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ABSTRACT 

To model p a r t i c l e and h e a t l o s s terms a t t h e edge of a tokamak wi th a 

d i v e r t o r or pumped l i m i t e r , a s imple tv">-chamber f o r m u l a t i o n of the s c rapeo f f 

has been c o n s t r u c t e d by i n t e g r a t i n g the f l u i d e q u a t i o n s , i n c l u d i n g s o u r c e s , 

a long open f i e l d l i n e s . The model i s then so lved for a wide range of d e n s i t y 

and t empera tu re c o n d i t i o n s in t he s c r a p e o f f , us ing g e o m e t r i c a l pa rame te r s 

t y p i c a l of the PDX p o l o i d a l d i v e r t o r . The s o l u t i o n s c h a r a c t e r i z e four 

d i v e r t o r o p e r a t i n g c o n d i t i o n s for beam-heated p la smas : p lugged, unplugged, 

b lowthrough, and blowback. 
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I . INTRODUCTION 

Plasma t r a n s p o r t models of r a d i a l flow in tokamaks wi th a d i v e r t o r o r 

pumped l i m i t e r must i n c l u d e p a r t i c l e and h e a t l o s s terms due to flow a long 

magnet ic f i e l d l i n e s i n the s c r a p e o f f . The plasma e n t e r i n g the s c r apeo f f 

flows a long open f i e l d l i n e s u n t i l i t r e a c h e s t h e n e u t r a l i z e r p l a t e . The 

r e s u l t i n g n e u t r a l gas i n t e r a c t s with the incoming plasma and modi f ies i t s 

p r o p e r t i e s and f low. The g r e a t e s t e f f e c t o c c u r s when t h e r e i s a l a r g e 

r e c y c l i n g of the n e u t r a l g a s . This happens when the n e u t r a l s a r e i o n i z e d by 

the plasma near t he n e u t r a l i z e r and a r e swept back to t he n e u t r a l i z e r wi th the 

c y c l e r e p e a t e d a number of t i m e s . This enhancement of the plasma flow near 

t h e n e u t r a l i z i n g s u r f a c e s e r v e s t o ampl i fy the p a r t i c l e f l u x , and reduce t he 

t e m p e r a t u r e , t h e r e b y minimiz ing e r o s i o n . The a m p l i f i c a t i o n of p a r t i c l e f lux 

due t o r e c - ' c l i n g a l s o reduces the upstream plasma flow v e l o c i t y a long the 

f i e l d l i n e s in the s c r a p e o f f , thus changing the edge d e n s i t y of the main 

plasma r e g i o n . 

The plasma flow i n d i v e r t o r s has been modeled as a f l u i d wi th one- and 

two-d imens iona l codes [1] i n c o r p o r a t i n g numer i ca l models of the n e u t r a l 

t r a n s p o r t , such as Monte Car lo t r e a t m e n t s [ 2 ] . These t r e a t m e n t s r e q u i r e 

s i g n i f i c a n t amounts of computer time and a r e u se fu l o n l y for s t u d y i n g s p e c i f i c 

examples of d i v e r t o r s a n d / o r the s c r a p e - o f f r eg ime . They a r e i m p r a c t i c a l as 

models for edge loaa i n the s c r apeo f f for t he l a r g e codes used to model the 

r a d i a l flow in plasma t r a n s p o r t . I n s t e a d s imple r models of the s c rapeo f f must 

be used t h a t do no t r e q u i r e e x c e s s i v e amounts of computer t ime . We have 

developed a s imple two-chamber model t o e x p l o r e the e f f e c t s of r e c y c l i n g on 

b o t h t h e c h a r a c t e r i s t i c s of t h e high r e c y c l i n g r e g i o n s and the main plasma 

r a d i a l t r a n s p o r t i n the s c r a p e o f f . In t h i s pape r , we d e s c r i b e the model and 

p r o v i d e s o l u t i o n s for the s c r a p e - o f f r eg ion a s a s t a n d - a l o n e c a l c u l a t i o n . The 
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radial transport modeling using the BALDUR code is described in another paper 

[3]. Related two-chamber models have been developed by other authors [4], out 

generally employ more complicated treatments of the neutral transport. These 

models also use too much computer time to be practical for the radial 

transport models. 

I I . THE TWO-CHAMBER MODEL 

To solve for the flow of material entering the scrapeoff into a high-

recycling region, we ignore all radian flows in the scrapeoff and consider 

only parallel flow along the field lines. The fluid equations, including 

sources, have been derived in arbitrary coordinates by Singer and Langer [5], 

who also evaluated the most important transport terms in a collision dominated 

plasma. "•!:;» radial and poloidal transport can be neglected in calculating the 

flow to the divertor when cross-field transport near the midplane gives broad 

profiles of density and temperature. Assuming a constant ratio of poloidal to 

total magnetic field, Bg/B, the fluid equations for the flows of ions, total 

momentum, and total energy can be written: 

aT ( n u ) = 3 ' < n 

^ [mm2 + p ) = 0 , (2) 

| ^ [ q e + (! n T + l M

2 ) u ] = W , (3) 

where 

u = f l u i d v e l o c i t y , 
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ra =a ion mass , 

T = -1- h + T. ] , 2 - e l ' 

S = ion source due to ionization of neutrals , 

W = energy source, 

and s is the distance along a magnetic field line. Neglected are viscosity 

terras, electron momentum, and neutral frictian on the ions. Integrating these 

equations from the entrance of the scrapeoff to the recycling channel (see 

Fig. 1), subscript 1, to the material boundary, subscript 2, yields 

F2 " ri = ^ S d S ' < 4 ) 

(mu^ + 2 T 2) n 2 = (mu^ + 2 ^ ) î  , (5) 

Q2 - (5 Î T,, + q*) = / Wds = 4E / Sds , (6) 

where r = nu is the particle flux, Q 2 = 2 (Yj. + Y e) ^2 T2 i s t h e e n e r 9 Y flux 

assumed to flow through the plasma sheath, with y^ = 1 and y e = 2.9 in the 

absence of secondary electron emission, and AE is a constant energy loss per 

ionization. 

To solve these equations, we divide the region with open field lines into 

two chambers: the scrape-off regime and the divertor or high recycling 

regime. This geometry ig sketched .in Fig. 1, where the length of the 
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scrapeoff i s given by the distance along the f ie ld l ine from the separa t r ix , 

L, = TOJR, where q i s the safety factor and R i s the major radius of the 

tokamak torus . 

To close th is set of equations, we need a model for the neutral 

t ranspor t . Adapting the approach of Post, Langer, and Petravic [G], we write 

d(n u ) o o — - = -S = -nv <ov>, , ds o ion 

and, providing that v Q is a constant, find 

J Sds = r2fl - f p u m p)[l - exp(-X2/L2l]. (7) 

Here it is assumed that a fraction {1 - f p u m p ) of t h e ions striking the 

material boundary are returned to the recycling channel, and the rest are 

pumped away. The effective length of the recycling channel is Î r the mean-

free path for ionization by electrons, X.2 = I vo l/' n2 < I 7 v >ion'' a n <^ vo = 

(2E /m .' ' is the velocity of the neutrals. In this model, a fraction 

exp(-^2/L2) of the neutrals penetrate through the recycling channel to the 

main plasma chamber (scrapeoff), and the remaining fraction (1 - expt-Xo/Lj" 

are ionized in the recycling channel. 

Finally, the heat flux q^ can be approximated by the flux limited 

parallel conduction formula, 

where v ^ = (2 T e/m p) ' is the electron thermal velocity and <, (Zef£,Tj.) 

is the parallel thermal conduction coefficient [7] evaluated at the boundary-
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centered temperature T fo = (T1 + T 2 ) / 2 . Here v ^ e = (2 T.,/me) ^ for the 

usual f lux-l imited theor ies [9,91 and v t h e = (2 T 2 /m a ) ' z with a thermal 

ba r r i e r 110]. 

In the model calculat ions described below, we adopt otL = 0.1 [6] , <ov>i o n 

i s taken from Freeman and Jones [11], and EQ = 3 eV i s cha rac t e r i s t i c of the 

energies for atomic hydrogen produced from the d i ssoc ia t ion of Hj. If H° i s 

produced by charge exchange, then 10 eV would be a more r e a l i s t i c energy 

(higher energies may be present i f the hydrogen i s produced by wall re f lec t ion 

f ! 2 J ) . 

I I I . RESULTS 

To explore the predict ions of the two-chamber model, the approximate 

f luid equations were solved for physical parameters representat ive of PDX 

diverted plasmas: L1 = 940 cm and L 2 = 25 cm. The flow at the pla te is 

assumed to be sonic (Mach number, H = 1) and the energy loss HE - 40 eV. 

While th is model i s necessar i ly simple, i t contains the basic contr ibutions of 

importance for pa ra l l e l flow in the scrape-off d iver tor region and should 

reproduce the i r qua l i t a t ive fea tures . The input parameters are the density 

and tempeiature in the scrapeoff (n^,T^) and the pumping fraction in the 

diver tor (fD UmDJ» ^ e densi ty and temperature in the divar tor ( i ^ T , ) and 

f lu id veloci ty in the scrapaoff (u-j) are determined from Eqs, (4) to (7) . 

From these the fluxes r , and Tj, Mach number M ,̂ and recycling, R = fj/T^, can 

be ca lcula ted . 

The midplane Mach number in Pig. 2 i s shown as a function of midplane 

ecrape-off densi ty fat a range of pimping f rac t ions . The temperature in the 

scrapeoff i s fixed at 95 eV. The decrease in H( with increasing density i s a 

consequence of the- increased recycling in the d ive r to r . The recycling i s 
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large if the ionization opacity for the neutrals in the divertor is much 

greater than one. The effect of increasing the pumping is to mate it more 

difficult to sustain high recycling because the source of returning neutrals 

in the divertor is decreased. 

The temperature behavior in the divertor is important for understanding 

divertor operation and for comparison with experiments. Correspondingly, the 

midplane Mach number is important for determining the loss of plasma in the 

scrapeoff. The divertor temperature, Tn/ and midplane Mach number, M^, are 

plotted in Figs. 3 and 4, respectively, as a function of midplane density for 

a range of midplane temperatures. (There is no pumping included in these 

calculations; letting * D U m D be greater than zero would shift the inflection 

points to higher densities to compensate for the reduced fraction of neutrals 

available for recycling-) 

As seen in Fig. 3, the diver-or temperature decreases with increasing 

density n,. The decrease is small until the opacity to neutrals, x, is the 

order of one, by T = 3 a plateau is approached, and then little additional 

change occurs. (The lines of constant opacity are indicated by a dashed 

line.) For x >̂  3, less than 5% of the returning neutrals reaches the upstream 

scrapeoff, the source function is constant, and the flow stagnates. This 

behavior in the flow is seen in Fig, 4. At sufficiently low scrape-off 

temperature (T1 <_ 30 eV), however, the divertor temperature is too low to 

attain such large opacities and the flow never stagnates (though it can be 

small). 

At sufficiently high density n 1 (depending on temperature in the 

scrar^off) the divertor temperature drops, and sometimes sharply, to a very 

low value, ~ 3-4 eV. Further decrease is inhibited by the exponential 

sensitivity of <ov> to temperature when T is much smaller than the ionization 
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threshold of hydrogen. This change in temperature is associated with a change 

in electron thermal conductivity as the plasma goes from collisionless to 

collisional. The thermal conductivity of the collisional plasma is, of 

course, very sensitive to temperature. A corresponding change in Hach number 

is also observed at this boundary. The collisional and collisionless regimes 

are delineated ii. Figs. 3 and 4. 

Various operating regimes for a tokamak divertor can be tentatively 

identified with different regions of the temperature density and Hach number 

density plots as indicated in Figs. 3 and 4. These are: plugged, unplugged, 

blowthrough, and a possible fourth regime which we call blowback. 

In the unplugged regime, the temperature is nearly constant along the 

magnetic field. In the plugged regime, there is a significant drop in 

temperature going into the divertor. 

The blowthrough regime is an unplugged divertor with very low upstream 

scrape-off temperature due to the large thermal conductivity. The divertor is 

transparent to neutrals and the H1 is large, = 0.5, in the scrapeoff. The 

term blowthrough is used because as the density is raised in a plugged 

scrapeoff, the temperature drops rapidly, the di"ertor becomes transparent to 

neutrals, and unplugs. The previously plugged flow goes from nearly stagnant 

to nearly sonic (M ~ 0.5), thus allowing significant flow into the divertor 

from the scrapeqff. 

In the blowback state, the plasma neutralizes outside the divertor 

because the scrape-off width becomes very large. This condition is restricted 

to high densities and low tairperature where the collisionality is large [5]. 

The plasma may then be blown back into the main chamber by recycling in the 

scrapeoff. The temperature for this operating regime cannot be too low as the 

divertor must remain plugged enough to prevent significant loss of plasma in 
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•the d i v e r t o i . 

The f i r s t t h r e e regimes cor respond q u a l i t a t i v e l y wi th those observed on 

ASDEX by Shitr.oraura ^t_ a l . [ 1 3 ] . The blowback regime would on ly be 

d i s t i n g u i s h e d us ing two-dimensional measurementJ . 

rV. SUMMARY 

We have presented a simplified one-dimensional model of the tokanak 

scrapeoff containing most of the basic physical processes important for 

determining particle and energy flow. The model can be used to represent edge 

losses into a divertor in large transport codes whiuh model the radial 

profiles of tokamaks. The results of such modeling with the BALDUR transport 

code are discussed elsewhere [1,14]. 

We find that the divertor opacity to neutrals and electron collisionality 

determine che different operating regimes. The first condition establishes 

the particle recycling, while tlie second determines the energy transport along 

the open field lires. The model shows qualitatively how these physica?. 

processes determine the scrape-off conditions. It also makes it possible to 

model readily the dependence of the edge plasm., flow and recycling on various 

geometrical factors, such as the fraction of ga3 pumped in the Jivertor, the 

length of the scrapeoff, and the length of the divertor. 
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FIGURE CAPTIONS 

FIG. 1. Schematic representation of the two-chamber model for divertors with 

recycling. 

FIG. 2. Midplane Mach number is plotted as a function of density for three 

pumping fractions. 

FIG. 3. The divertor temperature is plotted as a function of density for a 

range of midplane temperatures with no pumping/ f D u mr, = 0.0. Various 

operating regimes and plasma conditions are indicated 

qualitatively. The opacity of the divertor for T = 1 and 3 is 

indicated by the small dashed line. The boundary between a 

collisional and collisionless plasma is indicated by the long-ahot 

dashed line. 

FIG. 4. The midplane Mach number is plotted for the model calculations 

discussed in Pig. 3. 
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