q Ni/* 

and 

a) 

V n (a) = I f - n m- 1a m- 1f2m!) b) (5.11) 
m=n/2 2 2 m- 2m!.(m + f )!(m - f )! 

The function V' n(a) can be identified as the equivalent of the 
'resonance width' for a beam-beam resonance. The infinite sum is simply 
the consequence of the fact that a resonance of order n is driven by all 
higher multipoles 19]. This is very important at large amplitude where 
the strength decreases instead of increasing monotonically as is the case 
for magnet imperfection resonances. 

Closed form solutions for these functions can be obtained by averaging 
over the phase variable 20], 21]. The nonlinear detuning can be obtained 
by averaging the zeroth harmonic term in equation 5.2. 

2TT 2 
U'(a) = _i J (l- e- a c o s •) d* (5.12) ira 0 

giving 

U'(a) = Â j*! _ e-a/2j.o(a/2)J ( 5 . 1 3 ) 
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The resonant term can be obtained by putting pG » nty - n* 
and averaging the coefficient of the term in cos m|r 

V' (a) = 2_ fW
(i _ e" a c o s 2 * ) cos n* d* (5.14) 

giving 

V n(a) = (-1) 
-a/2 

2 
(a/2) (5.15) 

The expressions 5.13 and 5.15 are identical with the series 5.6 and 
5.11. The nonlinear detuning and resonance width functions are shown in 
figures 5 and 6. For centred beams only even order resonances are driven. 
Small orbit displacements between the beams at the crossing points will 
also drive odd order resonances. The nonlinear detuning and resonance 
width functions for these resonances can be derived easily by introducting 
an orbit offset in equations 5.12 and 5.14. However, since no new physics 
is introduced Into the problem these resonances will be ignored in what 
follows. 

A similar argument can be used to obtain the amplitude equation 

â | = nÇ Vn(<x) sin m|f (5.16) 

and finally the resonant invariant can be obtained. 

C = (Q - p/n)a + £U(a) + f V n(a) cos nt|r (5.17) 

which gives us the phase space trajectories. Notice that the linear tune 
shift Ç is just a scaling parameter affecting both resonance strength 
and nonlinear detuning. 

The important question is whether the large amplitude phase space is 
stable or unstable. Figures 7a and 7b) show some typical trajectories in 
the vicinity of half integer and 4th order resonances. The island 
structure with stable and unstable fixed points is clearly visible. The 
fixed point amplitude is given by 
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The nonlinear detuning function U'(a) with a = XV2tf a. 
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Fig. 6 

The "Resonance Width" function V' n(a) 
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DQL-0.040 
QS =0.000 
DQM=0.000 

Fig. 7 

Phase space trajectories in the vicinity of the half-integer (a 
and 4th order (b)) beam-beam resonances. 
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d a _ djjr _ o 
de de 

giving cos ro|r = ± 1 
and 

(Q - P/n) + î U'(of) ± C V n ( a f ) = 0 (5.18) 

The resonant term ÎV n'(a f) is generally small and can be 
neglected to first approximation. The island amplitude is then given by 

Q + E U'(<xf) =» p/n (5.19) 

Now Q + iu'(a) is simply the tune of a particle with amplitude 
a, so an island structure appears at an amplitude where the particle 
tune is resonant. 

The Phase space is stable. This in an Important characteristic of 
beam-beam resonances. The nonlinear detuning produced by the beam-beam 
force itself is always sufficient to stabilise the resonance. Therefore, 
there is no mechanism to explain the observed beam behaviour with single 
static one-dimensional resonances. This is in obvious contradiction with 
our practical experience so there is clearly something missing in the 
model. 

5.1 Tune modulation 

In order to maximise the luminosity in the SPS collider the beams are 
bunched. Consequently, the particles perform energy oscillations and 
there are several mechanisms by which these oscillations can result in a 
tune modulation. The most important of these are: 

Non-zero chromaticity 

In order to stabilise the dense bunches against coherent instabilities 
the chromaticity must be adjusted to be slightly positive. This results 
in a tune modulation at the synchroton frequency f g. 

Non-zero dispersion at the crossing points. 

The SPS low-beta insertions are designed to give zero dispersion at 
the two experimental crossing points. However, with 3 bunches per beam in 
the machine, collisions occur at 4 other crossings where the dispersion is 
not zero (~ 0.2m). If the number of bunches per beam is doubled, as is 
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required to reach design luminosity the beams will collide also in the 
arcs where the dispersion is even bigger (~ 1 m ) . This gives rise to a 
modulation o£ the closed orbit of the test particle with respect to the 
strong beam centrold and results in both a modulation of the strength of 
the beam-beam kick and to the exictation of odd order resonances. It is 
intended to eliminate this effect in the future by separating the beams at 
the unwanted crossings with electrostatic deflectors. 

Variation of arrival time 

Energy oscillations cause a modulation of the longitudinal position of 
a particle in the bunch. Since the beta function varies through the 
crossing point there is a modulation of both the strength of the beam-beam 
force (for flat beams) and of the phase at which a test particle sees the 
beam-beam kick. This phase modulation results in a tune modulation which 
is known to be important in e +e~ machines with short bunches and small 
beta values at the crossing points. Appropriate calculations and computer 
simulations 22] have shown that this effect is small for the SPS. 

Whatever the mechanism of the tune modulation the result is that 
particles continually sweep across resonances and one might expect that 
this will have an important influence on the phase space trajectories. In 
the next section, in order to investigate the effect of tune modulation we 
abandon for the moment the mathematical model and instead turn to the 
computer. 

5.2 Computer Simulation 

We would like to simulate the particle orbits in the presence of 
tune modulation of the form Q = Q 0 + Q sin Q s6 where Q s is the 
synchrotron tune defined as the ratio of the synchrotron frequency to the 
revolution frequency. We simulate the particle motion by a linear 
transformation around the supposedly linear machine followed by a 
delta-function nonlinear beam-beam kick. 

The beam-beam kick is 

Ax' = - g (1 - e~ x / 2 f f ) (5-20) x ß* 

Transforming to new variables x = x/a. x' = ß*x'/a we get the position 
and angle of a particle on turn n + l from its coordinates on turn n 
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X„ i = K c o s 2 l T Q„ + K sin 2TT Q„ n+l n n n n 

_v 2 /i 
K! . « - X n sin 2TT Q„ + X' cos 2w Q„ - 8JT£. (1 - e n + 1 ) (5.21) n+l n n n n 0 — 

An+1 

Qn+1 = Qo + Q sin (2TT Q s n). 

where the tune is modulated at the frequency Q s. This kind of 
transformation is generally called a nonlinear mapping. 

In the next sections we will investigate the phase space topology 
under such a mapping in the vicinity of the 6th order beam-beam resonance, 
which has been chosen to clearly illustrate the physics rather than for 
any practical purpose. In reality we know that such a low order resonance 
would be extremely destructive. The phase space maps are shown in the 
form of coloured plates which for technical reasons cannot be ideally 
placed in the text, so the indulgence of the reader is solicited. 

As a reference, plate la) shows the 6th order resonance under static 
tune conditions. The 6 islands are clearly visible and the whole phase 
space is stable. 

These phase space trajectories have been generated by plotting the 
position of selected 'seed' particles each revolution. Plate lb) shows 
the effect of introducing tune modulation into the picture. The same seed 
particles as in the previous example are used. The smooth trajectories 
previously observed now seem to have broken up into diffuse bands which 
could be interpreted as the onset of 'stochastic' behaviour. However, if 
we change the time scale of our observation we will see that this is far 
from being the case. Plate 2a) shows the trajectories of the same seed 
particles but now plotted once per synchrotron period instead of once per 
revolution period. We observe the appearance of a beautifully ordered 
multiple-island structure where 4th. 6th, 8th and 10th order resonances 
can be picked out. 

5.3 Synchrobetatron Resonances 

To understand where these islands come from we have to resort to the 
theory. The slowly varying part of the phase equation was obtained by 
expanding the terms of the form cos n<t cosp9 and keeping the slowly 
varying part cos(n* - p6). 

Now the phase <f> is modulated since 
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./(JdO * 0 - (Q/Q s) cos Q s9 (5.22) 

Then 

cos n* = cos(n * Q - (nQ/Q s) cos Q s9) (5.23) 

and using the well-known identity 

cos(A + 8 cos C) - Z J|,(B) cos (A + kC) (5.24) 
k K 

we get 

cos (n*) = Z J k (nQ/Q s) cos (n4>0 + kQ s9) (5.25) 

The product cos n* cos p9 then gives slow terms of the form 
n*o * 

condition. 
cos( n4"0 + kQ g0 - p9) which in turn gives the resonance 

Q = p/n + k Q s/n, _ » < k < » (5.26) 

The main resonance at Q = p/n is therefore split into freqency 
modulated sidebands spaced by Q g/n and reduced in strength by the factor 
Jk(nQ/Qs).These sideband resonances are called synchrobetatron 
resonances. 

We can now understand the multiple island structure observed in Plate 
2a). A ring of islands forms whenever the tune obeys equation 5.26. The 
large amplitude (or unperturbed) tune Q Q is 0.651 whereas small 
amplitude particles are shifted by the full beam-beam tune shift to 
0.681. Islands form at amplitudes corresponding to the following tune 
values. 

3/4 - 3Q s/4 = 0.675 
4/6 = 0.666 
5/8 + 3Q s/8 = 0.6625 
7/10 - 4Q S/10 = 0.660 

with Q s = 0.1. 
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5.4 Stochastlclty 

We have seen that tune modulation increases the density of resonances 
but we have not yet found any evidence of unstable or 'stochastic' 
behaviour. In the previous example the islands are well separated and the 
séparatrices are clean and well defined. However, as the linear tune 
shift increases so does the slope of the nonlinear detuning function and 
the islands are pushed closer and closer together. Platos 2 to 4 show the 
effect of gradually increasing the linear tune shift when the tune 
modulation amplitude and frequency are kept constant. The large amplitude 
tune is chosen in all cases so that the 4/6 resonance lies at an amplitude 
at approximately 2a. 

In Plate 2b) the tune shift has been increased to 0.04 and we see that 
the sidebands of the 6th and 8th order resonance move closer together 
although the séparatrices are still clearly defined. Increasing the tune 
shift to 0.05 (Plate 3a) we observe the appearance of a sideband of the 
14th order resonance as well as the first sideband of the 6th order 
resonance at large amplitude . The trajectories in the vicinity of the 
separatrix of the 8th order resonance become diffuse and degenerate into a 
stochastic band. 

Increasing the tune shift further (Plate 3b), we clearly start to see 
the break-up of the séparatrices. Stable islands can still be observed 
but their size is reduced and the stochastic bands become wider. Finally, 
(Plate 4a) shows the large-scale break-up of the phase space. The islands 
now become isolated from one another by wide stochastic regions through 
which particles diffuse to large amplitude. In addition, a complicated 
high order substructure can be observed around the islands. 

As shown in the above examples, stochastic behaviour is observed when 
the séparatrices of different resonances touch each other. There exists a 
very well known criterion for the onset of stochasticity called the 
Chirlkov criterion 23] which states that the phase space becomes unstable 
when the width of resonances exceeds their separation. For a clear 
discussion of the Chirikov criterion applied to accelerators, the reader 
is referred to Tennyson 24] and Courant 25]. Physically the stochastic 
limit signifies the randomisation of particle phases between successive 
resonance crossings 12]. 

It should be noted that it is not necessary to introduce tune 
modulation to drive a system to the stochastic limit. For example, Plate 
4b) illustrates the phase space for the same conditions as Plate 4a) but 
without tune modulation. The sidebands disappear and consequently the 
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trajectories are perfectly ordered. However, one may observe a resonance 
of 14th order at large amplitude, well separated from the main 6th order 
resonance. Clearly if the tune shift is increased substantially, these 
resonances would move closer together and other resonances would appear. 
At large enough tune shift the system would again become stochastic as in 
the previous example, but to do this the tune shift would need to be a 
sizeable fraction of an integer. 

The effect of tune modulation, then. Is to enormously increase the 
density of resonances and thereby reduce the Chirikov threshold. 

5.5 Approximate Calculation Of the Stochasticitv Threshold 

In the above examples the parameters have been chosen to produce 
strong effects in order to illustrate the principle of resonance overlap 
and the effect of the synchrotron sidebands. If the true beam-beam limit 
for the antiprotons would really be around 0.07 on a 6th order resonance, 
the beam-beam effect would be no limitation at all. In reality the 
synchrotron tune is very much smaller than 0.1 and consequently the 
synchrotron sidebands are much closer together. Computer simulation under 
conditions appropriate to a real machine has proved to be enormously 
difficult mainly because, even under bad conditions the beam lifetime is 
of the order of hours during which time a particle makes of the order of 
10' beam-beam interactions. 

In this chapter, instead of pursuing the numerical approach any 
further we attempt to compute an approximate threshold for stochastic 
motion using our one-dimensional model. We consider a machine with H 
beam-beam interactions per revolution. 

When calculating the resonant invariant we must now be careful to 
carry out the correct Fourier decomposition of the driving term. The 
invariant is now of the form 

C = (Q - p/n)a + T U(a) + T V n(a) cos mjr 5.27) 
T is just the total tune spread 

T = MÏ 5.28) 

where we have assumed that the tune shift is the same at all intersections 
i.e. equal bunch intensities. 

T is the Fourier coefficent of the pth azimuthal harmonic 
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r = 
N N 

Ç ( l cos p 6, ) 2 + ( l sin p 9 . ) a 

i=l 1 i=l 1 
(5.29) 

Electron-positron machines are usually designed with a high 
superperiodicity in order to eliminate as many as possible of the Fourier 
harmonics 5.29. Computer simulation and practical experience 7] have 
shown that small machine imperfections such as a difference in the phase 
advance between the intersections or spurious dispersion at the 
interaction points strongly affect the machine performance. Consequently 
a considerable effort is made to correct these errors. 

On the other hand, the SPS collider has no supersymmetry at all. The 
two low-beta insertions are in two adjacent straight sections. All 
resonances are excited more or less strongly and for any given machine the 
Fourier coefficients 5.29) can be calculated from the theoretical 
lattice. However, these coefficients are enormously sensitive to small 
lattice perturbations especially in view of the high order of the 
harmonics of interest (p = 277 for a 10th order resonance). Therefore, in 
what follows we assume that the successive kicks are distributed at more 

or less random phase. The oxpectlon value of Y is then just 
CM 

The width of an island can be computed with reference to figure 8. 

Fig. 8 

Consider the unstable point A. The invariant is 
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5.32 

Cp = (Q - p/n)af + T u(ctf) + T Vn (ctf) 5.30) 

Moving around the separatrix to B 

C F = (Q - p/n)a + T u(a) - T V n(a)) 5.31) 

Subtracting 5.30 from 5.31 

(Q - p/n)oa + T(u(a) - u(a F)) - r(V n(a) + V n(o F) = 0 

Expanding U(a) and V n(°0 around 

(Q-p/n)Aa + r ( U'(a f)Aa + U"(a f)Aa 2/2) - T(2V n(a f) + Aa V¿ (a f)) = 0 

But, 

difr/de = (Q - p/n) + rU'(a f) - r V¿ (a f) = 0 (5.34) 

Therefore 

(5.33) 

V r V n <«: 
' » r U" (a 

Aa = 2 \ " v ^ (5.35) 
* T U" (a f) 

Remembering that the kth sideband is weakend by the factor 

J k(nQ/Qs) and putting r = £M, f = CM1/* the width of 

the island in a is 

width = 2Aa 

= 4 t / V n < « J k(nQ/Q s) ( 5 . 3 6 ) 

" VM U" (a) 

Notice that the island width is independent of the linear tune shift. 
However, the island separtion is not. The separation in tune is 
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AQ - Q s/n = M £ U"(a) Aa C5.37) 

so 

Aa - Q s (5.38) 
nH I U" (a) 

Equating 5.36 and 5.38 we get the Chirikov threshold for resonance 
overlap in terms of the beam-beam tune shift 

r - Q s J M l / a (5.39) 
4 n M ' U»(a) V n(a) J k(nQ/Q s) 

Let us take the case of a 10th order resonance in the SPS collider. We 
use the following parameters. 

Q s = 4 x 10-»; Q » 1.5 x 10"*; n = 10; M = 6 ; k = 0 
The following table gives the threshold tune shift for stochastic 
behaviour as a function of amplitude. 

X/ff a U " ( a ) V (a) I 

2 2 0.138 9.4 x 10~ s 1.1 x 10~ 2 

3 4.5 0.053 2.2 x 10" 1 3.8 x 10~* 
4 8 0.031 1.3 x 10~ 2 2.0 x 10"' 

Table 1 

We see from the table that at least for the large amplitude particles 
the theoretical tune shift for stochastic behaviour is not too far from 
the operating tune shift in the SPS where we know that these particles 
have a bad lifetime. Considering the many simplifying assumptions the 
agreement can be considered to be reasonable. In the real world many 
other effects such as coupling or noise will conspire to reduce this 
threshold. 
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5.6 Diffusion Rate 

We would now like to address the question of the influence of the 
synchrotron frequency on beam loss rate in the stochastic region, which 
signifies a randomisation of the betatron phase between resonance 
crossings but tells us nothing about the rate of emittance growth . 

From the amplitude equation 5.16, the change of emittance due to a 
single resonance crossing is 16] 

a a a 

/ d g = / n r sin nf dO (5.40) 

The procedure for performing the Integral on the right hand side is 
well known 16]. It gives 

/ da „ n p J~L 
*{ V n(a) y n| 

2TT (5.41) 
a-/ V n(a) " Y n|dQ/d9| 

We assume that the change in a per crossing is very small so that 
the variation of V n(a) can be ignored. 

Then 

Aa = n T V„(a) J , 2" n i (5.42) 
11dQ/dei 

and the change in radius r = a1''2 is then 

Ar = T V (a)^l 2D (5.43) 
2a|dQ/d9| 

Treating the emittance change as a random-walk process, the change in 
the mean square radius after N crossings is then 

ûr 2 = u (Ar) 2 (5.44) 
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Putting |dQ/d9| = 2Q Q s/n and N = 2Q s£ rt 
then 

Ar' = ir r JV* Ça) n f r 

4 a Q 
= 4 D t (5.45) 

where D is a diffusion coefficient, given by 

D . M l 3 V„ («) n f r 

16 a Q 
(5.46) 

The important point here is that D is independent of the synchrotron 
frequency so as long as the motion is stochastic, the diffusion rate is 
independent of the frequency of modulation. This stochastic régime was 
recognized by Schoch 16] as the régime of 'fast random crossings'. 

In the above analysis we have observed the particle motion on a time 
scale of which the unit of time is the synchrotron period and we have 
ignored what happens in between. In the next chapter we will investigate 
the limit of very low modulation frequency when the sideband picture 
breaks down and we need to look more carefully at the details of the 
motion within the synchrotron period. 

5.7 Resonance trapping 

Figure 9 shows a superposition of instantaneous "snapshots" of the 
phase space as the unperturbed tune is changed from 0.615 in steps of 
0.01. We see clearly the islands of the 6th order resonance which move to 
larger amplitude and expand in area as the tune changes. Now the question 
is what happens if this tune change is made so slowly that it is done 
adiabatically? In this case, particles initially captured in the stable 
islands at small amplitude will move with the islands to larger amplitude 
so long as the adiabaticity condition is satisfied. This mechanism is 
closely analogous to the processs of adiabatic capture and stacking in 
synchrotron space and it forms the basis of the resonance trapping model 
of Chao and Month 26]. Obviously, as the tune modulation direction 
reverses the islands contract and retrace their original paths finally 
transporting the particles back to their starting points. However, if in 
the course of the movement the island amplitude exceeds the dynamic 



- 360 -

aperture of the machine or if the adiabaticity conditions are violated, 
particle loss can result. 

. • • . 
• 

••••1 •. • i 

••* • i f : 

• i x ' i ä U 

DQL=0.060 
QS =0.000 

. • • • . DQM=0.000 
— • • 

\ J • % . 

•• « * • . \ 
, • ••..vJ — 

. \ o 

\ ; ¿K 1 1 . 

< - - - < - • r \ 

! 

* 
• • 

Fig. 9 
Instantaneous 'snapshots' of the phase space topology 

near a 6th order beam-beam resonance as the tune is changed 
from 0.615 (inner islands) to 0.645 in steps of 0.01. 

The important question is what is the critical modulation frequency 
below which the motion can be considered to be adiabatic? This has been 
analysed in detail for beam-beam resonances 27], and can be calculated 
using the nonlinear detuning and resonance width functions already 
derived. The criterion for an adiabaticity threshold can be found by 
equating the speed with which the island centre is changing with amplitude 
to the rate of particle amplitude change due to the resonance. 

The rate of movement of the islands can be found from equation 5.19) 

(5.47) 
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The rate of change of amplitude due to the resonance Is obtained from 
equation S.16) modified for N crossing points. 

dSL = n M l / a C V n(a) (5.48) d9 

where it is assumed that sin mf = 1, i.e. we consider a particle in an 
island midway between a stable and unstable fixed point. 

Putting Q = Q 0 + Q sin Q s6 and equating 5.47 and 5.48 the maximum 
rate of change of tune gives 

Q Qs S n M 1 / 2 t V n (a f) 
M E U"(a £) n r 

i.e. 

„ n e'H' / aV n(a f) U"(a) f ( 5 4 9 ) 

"*s — 
Q 

This is evaluated for the same paramters as previously and with a 
beam-beam tune shift of 3 x 10~" per intersection in the following 
table. f £ is the frequency in Hz. 

X/ff af Q s f c (HZ) 

2 2 1.1 x 10-5 0.48 
3 4.5 1 X 10-4 4.4 
4 8 3.5 x 10-4 15.4 

Table 2 

Ne see that the critical capture frequency is more than an order of 
magnitude lower than the synchrotron frequency (~ 300 Hz) so this 
process cannot be driven by energy oscillations. However, the critical 
frequency falls in a range where power supply ripple can become important 
and it has been observed experimentally that the antiproton lifetime is 
very sensitive to low-frequency power supply ripple. 
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6. PRACTICAL IMPLICATIONS 

The preceeding discussion of the single and multiresonance models of 
the beam-beam interaction was intended to introduce the reader to some of 
the basic physical phenomena involved without any pretentions of producing 
a precise predictive theory. Nevertheless, some of the intuitive 
understanding gleaned from these models has been of practical importance. 

6.1 The effect of tune modulation 

It is hopefully by now perfectly evident that tune modulation is bad. 
Figure 10 illustrates how such modulation shows up on the Schottky scans. 
The upper trace is the Schottky signal from a debunched proton beam, 
giving the usual information about the tune and the chromaticity. The 
lower trace shows the equivalent signal from a bunched beam. In this case 
the central line should be very narrow, due only to the amplitude 
dependence of the tune. The broadening of this line is due to low 
frequency ripple of the quadrupole power supplies. In this case the width 
is around 40Hz, corresponding to a tune ripple of ±4.5 x 10~V 

Fig. 10 
Schottky signal of a betatron line for a debunched (upper) 

and bunched (lower) proton beam. 

The sidebands are due to the tune modulation through the non-zero 
chromaticity and are separated by the synchrotron frequency. The amplitude 
of the sidebands depends on the value of the chromaticity, which is 
normally adjusted to be as close to zero as possible, but alway slightly 
positive (~ 0.1) in order to stabilise the lowest head-tail mode. 
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As already mentioned it was expected that low frequency ripple would 
be very destructive to the antiproton lifetime and experimentally this has 
been shown to be the case. Consequently, a considerable effort has been 
put into improving the power supply stability with the result that the 
measured width of the Schottky lines is now around 15Hz, corresponding to 
a tune modulation amplitude of ± 1.7 x 10~ 4 and a current 
stability of 6 ppm. 

6.2 The Antiproton Emittance 

In all the examples treated in the previous sections the small 
amplitude phase space is invariably stable. This is clearly due to the 
linearity of the beam-beam force for small emittance particles. 

Up to now the SPS has always operated in the weak-strong régime with 
the antiproton bunch intensity approximately an order of magnitude less 
than that of the protons. In addition the cooled antiproton beam 
emittance in the accumulator is close to its design value of about 5 x 
1 0 - s irrad.m, whereas the proton emittance is of the order of 15ir 
x 10" 6 rad.m. Therefore, in order to make use of the fact that the 
small amplitude phase space is stable, a considerable effort has been made 
to reduce the emittance dilution of the antiprotons during transfer 
between the accumulator and the SPS. 

Figure 11 shows what happens if the antiproton emittance is too large. 
In this case a malfunction in the accumulator produced three bunches (z.y, 
and x) with successively larger emittance. The effect on the decay rates 
can easily be seen. Antiprotons whose amplitude exceeds the average 
dimensions of the proton beam are rapidly peeled off and the decay rate is 
initially high. Finally, as the proton bunches blow-up due to intrabeam 
scattering, the decay rates of the three antiproton bunches become equal. 

Before being injected into the SPS the antiprotons are accelerated to 
26 GeV/c in the CPS. Great care must be taken to reduce the injection 
errors Into each of these machines. If the beam is not precisely injected 
onto the closed orbit the phase space filaments due to nonlinearities in 
the guide field or in the case of the SPS, the strong nonlinearity of the 
previously injected proton beam. In practice the injection optimisation 
is done in the opposite sense using protons travelling backwards from the 
SPS to CPS and from the CPS to antiproton accumulator. The tolerance 
requirements for this operation can be relaxed by using active damping -
detecting the injection errors and correcting them with an active feedback 
system. A damping system for the CPS is under study and a system 
installed in the SPS has already given encouraging results. 
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Fig. il 
Decay rates of three antiproton bunches with different emittances. 

The normalized emittances B = cBy/it were B x = 1 7 , By = 15, 
B 2 = 1 2 . The proton emittance B p = 16 and Ç = .004. 

Another source of emittance dilution is the mismatch of dispersion and 
betatron functions between the different machines. The dispersion 
matching between the CPS and SPS is especially important because of the 
large momentum spread in the beam (± 0 . 3 % ) . A lot of effort has been 
devoted to measuring the dispersion function at the CPS extraction using a 
'probe* antiproton beam with a very small momentum spread. The results of 
these measurements have been used to finely tune the beam optics between 
the CPS and SPS. When the whole chain is carefully optimised, an overall 
emittance blowup of less than a factor of two between accumulator and SPS 
stored can be achieved. 

Clearly as the intensity of the antiprotons increases towards that of 
the protons the advantage of unequal emittances will disappear. 
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6.3 The Need for Bunch Separation 

In order to reach design luminosity the SPS is required to store 6 
proton and 6 antiproton bunches. This would result in 12 interactions per 
revolution. According to the theory outlined above, the resonance 
excitation would be increased by something like a factor of V2 but the 
total tune spread would be doubled. It would then be no longer possible 
to keep clear of the 10th order resonances. In fact, an experiment with 6 
proton bunches colliding with a single antiproton bunch has shown that the 
antiproton bunch lifetime is reduced by about a factor of 4 compared with 
the 3-bunch case, which is clearly unacceptable. This means that in order 
to accommodate 6 bunches per beam they must be separated at the unwanted 
collisions. Another reason that separation is desirable is to eliminate 
the tune modulation and excitation of odd order resonances due to the 
crossings at non-zero dispersion. A scheme to achieve this using 
electrostatic separators has been proposed 28] and some prototype hardware 
is being installed. An accurate compensation of the deflections will be 
needed to make the beams collide head-on at the useful intersections. An 
experiment has shown that a residual displacement of 0.2a between the 
beams halves the lifetime. 

7. CONCLUSIONS 

Up to now the SPS has operated in the weak-strong régime with a 
beam-beam tune shift per intersection of up to 4 x 10~" for the 
antiprotons and with 6 intersections per revolution. Strong beam-beam 
effects are observed and limit the working space in the tune diagram to a 
very small region which is free from tenth order resonances. Further 
increase in tune spread as a result of increasing the number of bunches 
from three to six reduces the antiproton beam lifetime to an unacceptable 
value so beam separation in the unwanted intersections will be required. 

At the present time, good use is made of the fact that the weak 
antiproton beam has a substantially smaller emittance than the proton 
beam. As the antiproton beam intensity increases the proton beam will 
start to be affected by the beam-beam force and it is unlikely that the 
collider will be able to operate with as good a beam lifetime as presently 
achieved (~ 40 hours for the antiprotons) and with such a high tune 
shift parameter. The choice then will be either to reduce the linear tune 
shift (and thereby the peak luminosity) or to fill the machine much more 
frequently as is the case for e +e"machines. The second alternative 
will clearly require a much faster accumulation rate of antiprotons. 
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The theories outlined in this report are clearly of limited predictive 
value. Nevertheless, they provide a qualitative understanding of a number 
of experimentally observed phenomena. Finally, it is hoped that the 
discussion has served to improve the comprehension of the non-specialist 
of the complexities of the beam-beam interaction. 
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