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CONCEPTION D'UN SYSTEME DE COMMANDE ET DE REGULATION POUR UNE CENTRALE

NUCLEAIRE CANDU 600 MWe AVEC LA METHODE INA

par

N. Roy*, S. Mensah et J. Boisvert*

SOMMAIRE

Le développement des complexes industriels nécessite l'utilisation de
systèmes de contrôle très performants, conçus avec des techniques
multivariables.

Ce travail fait partie d'une série d'études analytiques visant à démontrer
le potentiel réel des méthodes multivariables. Il comprend toutes les
étapes de la conception d'un contrôleur multivariable pour une centrale
nucléaire CANDU 600 MWe du type Gentilly-2, avec l'utilisation de la
méthode de la matrice inversée de Nyquist (INA).

Le modèle linéaire utilisé dans la conception du contrôleur et les
modifications préliminaires requises sont décrits. Ensuite, les outils de
conceptions et les opérations effectuées pour obtenir la dominance
diagonale du système en boucle ouverte sont systématiquement décrits.
L'analyse du système en boucle fermée conduit au choix d'une matrice de
rétroaction qui respecte les spécifications. La performance du contrôleur
sur le modèle linéaire est vérifiée par simulation. Enfin, le contrôleur
est implanté sur le modèle non linéaire et l'évaluation de ses performances
est effectuée par voie de simulation.

Les résultats démontrent que la méthode INA peut être utilisée avec succès
dans la conception d'un contrôleur pour un système industriel complexe.
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ABSTRACT

The development of large and complex nuclear and process plants requires
high-performance control systems, designed with rigourous multivariable
techniques.

This work is part of an analytical study demonstrating the real potential
of multivariable methods. It covers every step in the design of a multi-
variable controller for a Gentilly-2 type CANDU 600 MWe nuclear power
plant, using the Inverse Nyquist Array (INA) method.

First of all, the linear design model and its preliminary modifications are
described. Thf design tools are reviewed and the operations required to
achieve open-loop diagonal dominance are thoroughly described. Analysis of
the closed-loop system is then performed and a feedback matrix is selected
to meet the design specifications. The performance of the controller on
the linear model is verified by simulation. Finally, the controller is
implemented on the reference non-linear model to assess its overall
performance.

The results show that the INA method can be used successfully to design
controllers for large and complex systems.
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1. INTRODUCTION

The operation of large and complex nuclear and process plants closer to
maximum capacity requires high-performance control systems. These plants
are multivariable systems with strong interactions and thus o-nnot be
rigorously analyzed with traditional scalar methods. Mu1tivariable tech-
niques can handle the simultaneous analysis of several p^ant variables,
potentially allowing system performance specifications to be met directly,
during the controller design process [1].

At the Chalk River Nuclear Laboratories (CRNL), applications of multi-
variable techniques to the regulation of CANDU* nuclear power plants has
been under study for the last few years [2], This project is part of an
analytical study demonstrating the real potential of multivariable
methods. The objective is to apply Rosenbrock's [3] Inverse Nyquist Array
(INA) method to design a cor.troller for a non-linear and complex model of a
CANDU 600 MWe nuclear power plant [4].

The characteristics of the design model used in this study are
described in Section 2. The underlying theory of the INA method is briefly
reviewed in Section 3. The procedures followed to design the controller
are explained in Section 4. The implementation and the performance of the
controller on the non-linear model are discussed in Section 5.

2. DESIGN MODEL

2.1 Introduction

The linear design model used in this study was derived from G2SIM [4].
G2SIM is a simulation program developed to study the overall performance of
the regulating system of Geni.illy-2 nuclear power plant. A real time
version is implemented on a PDP-11/55 digital computer of the Dynamic
Analysis Laboratory at CRNL. All the major subsystems of the plant have
been modelled: the primary circuit including the reactor, the primary
coolant and the pressurizer, the steam generators, and the secondary cir-
cuit including the feedwater circuit and the turbine.

2.2 Derivation of the Linear Model

G2SIM is a fairly large non-linear model and it cannot be uspd directly by
most multivariable control design methods. A linear model derived from
G2SIM was developed for control system design purposes.

Before the linearization, the G2SIM model was simplified using the follow-
ing approximations and assumptions:

- the reactor dynamics are approximate( by a point kinetics
model with two delayed neutron groups and one average decay
heating group,

*CANada Deuterium Uranium
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- heat transfer in the fuel is modelled by an average fuel
temperature derived from a two-shell model,

- valve dynamics are neglected,

- time delays', are neglected or replaced by first-order lags,

- volume of rjteam in boiler riser is constant,

- the dynamics of the turbine power are approximated by a
first-order lag.

The simplified non-linear model obtained is then linearized about a steady
state operating condition using small perturbation theory. The resulting
linear design model called G2LDM (G2 Linear Design Model) [2] can be
described by the state-space equations

•
x(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t) (2)
where

x(t) is the state vector, of dimension 24
u(t) is the input vector, of dimension 5
y(t) is the output vector, of dimension 8

The matrices A, B, C and D, calculated from full-power data, are shown in
Appendix 1 with the open-loop eigenvalues.

The input variables are:

u : Demanded zone control valve position, AS_(t)

u_ : Power dissipated in surge tank heaters, AQ,,(t)

u_ : Feed or bleed flow of heavy water, /SUnn_u(t)

u, : Feedwater valve demand opening, AS (t)

u_: Governor valve opening, AS (t)

3 S

The output variables are:

y. : Variation of neutron flux, An(t)
y, •" Variation of reactor outlet header pressure, APnriu(t)
i. KUn

y~ : Variation of surge tank (pressurizer) level, AL (t)
J p
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y, : Variation of boiler drum level, AL (t)

y,- : Variation of boiler drum pressure, AP_(t)

y, : Variation of difference between steam flow from boiler and
feedwater flow, AW (t) - AW (t)

S V

y., : Variation of turbine mechanical power, AP..(t)
/ M

y~ : Variation of surge tank (pressurizer) pressure, AP (t)

2.3 Initial Modifications of the Design Model

With 5 inputs and 8 outputs, the open-loop transfer-function matrix of
G2LDM is not square, and cannot be directly inverted. For application of
the INA method, the transfer-function matrix must be squared down by selec-
tion of 5 appropriate linear combinations of the 8 measurements. The final
choice, based on engineering judgments, is

to keep the reactor power measurement clean,

y\ = y5 - 5y?

to take into account power imbalance between primary and secondary circuit,

to combine flow and level errors,

4 = y2 ~ y8

to respond to pressure imbalance between surge tank and primary circuit,

y5 = y 3

to decouple surge tank level control loop from other measurement •,



- 4 -

The input vector has also been scaled and reordered as follows:

u i =
U2 =

U3 =

U4 =

10

10

10

u l

U5

U4

10000
2

10 u3

where u! to u' are the new inputs.

3. THE INA METHOD

3.1 Introduction

The INA method, based on frequency responses, serves as a guide during the
design of compensators which will sufficiently reduce the interaction
between loops so that classical methods can be applied. The method can
also be used to investigate the stability of the multivariable system. The
underlying theory, developed by Rosenbrock [3], is briefly reviewed in the
next sections.

3.2 Inverse Transfer Function

The most general model used to describe the closed-loop, multivariable
system for the INA method is shown in Figurt 3.1.

Ms) G(s) Us)

FIGURE 3.1 GENERAL INA DESIGN MODEL



- 5 -

G(s) is the transfer-function matrix describing the plant, K(s) and L(s)
are the compensators and F(s) is the feedback matrix, u and e are the
input and error vectors, while y and z are the output vectors and r is the
reference vector.

Let Q(s) be the open-loop transfer-function matrix, and H(s), the
closed-loop transfer-function matrix. Then, according to Figure 3.1,

Q(s) = L(s).G(j).K(s) (3)

and

H(s) = [I + Q(s)F(s)]-l.Q(s) (4)

It is assumed that Q(s) is a square and non-singular matrix. In the
following, the inverse of a matrix "W" is expressed as "WI". From equa-
tions (1) and (2), the inverses of Q(s) and H(s), denoted by QI(s) and
HI(s), are

QI(s) = KI(s).GI(s).LI(s) (5)

and

HI(s) = QI(s).[I + Q(s)F(s)] (6)

or

HI(s) = QI(s) + F(s) (7)

where HI(s) is found by simply adding matrix F(s) to matrix QI(s).

3.3 Stability Criteria

The stability of the closed-loop system can be investigated by using the
Nyquist criterion. This criterion gives the stability margin of the system
and indicates how to improve stability. The Nyquist criterion is based on
the following theorem.

Theorem 1

Let D be a large contour in the s-plane, consisting of the imaginary axis
from -iR to +iR, together with a semicircle of radius R in the right
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half-plane. Every finif.e zero and pole of |Ql| and |HI| lying in the right
half-plane must be included in the contour D. D must also be indented into
the left half-plane to enclose any imaginary pole and zero of |Ql| and
| |

As s goes once clockwise around D, let |QI| and |HI form respectively con-
tours and C2 and let and Co make N-, and clockwise encirclements of
the origin,
only if

Then, the closed-loop system is asymptotically stable if and

- N2 = po (8)

where po is the number of poles of the open-loop system
in the right half complex plane [3, p. 141J.

This stability criterion is difficult to use. It identifies stable sys-
tems, but when a system is unstable, the criterion fails to provide guid-
ance in the choice of a feedback matrix F(s) which will stabilize the
closed-loop system. Also, modifying the gain in one loop may perturb other
loops through interaction.

This problem could be solved by making QI and F(s) diagonal matrices. But
it may be very difficult or impossible to diagonalize QI. Rosenbrock has
shown that the much looser criterion of diagonal dominance can be used.

3.4 Diagonal Dominance

3.4.1 Definition

The matrix QI, of dimensions k x k, is diagonally row dominant on D if

k

E (9)

for i = 1,2,...
and all s on D.

Also, it is diagonally column dominant on D if
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k

Z |qi^Cs)| (io)

for i = 1,2,...,k
and all s on D.

where ql±i are the diagonal elements of QI, and where qljj, are the
off-diagonal elements of QI. Ql is said to be diagonally dominant if it is
either row or column dominant.

Diagonal dominance, or dominance, means that each diagonal element is
greater in magnitude than the sum of the magnitudes of the corresponding
off-diagonal terms.

3.4.2 Diagonal Dominance and Stability

The use of the concept of dominance in stability analysis of complex
systems is based on the following theorem.

Theorem 2

Let QI be dominant on D; let qlii map D into CJJ, with i=l,2 k.
Also, let | QI | map D into C^. Let C-jj encircle the origin NJJ times,
and Cj encircle the origin Nj times (clockwise). Then

Ni = £ Nn <n>

This theorem provides the foundation for the following stability theorems.

Theorem 3

Let F = diag (f±), where the f̂  are real and non-zero, and [FI + Q(s)],
a dominant matrix on D. Let q±± map D into Ĉ i which encircles the
point (-fI^,0) NJJ times, i=l,2,...,k. Then the closed-loop system is
asymptotically stable if and only if

(12)

with p0 defined as previously.
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Let QI and HI be dominant on D. Let q^±± map D into C-Q which
encircles the origin N±i times, and hl-^ map D into C^2 which
encircles the origin N-̂ 2 times; then, the closed-loop system Is
asymptotically stable if and only if

k

£ - £ N12 = Po
(13)

Matrix dominance can be verified graphically, by using the Gershgorin
tands.

3.5 Gershgorin Bands

Let qlii map D into C-Q . Then select a value of s, and, at the
corresponding point qlii(s) on C-Q as centre, draw a circle of radius

d.(s) = £ |ql (s) (14)

As s goes around D, the corresponding circles sweep out a band, called the
Gershgorin band. If the band formed by the set of circles excludes the
origin in the qlii plane, the row i of QI is dominant on D. If each row
is dominant on D, then QI is diagonally row dominant on D. The same
procedure can be applied to columns.

An important theorem, which shows that smaller interactions exist between
loops when QI is dominant, completes the graphical analysis.

3.6 Ostrowski Theorem

This theorem allows treatment of the stability problem as if the dominant
system was made of non-interactive loops.

With HI dominant on D, define

e1(s) =
d±(s)

(15)
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where

By definition,

9i(s) < 1 for all s on D.

Define also

(j,.(s) = max 0.(s) (16)
J

where j is associated with the least dominant row of HI, excluding row i.

Then

Ihl^s) - h~j (s)| <(t,i(s).di(s) <di(s) (17)

for all i and all s on D.

This result shows that the element h~*.Q(s), which is the inverse trans-
fer function seen between input i and output i, is included inside the
Gershgorin band, and also inside a narrower band called the Ostrowski band,
formed by a set of circles of radius <j>i(s) »di(s).

Then, if QI and HI are dominant on D, any combination of gains in loops
other than loop i keeps h -^(s) in the Ostrowski band.

Ostrowski bands also locate h ii(s), evaluated for fi=O, in order to
design a compensator for loop i, and they indicate the stability margin of
the loops. Several techniques can be used to achieve dominance of the
system, and are briefly presented here.

3.7 Achieving Dominance

Dominance of QI can usually be achieved with the appropriate compensators
KI and LI. However, it is desirable to use simple compensators. In many
cases static compensators are sufficient to achieve dominance.
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Many techniques can be used to achieve dominance. A simple way is to apply
a sequence of elementary operations, for example permuting rows (or
columns) or scaling a row (or a column) with a constant, in order to place
large entries on the diagonal.

Static compensators may not always achieve dominance [5]. Then, a choice
of dynamic matrices KI(s) and/or LI(s) is necessary, with certain restric-
tions [3, p. 156].

Optimization methods can also be used, like pseudo-diagonalization [3, p.
162], which minimizes the sum

or the hillclimb algorithm [6], which minimizes the dominance ratio

d,(s)

where

d.(s) = £ |ql..(s)|

4. CONTROLLER DESIGN

4.1 Controller Specifications

The controller must be designed to meet the following specifications:

(1) Stability. The closed-loop system should be asymptotically stable,
that is, all poles of the closed-loop system should lie in the open
left half-plane.

(2) Stability margin. Let A be a pole of the closed-loop system such
that x = -a ± iw; then the angle 9 = tan"1 o7u is a measure of the
stability margin. Indeed, over a period 2-nlm, the damped oscil-
lation has a decrement equal to exp(-2iro7a)). 6 should be larger
than 45° (or a > 10) •



CS) Overshoot. When a step input is applied to the system, the output
will usually overshoot its final value, settling to it with a danped
oscillation. This overshoot should be strictly controlled so that
the output variables stay always inside the defined limits.

(4) Speed of response. The time taken for the system to respond to a
step input indicates how effectively it will follow changes of the
inputs. Because speed of response depends on the position of the
dominant poles, these poles should not be too close to the origin.

(5) Sensitivity. The system's response should be insensitive to small
perturbations or system parameter changes.

4.2 Design Tools

The controller has been designed within the framework provided by MVPACK, a
package for computer-aided design of control systems [7].

The INA module of MVPACK [8] is used to investigate and achieve dominance.
This interactive module allows the designer to use elementary operations as
well as an optimization-based algorithm to drive the transfer function
matrices toward dominance. The commands used to operate the INA module are
summarized in Table 1.

TABLE 1

INA COMMANDS

Command

ROW P,i,

ROW S,i,

ROW A,i,

ROW C,i

ROW NAME

QZE

NYQ

j

a

J,o

,1

Description

Permutation of rows i and j

Scaling row i with a constant, a

Adding a times row j to row i

Application of Rosenbrock's hill-
climbing algorithm on row i

Premultiply QWI by matrix NAME
(invert NAME if I specified)

Apply QW(0) to QWI

Plot Nyquist plots

The COL command has the same options as the ROW command, applied to columns
instead of rows.

After each operation, a list is displayed on the terminal. This list
indicates the worst dominance ratio of each row (or each column) with the
corresponding frequency and the number of frequencies for which dominance
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is not obtained. Then, the designer may retain or reject the operation.
If it is accepted, the corresponding compensator matrix is automatically
calculated and saved.

The command NYQ calls the MVNYQ module [8] of MVPACK. This module plots,
on a Tektronix 4663 plotter, the Nyquist diagrams for the inverse transfer-
function matrix, with the Gershgorin or Ostrowskl bands. This program pro-
vides graphical output which the designer would use to design compensators
KI and LI and also choose a feedback matrix for the closed-loop system.

The poles are calculated with the use of the modules MVCAL and MVEIG [8].
The simulation of the closed-loop system is done with the modules MVSIM and
MVRSIM [3].

4.3 Open-Loop Dominance Analysis

4.3.1 General

The modifications made to the model in Section 2.3 can be expressed as two
initial compensators such that the open-loop transfer-function matrix is
(Figure 4.1):

Q(s) = Lo.G(s).Ko (20)

Ko G(s)

FIGURE 4.1 INITIAL MODIFICATIONS OF THE DESIGN MODEL

where
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The inverse of the open-loop transfer function matrix is expressed as

QI(s) = KIo.GI(s).LIo (21)

As stated in Section 3, the dominance analysis for the open-loop system is
based on the graphical construction of INA and Gershgorin circles of QI(s)
(equation 5). For the case under study, the analysis proceeds in two
steps. First, the dominance search is performed in the frequency band from
0.01 to 1.0 Hz, for 20 points. The results are then investigated in the
same frequency band for 100 points.

The Gershgorin circles are plotted only on the diagonal elements. When the
band formed by these circles does not include the origin, the corresponding
row is dominant. A boundary circle is drawn for each element with an asso-
ciated number on its right. This number gives the magnitude of the element
at the boundary circle, and, therefore, may provide guidance for improving
dominance.

4.3.2 First Step

Figure 4.2 shows the INA plot with the Gershgorin circles for the inverse
of the open-loop transfer function matrix described in equation (21).
Table 2 indicates the worst dominance ratio for each row with the cor-
responding frequency and the number of frequencies for which the row is not
dominant. Only rows 1 and 2 are dominant. After many trials, it was found
that QI(s) can be made diagonally dominant by driving the design module INA
through the following sequential operations.

ROW

1
2
3
4
5

TABLE

DOMINANCE RATIOS,

DOM RATIO

0.24
0.38
2.3
23.0
5.8

2

NO COMPENSATORS

FREQUENCY

0.010
0.010
1.00
1.00
0.010

NB FREQ

0
0
13
18
5

Sequence 1

Objectives: improve dominance on rows 3, 4 and 5.



FIGURE 4.2 INA PLOT, GERSHGORIN CIRCLES - NO COMPENSATORS
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FIGURE 4.3 INA PLOT, GERSHGORIN CIRCLES - SEQUENCE 1
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Operations performed:

COL A,5,4,-3
COL P,4,5
COL S,3,5
COL S.4,5
COL S,5,10

Results: row 3 and row 4 become dominant and row 5 is dominant for high
frequencies, as shown in Figure 4.3 and Table 3.

TABLE 3

SEQUENCE 1: DOMINANCE RATIOS

ROW

1
2
3
4
5

Sequence 2

DOM RATIO

0.72
0.76
0.46
0.69
1.8

FREQUENCY

0.010
0.062
1.00
0.166
0.010

NB FREQ

0
0
0
0
5

Objectives: improve dominance of row 5 and amplify the Gershgorin band on
row 2.

Operations performed:

COL S,l,0.9
COL S,3,0.51
COL S,4,1.02
COL S,5.1.45

Results: dominance of row 5 is still not achieved, as shown in Figure 4.4
and Table 4.

TABLE 4

SEQUENCE 2: DOMINANCE RATIOS

ow
1
2
3
4
5

DOM RATIO

0.94
0.66
0.91
0.98
1.2

FREQUENCY

0.010
0.062
1.00
0.166
0.010

NB FREQ

0
0
0
0
1
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FIGURE 4.4 INA PLOT, GERSHGORIN CIRCLES - SEQUENCE 2



- 18 -

Sequence 3

Objectives: achieving dominance of row 5.

Operations performed:

ROW C,l
ROW C,4
COL S,1,0.3
ROW C,5
ROW C,3
ROW C,2
ROW C,4
ROW C,l

Results: row 5 is dominant, and dominance has been improved on the other
rows as shown in Figure 4.5 and Table 5.

Note that the hillclimb algorithm was applied for 6 frequencies covering
the frequency band.

TABLE 5

SEQUENCE 3: DOMINANCE RATIOS

ROW

1
2
3
4
5

Sequence 4

DOM RATIO

0.50
0.45
0.91
0.96
0.65

FREQUENCY

0.062
0.166
1.00
0.218
1.00

NB FREQ

0
0
0
0
0

Objectives: improve the dominance ratio on each row and amplify row 2.

Operations performed:

COL S,3,1.5
COL S,4,1.5
ROW C,5
COL S.5,1.3
ROW S,2,3

Results: the dominance ratios are improved, as shown in Figure 4.6 and
Table 6.
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FIGURE 4.5 INA PLOT, GERSHGORIN CIRCLES - SEQUENCE 3
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FIGURE 4.6 INA PLOT, GERSHGORIN CIRCLES - SEQUENCE 4
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TABLE 6

SEQUENCE 4: DOMINANCE RATIOS

ow
1
2
3
4
5

DOM RATIO

0.71
0.64
0.61
0.83
0.65

The compensator KI obtained in this sequence is a full matrix, because hill
climbing has been applied to each row.

Sequence 5

Objectives: obtain comparable dominance ratios to previous results (Table
6), with a set of operations that will give a simpler compensator KI. The
operations are applied to the matrix QI described in equation (21).

Operations performed."

COL A,5,4,-3
COL P.4,5
COL S,3,3
COL S,4,5
COL S,5,14
ROW C,l
COL S,l,0.3
ROW C,5

Results: dominance is achieved. The ratios obtained are shown in Table 7.

TABLE 7

SEQUENCE 5: DOMINANCE RATIOS

OW

1
2
3
4
5

DOM RATIO

0.83
0.65
0.77
0.96
0.67
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Sequence 6

Objectives: improve the dominance of rows 1 and 4.

Operations performed:

ROW C,l
COL S.4,1.2
COL S,5,l.l
ROW S,2,3

Results: the dominance is improved, as shown in Table 8. Comparison of
Table 8 with Table 6 indicates that these two results are more or less
equivalent.

TABLE 8

SEQUENCE 6: DOMINANCE RATIOS

ow
1
2
3
4
5

DOM RATIO

0.62
0.69
0.77
0.88
0.70

4.3.3 Concluding Step

Now the dominance of the inverse transfer-function matrix QI(s) calculated
in Sequences 5 and 6 is investigated over 100 points in the frequency band
with the compensators obtained. Table 9 shows a dominance failure on row 2
for 2 frequencies,

TABLE 9

DOMINANCE RATIOS WITH 100 FREQUENCIES

OW

1
2
3
4
5

DOM RATIO

0.64
1.08
0.77
0.89
0.70

FREQUENCY

0.050
0.040
1.00
0.190
1.00

NB FREQ

0
2
0
0
0

This result can be improved by applying the following operation:

ROW C,2
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Results: dominance is completely achieved, as shown in Table 10,

TABLE 10

FINAL DOMINANCE RATIOS

ow
1
2
3
4
5

DOM RATIO

0.64
0.75
0.77
0.89
0.70

Finally, the following operations are applied to scale rows 1, 2 and 4 by
-1.

ROW S,1,-1
ROW S,2,-l
ROW S,4,-l

The diagonal of the matrix QI obtained is shown in Figure 4.7.

FIGURE 4.7 INA PLOT, GERSHGORIN CIRCLES
DIAGONAL ELEMENTS OF QI, FINAL CONFIGURATION
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The final compensators LI and KI are inverted to give L and K, and now the
system has the configuration shown in Figure 4.8.

K K0
G(s) Lo L

FIGURE 4.8 FINAL CONFIGURATION OF THE OPEN-LOOP SYSTEM

The matrices K and L obtained are:

K =

-0.9994
3.502E-04
0.0000
0.0000

. -1.223E-02

4.115E-02
-0.3333
0.0000
0.0000

-0.5835

-1.277E-O2
-1.875E-02

1.000
0.0000
0.1501

2.469E-03
2.219E-04
0.0000

-1.000
0.6431

-5.835E-02
-2.132E-04
0.0000
0.0000
0.9995

and

L =

3.333
0.0000
0.0000
0.0000
0.0000

0.0000
1.000
0.0000
0.0000
0.0000

0.0000
0.0000
0.3333
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
6.494E-02

0.0000
0.0000
0.0000
0.1667
0.1948

With these compensators, the closed-loop analysis with the choice of the
feedback gains is performed.

4.4 Closed-Loop Stability Analysis

4.4.1 General

The closed-loop stability analysis is performed with the use of a static,
diagonal feedback matrix, F = diag (fi ,f2,f3,f4,f5).

The Gershgorin circles of Figure 4.7 indicate that the system will be
stabilized with a positive gain f for loops 1, 2, 3 and 5, and a gain f
smaller than approximately 5 for loop 4.
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In a preliminary analysis, the loops are closed one by one. At each step,
the eigenvalues for the closed-loop system are calculated and the Ostrowski
circles are drawn to analyze the stability margin of the loops. Then, the
choice of the final gains is performed.

4.4.2 Preliminary Analysis

First loop closed:

Ostrowski circles are shown in Table 11 for F = (4,0,0,0,0) with the cor-
responding closed-loop poles. The study of the system under various gains
in the first loop indicates the following.

This loop does not have any effect on the unstable modes. However, fast
modes are affected, and fi must be less than 2 to have acceptable damping
on the fastest complex pair.

Ostrowski circles do not noticeably change in diameter when fj in-
creases. The stability margin is thus insensitive to a variation of fj,
confirming the results of the modal analysis.

First and second loops closed:

Ostrowski circles are shown for F = (4,2,0,0,0) with the corresponding
poles in Table 12. The study of the system under various gains for loop 2
indicates the following.

The second loop has stabilized one of the unstable modes. The value of the
gain in this loop is mainly limited by the dynamic response of the turbine
now associated with the fastest mode.

Ostrowski circles do not noticeably change in diameter. Increasing f2
does not noticeably influence the stability margin of the system.

First three loops closed;

Ostrowski circles are shown for F = (4,4,4,0,0) with the corresponding
eigenvalues in Table 13. The study of the system under various gains for
loop 3 indicates the following.

The system has again two unstable modes and the turbine mode becomes
faster. This is an indication of a strong interaction between loops 2 and
3. The other poles move only slightly.

Ostrowski circles shrink on loop 5, indicating a strong interaction between
loops 3 and 5. The stability margin in loop 5 could be improved with a
high f3, but the value of f3 is limited by the time constant of the
fastest mode.

First four loops closed:

The Ostrowski circles are shown for F=(4,4,4,-4,0) with the corresponding
poles in Table 14. The study of the system under various gains for loop 4
indicates the following.
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TABLE 11

FIRST LOOP CLOSED

OSTROWSKI CIRCLES AND CLOSED-LOOP POLES

Mode No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Real Value

1.243692E-07
5.412651E-09
0.000000
-4.727954E-03
-1.183942E-02
-2.633332E-02
-4.330219E-02
-4.330219E-02
-0.127091
-0.134717
-0.134717
-0.180224
-0.180224
-0.360324
-0.429277
-0.454545
-0.500000
-1.07955
-1.8:.. 56
-1.8i456
-2.58547
-2.79481
-3.22072
-3.22072

Imaginary Value

0.000000
0.000000
0.000000
0.000000
0,000000
0.000000
1.270701E-02

-1.27O7O1E-O2
0.000000
0.291740

-0.291740
1.026394E-02

-1.026394E-02
0.000000
0.000000
0.000000
0.000000
0.000000

-2.59980
2.59980
0.000000
0.000000

-6.04003
6.04003
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TA1".E 12

FIRST AND SECOND LOOPS CLOSED

OSTROWSKI CIRCLES AND CLOSED-LOOP POLES

Mode No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Real Value

0.000000
-4.216723E-O8
-4.859866E-05
-4.727954E-03
-1.153231E-02
-2.633335E-02
-4.232238E-02
-4.232238E-02
-0.127155
-0.129503
-0.129503
-0.177399
-0.177399
-0.356512
-0.429280
-0.500000
-1.07885
-1.81461
-1.81461
-2.58541
-2.79493
-3.22071
-3.22071
-17.5704

Imaginary Value

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
1.061136E-02

-1.061136E-02
0.000000
0.279371
-0.279371
8.654718E-03

-8.654718E-03
0.000000
0.000000
0.000000
0.000000
-2.59984
2.59984
0.000000
0.000000
6.03980

-6.03980
0.000000
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TABLE 13

FIRST THREE LOOPS CLOSED

OSTROWSKI CIRCLES AND CLOSED-LOOP POLES

Mode No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Real Value

7.226136E-05
0.000000

-4.727954E-03
-1.438797E-02
-2.633327E-02
-4.703581E-02
-4.703581E-02
-6.954551E-02
-9.760229E-02
-9.760229E-02
-0.112215
-0.112215
-0.173852
-0.429349
-0.499474
-1.06952
-1.81469
-1.81469
-2.58547
-2.79458
-3.22057
-3.22057
-4.85068
-42.1457

Imaginary Value

0.000000
0.000000
0.000000
0.000000
0.000000
1.228547E-02

-1.228547E-02
0.000000
0.286669
-0 286669
-2.138654E-02
-2.138654E-02
0.000000
0.000000
0.000000
0.000000
2.59982

-2.59982
0.000000
0.000000
6.03979
-6.03979
0.000000
0.000000
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TABLE 14

FIRST FOUR LOOPS CLOSED

OSTROWSKI CIRCLES AND CLOSED-LOOP POLES

Mode No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Real Value

L.5587O5E-O9
-4.727954E-03
-7.623277E-03
-1.444483E-02
-2.633280E-02
-4.741461E-02
-4.741461E-02
-6.958628E-02
-9.961549E-02
-9.961549E-02
-0.113112
-0.113112
-0.173845
-0.429342
-0.502302
-1.31851
-2.49057
-2,49057
-2.57977
-2.79598
-3.22054
-3.22054
-4.85068
-42.1457

Imaginary Value

0.000000
0.000000
0.000000
0.000000
0.000000
1.217905E-02

-1.2179O5E-O2
0.000000
0.286408
-0.286408
2.327464E-02

-2.327464E-02
0.000000
0.000000
0.000000
0.000000
-2.94200
2.94200
0.000000
0.000000

-6.03981
6.03981
0.000000
0.000000
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Gain £4 > 0 strongly destabilizes the system. With f4 < 0, only one
pole is unstable and its real value gets closer to zero when |f4 | in-
creases.

When f4 increases from zero, the Ostrowski circles get much larger on
loops other than 4 and the system loses Its dominance (Ostrowski circles
become larger than Gershgorin circles). The circles are smaller if f4 is
negative.

All loops closed:

Ostrowski circles are shown for F = (4,4,4,-4,4) with the corresponding
poles in Table 15. The study of the system for various gains in loop 5
when the gain in loop 4 is negative indicates that a pole is still unstable
when f5>0, and its real value gets closer to zero when f5 increases.

The Ostrowski circles shrink on loops other than 5 when f5 varies between
0 and 4. Gain f5 influences the location of the slowest mode and most of
the other poles. Interaction between loop 5 and other loops is thus also
very strong.

Now, the effect of a positive gain in loop 4 with loop 5 closed Is
studied. The Ostrowski circles are shown for F = (4,4,4,2,4) with the cor-
responding poles in Table 16. The system is stabilized. This result indi-
cates that the influence of gain in loop 5 on stability margin in loop 4 is
very strong. Also the Ostrowski circles get larger when f4 varies
between 0 and 2.

4.4.3 Choice of Gains

The results can be summarized as follows:

(1) To have a reasonable time constant for the fastest pole:

f2 < 1.5

low gain on f3.

(2) To have non-oscillatory poles #22-23:

fl < 2

(3) To speed up the slowest modes:

high gain on f4

low f5, but >0.1 to preserve stability.

(4) To decrease oscillatory nature of poles 9-10 (10-11 in open loop):

high gain on fi

f3 < 2
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TABLE 15

ALL LOOPS CLOSED, f4 < 0

OSTROWSKI CIRCLES AND CLOSED-LOOP FOLES

Mode No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Real Value

4.812978E-11
-4.727954E-O3
-1.433109E-02
-2.633337E-02
-4.478226E-02
-4.478226E-02
-6.897139E-02
-8.420918E-02
-9.490327E-02
-9.490327E-02
-0.138785
-0.174422
-0.195675
-0.429339
-0.514349
-2.25889
-2.43482
-2.82866
-2.83718
-2.83718
-3.21955
-3.21955
-4.85074
-42.1457

Imaginary Value

0.000000
0.000000
0.000000
0.000000
1.161508E-02

-1.161508E-02
0.000000
0.000000
0.271946
-0.271946
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
2.83109

-2.83109
-6.03990
6.03990
0.000000
0.000000



- 32 -

TABLE 16

ALL LOOPS CLOSED, f^ > 0

OSTROWSKI CIRCLES AND CLOSED-LOOP POLES

Mode No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Real Value

-8.206170E-11
-4.727954E-03
-1.433084E-02
-2.633324E-02
-4.478787E-02
-4.478787E-02
-6.896613E-02
-8.406587E-02
-9.412470E-02
-9.412470E-02
-0.140315
-0.174791
-0.186297
-0.429353
-0.511155
-1.36539
-2.03580
-2.03580
-2.52926
-2.82236
-3.21961
-3.21961
-4.85075
-42.1457

Imaginary Value

0.000000
0.000000
0.000000
0.000000
1.161687E-02

-1.161687E-02
0.000000
0.000000
0.272810
-0.272810
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
1.91863

-1.91863
0.000000
0.000000
-6.03983
6.03983
0.000000
0.000000
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(5) To keep small Ostrowski circles:

high gain on f3 and

The feedback matrix F = diag(1.2,1,0.5,1.7,0.3) has been found to be
satisfactory. For this F, the poles are shown in Table 17 with the
Ostrowski circles. The simulation of the system with this feedback matrix
is performed to fine tune the gains if the closed-loop system response is
not satisfactory.

4.4.4 Simulation of the Closed-Loop System

To simulate the system using module MVS1M, the configuration of the closed-
loop system must be modified as shown in Figure 4.9.

r1

n K* G(s)

FIGURE 4.9 STANDARD CONFIGURATION OF THE CONTROL SYSTEM

where the controller matrix

K* = K0.K.F.L.L0 (22)

has the structure shown in Table 18.

This configuration enables the controller to respond to measurements of
plant output deviations.

Figures 4.10 (a) and (b) show the closed-loop response of the design model
to a 1% decrease in reactor and turbine power setpoints. The results are
in general satisfactory. The system is stable and has some fast dynamics,
especially the reactor power. The reactor and the turbine powers show per-
fect steady-state performance. The initial transients in the reactor power
and the steam generator pressure can be improved by fine tuning the gains
in the associated loops. The steady-state offsets on the steam generator
pressure and level can also be reduced by addition of integral actions.
However, experience [2] has shown that fine tuning of controllers with a
linear model does not guarantee improved performance on the reference non-
linear model. In this study, any required fine tuning is performed
directly on G2SIM to take into account the non-linearities.
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TABLE 17

CHOICE OF GAINS FOR SIMULATION

OSTROWSKI CIRCLES AND CLOSED-LOOP POLES

Mode No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Real Value

-1.682941E-09
-4.730965E-03
-8.434443E-03
-1.490263E-02
-2.632797E-02
-4.310931E-02
-4.310931E-02
-4.464365E-02
-0.104370
-0.104370
-0.126993
-0.126993
-0.168685
-0.475814
-0.495410
-0.888823
-1.22446
-1.60958
-1.60958
-2.58315
-2.76780
-3.21938
-3.21938
-9.29128

Imaginary Value

0.000000
0.000000
0.000000
0.000000
0.000000
1.715665E-02

-1.715665E-02
0.000000
0.279028
-0.279028
1.794114E-02

-1.794114E-02
0.000000
0.000000
0.000000
0.000000
0.000000
-2.34205
2.34205
0.000000
-0.000000
-1.66001
1.66001
0.000000



K*

TABLE 18

CONTROLLER MATRIX DERIVED WITH THE INA METHOD

39.97

0.0000

-0.4893

0.0000

1.401E-02

-1.137E-02

0.0000

0.1947

0.0000

-4.153E-05

-2.710E-02

-2833.

2.406

0.0000

5.041E-04

-2.129E-02

0.0000

0.2501

1.667

-3.125E-02

0.4115

0.0000

-5.835

0.0000

-3.333

2.129E-02

0.0000

-0.2501

-1.667

3.125E-02

-2.057

0.0000

29.18

0.0000

16.67

1.137E-02

0.0000

-0.1947

0.0000

4.153E-05

1
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5. IMPLEMENTATION AND PERFORMANCE ON G2SIM

5.1 Introduction

In this chapter, the implementation of the controller on the non-linear
model G2SIM is described. Then simulation analysis is performed and the
overall performance of the controller is studied. Integral actions are
added to the control loops of the reactor power, the steam generator pres-
sure and the steam generator level to improve the steady state tracking
capability of the controller.

5.2 Implementation on G2SIM

The G2SIM program used in this study has the capability to incor-
porate conventional or multivariable controllers [2]. For the closed-loop
simulation of G2SIM with a multivariable controller, the. input vector
actually applied at the sampling time kT is given by [2]

Uk " Uk-1 + Auk ( 2 3 )

Auk = CcAak + D . ^ (24)

where Aak> t n e incremental state vector of the controller, is given by

A«k - Ac«k-1 + Vk-1 (25)

and Aefc, the incremental deviation error, is given by

' ) k (26)

Because the controller calculated in Section 4 is a pure proportional
regulator, matrices Ac, Bc and Cc are null matrices while matrix Dc

is given by

D = -K* (27)
c

5.3 Performance of Multivariable Controller on G2SIM

Simulation techniques are used to study the performance of the INA con-
troller on G2SIM. In Figures 5.1(a,b), the response of the INA controller
to a 1% reduction in reactor and turbine power setpoints is compared to the
response of the conventional controller. These results show that after 200
seconds, the system is stable, and the overshoots are small. Except for
the steady-state offsets, the overall performance of both controllers is
very comparable.
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Now although the multivariable controller has been designed for small sig-
nal perturbations, its robustness under large signal transients should be
analyzed. Figures 5.2(a,b) show the response of G2SIM to a 5% reduction in
the reactor and the turbine power setpoints. The results indicate that the
system is stable and the overshoots are small, but the steady-state perfor-
mance of the proportional multivariable controller is totally unaccept-
able. To eliminate this deficiency, the action of an integral controller
has been investigated.

5.4 Addition of Integral Controller

After analyzing the steady—state performance of the multivariable con-
troller, it was decided to add integral actions to the control loops of the
reactor power, the steam generator level and the steam drum pressure. The
gains of the integral controller were selected via manual tuning. The
resulting controller is a multivariable-proportional-integral controller
which can be described by equations (23) to (26), where Ac is a null
matrix, and matrices Bc, Cc and Dc are

Bc =

0.5 0 0 0 0 0 0 0

0 0 0 0.3 0 0 0 0

0 0 0 0 0.1 0 0 0

0 .5

0

0

0

0

0

0

0

-0.007

0

0

0

0

0

0 . 1

Dc = -K*

The response of the resulting closed-loop system to a 5% reduction in the
reactor and the turbine power setpoints is shown in Figures 5.2(a,b). This
figure indicates that the introduction of the integral action has elimi-
nated completely the steady-state offsets on the reactor and the turbine
power, and on the pressure and the level of the steam generator.

Finally, Figure 5.3 presents a comparison between the tnultivariable con-
troller with integral action and the conventional controller. Again, the
perturbation applied is a 5% reduction of the reactor and the turbine power
setpoints. The results show that

(1) the response of the reactor power is slightly slower but
smoother with the multivariable controller,
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(2) the multivariable controller provides a more effective
regulation on the primary pressure and on the pressurizer
level,

(3) the response of the steam generator level shows a better
steady-state performance with the multivariable controller,

(4) the response of the steam generator pressure shows an
acceptable overshoot of 0.4% and perfect steady-state
performance, and

(5) the response of the feedwater flow and the turbine power is
very comparable for the two controllers.

In general, the results shown in Figures 5.3(a,b) indicate very well that a
multivariable controller leads to an improved regulation of f.lie plant in an
overall sense.

6. CONCLUSIONS

In the study presented in this report, a multivariable controller has been
designed for the regulation of a non-linear and complex model (G2SIM) of a
CANDU 600 MWe nuclear reactor. In this study, the linear model (G2LDM)
especially derived from G2SIM for control system analysis has been used as
the plant design model. The state space description of G2LDM has been con-
verted into a transfer-function representation to allow the design of thf
controller in the frequency domain. The well known Rosenbrock's Inverse
Nyquist Array (INA) method has been used to study and achieve open-loop
dominance.

After the open-loop dominance has been obtained, stability margins assess-
ment through the inspection of Ostrowski circles, and analysis of modes
distribution were used to select a proportional diagonal feedback matrix.
As shown in Figures 4.10(a,b), the closed-loop response of the resulting
proportional multivariable controller on the linear design model, G2LDM, is
excellent.

Designed using a linear model, the actual performance of the multivariable
controller must be assessed on the non-linear model. For this, the con-
troller has been incorporated into the real-time simulation program of
G2SIM. As shown in Figures 5.1(a,b), the performance of the proportional
multivariable controller (without any tuning) on G2SIM are quite comparable
to the conventional controller. However, the results shown in Figures
5.2(a,b) clearly indicate that under large perturbations, the steady-state
tracking capability of the multivariable controller is unacceptable.
Integral action was thus introduced in the control loops of the reactor
power, the steam generator level, and the steam drum pressure to eliminate
the undesirable steady-state offsets. The gains of the integral controller
were adjusted during simulation tests. The results of Figure 5.3(a,b) show
that when compared to the conventional controller, the resulting propor-
tional integral multivariable controller achieves better overall regulation
on G2SIM. This demonstrates that the INA method can be used successfully
to design controllers for large and complex systems.
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With the exception of the real-time non-linear simulations of G2SIM, the
present study has been carried out completely within the framework provided
by MVPACK. The underlying mathematical support and the extensive matrix
manipulation required in this study illustrate well the capability avail-
able in MVPACK.

7. ACKNOWLEDGEMENTS

The technical support provided by the Dynamic Analysis Laboratory staff,
especially G. Frketich and W.T. Howatt, is greatfully acknowledged. The
contribution of Dr. P.D. McMorran in the definition and preliminary analy-
sis of this project is also greatfully acknowledged. The project has
received the unwavering support of our Branch Head, Dr. E.O. Moeck, and of
Prof. A. Tapucu, Head of Institut de Genie Nucleaire, Ecole Polytechnique
de Montreal.

8. REFERENCES

[1] P.D. McMorran, "Multivariable Control in Nuclear Power Stations,
Survey of Design Methods", Atomic Energy of Canada Limited,
AECL-6583, 1979 December.

[2] S. Mensah, "ContrSleur Multivariable pour une Centrale NuclSaire
CANDU 600 MWe", Atomic Energy of Canada Limited, AECL-7841F, 1982
November.

[3] H.H. Rosenbrock, "Computer-Aided Control System Design", Academic
Press, London, 1974.

[4] J.P. Lucas, Atomic Energy of Canada Limited, private communication.

[5] Wang Sin-Lin and Kai Ping-An, "Design of Diagonal Dominance by Com-
pensators", Int. J. Control, Vol. 38, pp. 221-227, 1983.

[6] H.H. Rosenbrock, "An Automatic Method for Finding the Greatest or
Least Value of a Function", The Computer Journal, Vol. 3, pp.
175-184, 1960.

[7] S. Mensah, "MVPACK: A Package for the Computer-Aided Design of
Multivariable Control Systems", Atomic Energy of Canada Limited,
AECL-8259, 1984.

[8] P.D. McMorran et al., Chalk River Nuclear Laboratories, private
communication.



- 48 -

APPENDIX

DESCRIPTION OF THE LINEAR DESIGN MODEL



- 49 -

GJ
O

C i

Q
G i
G i

C i

O
GJ
Q
C i

o
o

C i

C i

cO

C
C i
C i

o

C i
£ l

C i
C'

C i

C i
C i
C i

o

C i
C i
C i

o
C i

C i
C i

C i

C i
C i
C i

s

C i

o
c
Gil

C i

C i
Igl

6o

O i—i Ci
O Ci Ci
|T| |—1 l~l

Ci Ci ^ i
O C' O
O Ci O

CO Ci
t Ci
U" Ci

l_- O

' O O Ci I-I

C J
O

O Ci
c
o
o

Ci Q d C CI'-' " r' a' c' ci
C CD O CD H> C'
c> d c o c< o

I I
LU L±J

IP C< O CO C O >_1 C> •

O O C' i*'J Ci O I - O ;

iTj o O CO CD 'H' C< O '
IT. Ci O t Ci Ci — O •

-T. Ci Ci C' Ci i
r-j

o ci

O Ci CD

o ci 5
C C< D
C Ci C
O Ci C

Ci C' Ci — Ci Ci
d Ci Ci 'JJ C C<
ci en en T GJ en
Ci Ci I"~I '"• j C Ci
C Ci O iJJ Ci Ci
C' Ci CD -̂* Ci Ci

en d en
Ci Ci O

Ci Ci Q Ci O Ci O Q

C1 Ci O
C' C' O
C Ci Ci

C Ci Ci
Ci O C'

C Ci Ci
Ci Q O

en Q en

i en o
o

c ci en
i I-I

t CD C i
• o en
• en en
• C' Ci

o — T

C Ci C —
C C

-
jj

- t

"II

'Hi
cn

i d

en

O
B
U

C '-i
Ci Ci

11
o
o

C i

CO

4
1
5

o

30
0

9
o

00
0

C i

0U
L

LH
JO

C i

Ci Ci
Q Ci

11
Ci Ci

C i

yy
y

cn
C'
I - I

cn
o

i—i

o

Ci
C'
o

S o
C' C'
o o

c o

6 c
r-i i—i

g g

C i

o

30
0

o

C i

•Hi O

; | ; ; |

t-i Ci

8 8
D Ci

C' Ci

Ci H

c. c

C' i'"

;?-, |=

C' C

c- c

Ci O Ci O D Ci C
Ci Ci O Ci Ci ci
O Ci I*~I |—i Ci Ci
Ci Ci Ci Ci O C
Ci Ci O I-I C Ci
Ci Ci Ci O Ci O

O Ci

5 ci

Ci Ci

i— Ci CO

Ci Ci O C'

['"I
• • • J

ITi

'X'

1 Ci
CD 'Hi
b"i c n

f- -

'£ '
CO

>D
I -

r-t

C1

C i

o
o

C'
'Hi
C
C'
C i

-1
I j j

' j j

•£|
[•«-,

I~I i—i

Ci O
CD Ci
Ci O

C' Ci C

to C 'H

'£> O C
Li" ' •

—i j - | -

H' C
Hi IT
H I f -

—, ^_

d

GJ

3
i—t

o
o
o
cn
»•"(

CD

C i

C i

|T , |—i

n cn

"Hi CD

'X' O

C '
C i
C i

I—)

i j ,

T
LJ~i

C'
'X'

1—1

C'

1—1

o

c
CD

1 Ci
••Xi C i

i . Ci
• Ci

•jj C'

1 l~l

i—i u"i C '
C< •"] d

.—i Ci I~I

Hi C1 C

CI O C
CD d C
Ci O C



Matrix A (continued)
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OPEN-LOOP POLES

Mode No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0
0
-2
-7
-1
-1
-2
-4
-4
-0
-0
-0
-0
-0
-0
-0
-0
-0
-1
-1
-1
-2
-2
-6

Real Value

.000000

.000000

.905705E-08
•O35677E-O7
.969287E-03
.135474E-02
.726444E-02
.323566E-O2
.323566E-O2
.133131
.133131
.156244
.156244
.203958
.203958
.357875
.454545
.500000
.08537
.81386
.81386
.58611
.80511
.63056

Imaginary Value

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
1.301648E-02

-1.301648E-02
-0.292423
0.292423
2.503049E-02

-2.503049E-02
9.462140E-02

-9.462140E-02
0.000000
0.000000
0.000000
0.000000
-2.59894
2.59894
0.000000
0.000000
0.000000
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