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ABSTRACT

Classical scaling laws are deduced for the equilibrium relations between
pinch current J, pinch radius a, axial density n and temperature T
of linear Z-pinches having a finite length L, as well as for toroidal Z-pinches
having a large aspect ratio. In both cases the radius a is found to increase
almost linearly with the current J at a fixed density n , and the temperature
T to increase with J at fixed values of the radius a. In principle, anoma-
lous transport can be simulated in a first approximation by multiplying the
transport coefficients by corresponding numerical factors.

At a fixed density n and a fixed external conductor current of an Extrap
pinch, the radius a is found to increase more rapidly with J than the
radius of the magnetic separatrix. Within the range of increasing pinch currents
there are therefore three regimes of an Extrap system. For small J the system
becomes unstable in the conventional way of unstabilized Z-pinches. For inter-
mediate values of J, the magnetic surfaces become deformed by the external
conductor field, and the constraints of this field combine with FLR and
cold-mantle effects to provide a macroscopically stable state. Finally, for
sufficiently large currents J, i.e. when the pinch radius a approaches and
even tends to exceed the separatrix radius, the system is expected to become
ballooning unstable in regions of "bad" field line curvature.

The present analysis thus provides relations between the basic pinch
parameters which can be tested by experiments, and it also contributes to the
understanding of Extrap stability in terms of increasing pinch currents.



1. Introduction

The plasma balance of a Z-pinch has earlier been analysed by several

authors [1-10], in some cases including plasma-neutral gas interaction and

aiming at Extrap geometry [4-10].

This report considers a pinch which is surrounded by a partially ionized

cold-mantle, and where the hot plasma core is strongly impermeable to neutral

gas. In such a system there are considerable radial heat losses by conduction

from the fully ionized core to the cold-mantle and a surrounding wall

[4,5,7,8,9,].The present study therefore differs from that earlier performed

by Haines [1], who assumed the plasma to be thermally isolated at its boundary,

e.g. by having a vacuum region between the plasma and the wall.

Ibis paper aims at classical scaling laws for the basic plasma parameters,

obtained from a simple analysis which excludes detailed investigations of the

plasma profiles. In particular, such scaling lavs become useful in a first

estimate of the pinch radius and its relation to the separatrix radius in Extrap

geometry. In its turn, such a relation becomes important to stability. In this

connection possibly existing anomalous transport effects can, at least to

some extent, be simulated by increasing the transport coefficients by correspond-

ing numerical factors.



2. Assumptions

the following assumptions are made:

(i) A linear Z-pinch is considered, the length L of which is much larger

than the radius a of its cross section. The limiting case a/L + 0 is

here used to simulate toroidal pinches of comparatively large aspect

ratios.

(ii) The pinch is kept in a quasi-steady and macroscopically stable state, e.g.

by using an Extrap confinement scheme. The plasma cross section of such

a scheme is non-circular, but is here approximated by a circular shape.

This does not change the main physical features of the present analysis

on plasma equilibrium.

(iii)The plasma is strongly impermeable to neutral gas, as defined by the
— 18 —2 —

condition na » l/o f = 5x10 m , where n is the average electron

density and o , the effective cross section of penetrating fast neutrals

[11]. A fully developed cold-mantle system is then established as outlined

in Fig.l, where a comparatively thin, cool and dense partially ionized

boundary layer separates Che fully ionized hot plasma core from its surroun-

dings. Consequently, the thickness x, of this boundary layer becomes

much smaller than the pinch radius a. Further, the plasma temperature

T. and current density jfa at the "edge" r * a-x, of the same layer

become much smaller than the maximum values T and j at the pinch

axis, respectively. Finally, the plasma and neutral gas temperatures are

approximated by a constant and low value T a T. in the boundary layer

[113.

(iv) The present study is restricted to the fully ionized core defined by

r < r. • a-x.. Thus, a detailed investigation of the rather complicated

balance conditions of the partially ionized boundary layer is excluded

from the analysis. Still the heat balance of the hot core can be treated

to some detail for a strongly impermeable plasma where x. « a and

T. « T , j. « j in the model illustrated by Fig.l.



(v) The radial profile of any plasma quantity Q(r,z) is represented by the

form

Q(r'z) " <Wx * fQ ° < f
Q < * (1)

where 0 is the maximum value of Q(r,z) for a fixed value of z, and

f is a dimensionless function of p • r/a which describes the corres-

ponding radial profile. According to Fig.l we thus have f «f .«f =1 and

f =0 at p = 0, as well as f.-f =0 and f,sl at P=l. Scaling laws
D j I D

in a restricted and exact sense are obtained if there would exist sets of

configurations having varying values of the amplitudes 0 . and fixed

profile functions £ . The present analysis does not take detailed profile

changes into account. It therefore provides an approximate method of

relating varying values of the amplitudes Q . with each other, as well

as with the parameters obtained from integration over the profiles.

(vi)The present deductions are limited to a pure hydrogen plasma with the charge

and mass number» ?.-A=l >

(vii)Classical transport is assumed to prevail. Anomalous transport can be

included in a first crude approximation, by multiplying the relevant trans-

port coefficients by corresponding numerical factors.Such transport is

not treated in detail, but needs further investigation. Moreover, a

rigorous analysis of such transport has to include modified analytical forms

of the transport coefficients, as well as modified plasma profile shapes.

(viii)Bremsstrahlung and cyclotron radiation losses are neglected.



3. Heat Flow at the Edge of the Plasma Core

The heat conductivity of the fully ionized plasma in the directions

across the magnetic field is given by

where,according to Braginskij [12],

i / i

refer to the contribution from ions and

U i T i )
2 + 1.32]/[(w.Tj.)4 + 2.7(a)iTi)

2 + 0.68J (3)

= 2k2nTxi/mi - k^T
5/2/(AnA) (4)

- A®(0) pw T ) 2 + 2.571/Rw T ) 4 + 14.8(0) T ) 2 + 3.77*! (5)

- 4.66k2nTT /m = V^T""/{ioA) (6)

from electrons. In eqs. (3)-(6) the collision times are further given by

1/T - kfnUnA)/T3/2 (s « i,e) (7)
8 S T

where AnA stands for the Coulomb logarithm, w-, w are the gyro frequencies,

k^ - 5.9 x 10"8, k® - 3.6 x 10"6, k\ - 3.9 x 10"12, k^ - 2.7 x 10~10,

and Sl-units are used throughout this paper.



The heat conductivity at the "border" r - r. of the fully ionized

core in Fig.l vill be of special interest to the discussions of this paper.

Indicating quantities at r • r. by subscript (,), we have

(Vs>b = #b / 2 ( Vo ) 1 / 2 / n b a n A ) ( s

where

kjj = e k g / m ^ (s - i,e) (9)

and

kF,/F V" (10)
o J p

In eq. (10) the quantities F. and F are dimensionless profile factors of
j p

order unity, being connected with the current and pressure distributions» as

shown later in Section 5 of this paper. Thus, the coefficient k_, links the
a

magnetic field B. in Fig.l to the values n and T at the axis, i.e.
D O O

through the radial balance of forces and in analogy with the Bennett relation.
4

As an example we put F- = 0.25, FT - 0.5, ÄxA - 10, T, « 3x10 K,
\ 22-3

n. - n /3, 1 X 3 x 1(T K. Then n >y 10 m yields (w.x.)v>< 0.12 and
O O O Q * 1 1 D ^

-2
For strongly impermeable pinches where a is of the order of 10 m

22 -3and n > 10 m , it is thus seen that (co.T.). becomes much smaller than
o lib

unity, and (to T ). less than or of the order of unity. The transverse heat

conductivity at the "edge" r • r. is therefore not too far from the limiting

value ^x(0) • ̂ x(0) + ̂ ( 0 ) which is being approached at small (w T - ) * * !



4. Comparison between Longitudinal and Transverse Heat Losses

Following Tendler [8] we now compare the transverse and longitudinal heat

losses of the fully ionized plasma core. The transverse power losses through

heat conduction in the radial direction become

(11)

at the edge r - r, . In a pinch where L » a these losses become much

larger than those from axial heat conduction.

There is no axial magnetic field component and no axial mass flow in the

present system. Therefore the main axial heat losses are due to the particle

transport by the axial current density. The corresponding power loss becomes [5]

A;/ s 5ir(k/e)a
2JoToFff (12)

where F.. is a dimensionless profile factor of order unity. Eqs. (11) and (12)

combine to

(13)

Two limiting cases will be considered in the following sections, as

defined by eq. (13):

(I) For finite and not too small values of a/L we obtain 6T » 1, and the

longitudinal losses will have a major influence on the heat balance.

An example is given by a relatively short linear pinch where the total

pinch current J « 2 x 10 A, a » 0.01 m, L • 0.1 n, j " 1 0 A/m,

n Q - 10
2 2 m"3, To « 3 x 10

5 K, Tfe « 3 x 10
4 K, |dT/dr|b a 10

7 K/tn,

¥„ - 1/6, P. * 2F - 0.5, and n, » 3 x 10 2 1 m~3. Then \*(.0) - 6.1xl0~2,
" J p D *

X!(0) * 4 . 2 , (W.T.). » 0 .13 , (W T ). - 3 . 8 , A* - 0 . 1 1 ,
g- lib e e o •*&

A » 0.17 and A «= 0.28, froia which 6. a 20 » 1.
J-b -ID L



(II) When a/L is chosen small enough for 6 « 1, such as for very long

linear pinches or toroidal pinches (with a/L = 0), only the transverse

losses have to be taken into account.



5. Longitudinal Loss Dominated Case

We first turn to case I where 9 » 1 . This case has been considered
Li

earlier [5]. In a cylindrical frame (r,<P,z) with z along the pinch axis,

z = 0 at the anode and z * L at the cathode, the temperature distribution

along the pinch axis r = 0 was found to have the form (see also Ref. [1])

T («) -

k = 129(*aA) (15)

This relation results from a balance between Ohmic heating and heat losses due

to particles escaping to the end electrodes, i.e. when the transverse heat

losses and the radiation losses from the fully ionized plasma are neglected,

as well as the ion temperature in the anode sheath.

With the notation defined by eq. (1), and for x. « a, the total pinch

current becomes

1

2 ( ?
J ~ 2?.a j o I pfj(p)dp £ 2Tra*Jo*j (16)

where FT is a dimensionless factor being somewhat smaller than unity. The

magnetic field and the current density are related by

b S Ba - V/2wa * W j

Further, integration of the radial balance of forces with respect to r yie "s

nT - n QT o - (a/2k) J jBdp (18)



In the model of Fig.l we have n, T, « n T . At P = 1 a pressure balance
b b o o

relation

»oTo S ( a W 2 k > J f j fBd p = aK

is therefore obtained where F is a dimensionless factor being somewhat

smaller than unity. Combination of eqs. (16)-(19) yields

(20)

which is equivalent to the Bennett relation. Eq. (20) also corresponds to the
2

condition that the beta value defined by 4y n kT /B, is nearly equal to
o o o b

unity.

It has earlier been shown that 3(nT)/3z = 0 for a linear Z-pinch [5] .

Since T (z) is a slow function of z according to eq. (14), we can put
T s T along a considerable part of the pinch length. With this as a first

approximation, eqs. (15), (16) and (20) combine to the relations

(21)

To ' CT«'"Fp>2/3<Lno'J>2/3 CT» ' " » V e ' 2 ' 3 <22)

We notice that the pinch radius relation (21) has earlier

been deduced by the author [6] , and later in an equivalent form

by Tendler [9], Here C „ * 3.1 x 101 and C-j. a 1.37 x 10 in Si-units.

The obtained results imply that the pinch radius increases almost linearly with

the pinch current J, is almost inversely proportional to the axial plasma

density n , and decreases very slowly with increasing pinch lengths L.

Further, the axial temperature increases with the pinch length L and the

density n , but decreases at increasing pinch currents J. This latter

behaviour is simply due to the fact that the average current density
2 5/3J/iTa a 1/J and the Ohmic heating power decrease at increasing pinch

currents J. Keeping instead the pinch radius constant, by varying the density



10

8/5 2/^
n a J , we would have a temperature T <* J , thus increasing with J.
o o
For a fixed pirch radius eqs. (21) and (22) then yield

T = C (l/F ) C (F /F )/al • (J*L) (23)

A numerical example is finally chosen with F = 0.25, FT « 0.5,
A 2 1 - 3 p

J - 10 A, n - 3 x 10 m and L = 0.1 m. Then eqs. (21) and (22) yield
0 -3 5

a pinch radius a £ 8 x 10 m and an axial temperature T s 3 x 10 K,

being not too far from the data measured and estimated in earlier Extrap pic

experiments [13].
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6. Transverse Loss Dominated Case

We now turn to case II where 6 « 1. The analysis is limited to conditions

where there is no radial flux of particles within the plasma core, i.e. the

neutral density n is neglected for r ̂  r, , and no matter is injected into

the core by external means [10]. The plasma heat balance equation then reduces

to

Integrating this equation over the plasma core, the notation of eq. (1) yields

4TT2anA)F*X,, r|/2a2/k J2 = F, (25)
J SO O T\ A

j|f2anA)p/fJ/2(-dfT/dp)bjdp (26)

when use has been made of eq. (17).

With A given by expressions (2)-(10) in terms of (n , T , n, , T, ), it
I D O O D D

is thus seen that eq. (25) and the Bennett-type relation (20) combine to two

equations for T and a as functions of J and n , i.e. when n, ,/n ando o b o
T. are considered as given parameters.

When there is a high-density cold-mantle, (co.T.). « 1 and (w T ). has
l i b e e b

values not too far from unity. Then Xe /A ,(0) varies slowly with (w T ).
ib it> e e b

and becomes of the order of unity. Consequently

X b 3 k x T b / ( i l n A > kX * kA + kA ( 2 7 )

and eq. (25) reduces to

(28)
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Combination with eq. (20) yields

To

where C x = 4.3 x 10
1 2 and C a 0.64 x 10~ 1 0 in Sl-units when

T, = 3 x 10 K. At a fixed pinch radius we further have
D

To

From eqs. (29)-(31) is thus seen that the pinch radius increases linearly

with J at a fixed density n , and that the temperature at the axis increases

with J when the pinch radius is kept constant. This behaviour is similar but

not identical to that of case 1 represented by eqs. (21)-(23).

22 -3A numerical example of case II is finally given by n = 10 m ,

J = 105 A and F = 0.25, F - 0.5, F. - 3. Then eqs. (27)-(30) and (2)-(8)
p 6 * -2

yield T s 1.8 x 10 K and a = 1.9 x 10 m. For these data (u) T ),= 5o e e b
and (^ixi)b s 0.2.
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7. The Magnetic Separatrix

At a fixed density n , the pinch radius has been found to increase

with the pinch current as given by

(32)

Here a • 4/3 and 1 in the longitudinal and transverse loss dominated

cases I and II, respectively, and (a , J ) are characteristic constants

defined by eqs. (21) and (29).

In linear Extrap geometry, with an octupole external conductor field B ,

and in corresponding toroidal Extrap systems with large aspect ratios, the

axial distance of a zero line of the magnetic separatrix becomes

rm " \ < J / * J v ) / (33)

Here J is the current in each of the external rod conductors being situated

at a distance a from the axis.

to the characteristic separatrix radius r when the pinch current has
in

According to eqs. (32) and (33), the pinch radius thus becomes equal

te characteristic t

increased to the value

4/(4a-l)
J * [ajV2J1/4a]m u v c v cJ (34)

A further increase of J beyond J would lead to a pinch radius larger
m

than rffl, but this ic not reconcilable with the present plasma balance

equations. It would lead to strongly enhanced losses at the pinch boundary,

and to substantial changes in the plasma profiles. We finally observe that

J can be increased by increasing the röd distance a .
D V



14

As an example the values of case I adopted at the end of Section 5 are
21 -3

chosen, i.e. F « 0.25, Fj * 0.5, n « 3x10 m , L * 0.1 n, a « 4/3,

and a /Ja - 3.7xl0~8. With a - 3x1 o"2 m and J *= 3x10* A the limiting
C C V - V

current of eq. (34) then becomes J • 1.9x10 A.
to
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8. Stability Considerations

Starting from the deduced relations between the pinch radius a and

the plasma current J at a given density n , we now turn to some consider-

ations about Extrap stability. In a high-beta system, such as the Z-pinch,

the density n, at r = r, becomes approximately equal to the neutral

blanket density n of Fig.l [10,11]. Having a large vacuum vessel with

constant neutral filling density n , it is thus justified to assume the

axial density n as a nearly constant parameter, being of the order of the
i»

filling density n . It should further be observed that, at a fixed externalno.
conductor current J , the pinch radius increases more rapidly with J than

the separatrix radius r , as shown by eqs. (21), (29) and (33). Consequently,

when considering gradually increasing pinch currents J which start from a

small value, the stability situation can roughly be outlined in the following

way which is at least in qualitative agreement with experiments [4,13,14]:

(i) At low currents J and small radii a the field B from the external

conductors becomes very weak within the entire plasma volume, because

B « (r/a) near the axis at r = 0. The pinch then obeys conventional si

bility theory, thus becoming unstable to kink and sausage modes (Fig.2a).

(ii) As the current J and radius a increase, the outer layers of the

plasma approach the magnetic separatrix and become influenced by the

constraints imposed by the external conductor field B . Then the cross

sections of the magnetic surfaces of these outer layers become non-

-circular, tending towards a "diamond-shape" [4]. These constraints, in

combination with finite Lannor radius effects, and possibly also in

combination with temperature profile shaping in the partially ionized

boundary layer, lead to a macroscopically stable plasma. Also the formation

of "good" regions of negative field line curvature in the outer layers

should contribute to stability [14,4] (Fig.2b).

(ii)When there is a further increase in J and a, the pinch radius

approaches the radius of the separatrix, and finally tends to exceed the

latter. Within this parameter range, the regions of "bad" field line

curvature in the outer plasma layers become increasingly "loaded" by the

plasma pressure gradient, and sooner or later they therefore turn

"ballooning" unstable. The detailed conditions for the development of this

instability, as well as its dependence on the plasma density, are given

elsevnere [14] (Fig.2c).
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9. Concluding Remarks

The present discussion on the Z-pinch scaling laws is important in

several respects:

(i) It provides a first hint to more rigorous and detailed self-consistent

calculations of the plasma and neutral gas parameter relations.

(ii) It predicts a simple relation between the pinch radius, total current,

density, and temperature, which can be tested by experiments.

(iii)lt contributes to the understanding of the observed Extrap stability and

its limits. Nevertheless an extended stability analysis is needed which

takes into account the coupled particle, momentum and heat balance of a

dissipative plasma state.

(iv) An extension of the present analysis to include anomalous transport ant

purity radiation should modify the corresponding scaling lavs, in a way

which also should become possible to test by experiments.
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Figure Caption

Fig.l. Outline of the profiles of the plasma and neutral gas densities

n, n , the current density j, the magnetic field strength B,
n

and the plasma temperature T of a strongly impermeable Extrap

pinch. Here r denotes the wall radius, r the average radius

of the magnetic separatrix in Extrap geometry, a the pinch radius,

and x, the thickness of the partially ionized boundary layer.

Fig.2. Outline of the three regimes of an Extrap pinch, with respect to

stability, on a scale of gradually increasing pinch currents J and

radii a:

(a) Unstable regime of small currents.

(b) Stable regime of intermediate currents.

(c) Unstable regime of large currents.
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